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Abstract: This paper investigates the problem of fault detection observer design for positive switched 

systems with time-varying delay via delta operator approach. A new fault sensitivity measure, called l– 

index, is proposed. The l– fault detection observer design and multi-objective l– /l1 fault detection ob-

server design problems are addressed. Based on the average dwell time approach and the piecewise co-

positive type Lyapunov-Krasovskii functional method in delta domain, sufficient conditions for the ex-

istence of such two kinds of fault detection observers are firstly given, and then the design methods are 

presented. Finally, two examples are provided to show the effectiveness and the applicability of the 

proposed methods. 
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instability. Although many results have been reported for 
time-delay systems [14,15], only recently has the 
positive switched system with time delay become a topic 
of major interest [16-18], which is of significance to 
numerous applications. 

On the other hand, the research of fault detection and 
isolation in dynamic systems has received considerable 
attention during the past decades, and some model-based 
fault detection approaches have been proposed in [19-21]. 
Among them, the basic idea is to use state observers or 
filters to construct a residual signal, and then to 
determine the residual evaluation function, which is to be 
compared with a predefined threshold. When the residual 
evaluation function has a value larger than the threshold, 
an alarm is generated. However, noises and disturbances 
may change the residual and result in false alarms. This 
means that the fault detection and isolation systems have 
to be sensitive to faults and simultaneously robust to the 
noise and disturbances. Several approaches using the H∞ 
norm techniques have been largely developed for the 
design of robust fault detection observers or filters [22-
24], where the H∞ norm has been widely accepted as a 
good measure of robustness against unknown noise and 
disturbances. However, it should be pointed out that H∞ 
norm does not consist with the main objective of fault 
detection, i.e., sensitivity to faults, because it measures 
the maximum effect of an input on an output. In general, 
high fault sensitivity (i.e., high sensitivity of the residual 
signal to faults) is preferred. 

Recently, the study on the smallest singular value of a 

transfer function matrix has attracted considerable 

attention, which aims to maximize the minimum fault 

sensitivity to ensure the detection of the worst possible 

faults. Among various proposed measures, some H–

norms have been defined by using the minimum 

‘nonzero” singular value, taken either at w = 0 [25], or 

over nonzero frequency ranges in [26,27]. This sensitive 

measure is closer, but not yet the worst-case sensitivity 

1. INTRODUCTION

Recently, positive switched systems have been 
highlighted and investigated by many researchers, due to 
the broad applications in communication systems [1], 
formation flying [2], the viral mutation dynamics under 
drug treatment [3] and systems theories [4-6]. A positive 
switched system is a type of switched system that 
consists of a family of positive subsystems and a 
switching signal defining a specific positive subsystem 
being activated during a certain interval. It should be 
pointed out that a linear co-positive Lyapunov functional 
is powerful for the analysis and synthesis of positive 
systems [7]. Some results on the stability and 
stabilization of such systems have been obtained in [8,9]. 

It has been shown that the l1 performance index can 
characterize effectively the disturbance attenuation per-
formance because of the peculiar nonnegative property 

of positive systems [10,11]. And the l1-gain of positive 
switched systems has been investigated in [12,13]. 

In practice, time-delay phenomena widely exist in 
dynamic systems. The existence of time-delay may give 
rise to the deterioration of system performance and 
__________  
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measure during to the exclusion of possible zero singular 

values in the detection. Moreover they were not used in 

the analysis directly because of the lack of an effective 

characterization of H– norm performance. Instead, a true 

sensitivity measure called the H– index, which is defined 

as the minimum singular value of the transfer function 

matrix over a given frequency range, was introduced to 

investigate the fault detection problem in [28,29]. The 

inclusion of possible zero singular values in the defin-

ition renders the H– index of a true worst-case sensitivity 

measure. In addition, based on the H– index, mixed H–

 /H∞ fault detection problem has attracted a great deal of 

attention and has been investigated in [30,31]. 

As a novel method with good finite word length 

performance under fast sampling rates, the delta operator 

has drawn considerable interest in the past three decades. 

As is known that the standard shift operator is often 

applied in the discrete systems control theories. When 

the sampling period tends to zero, namely data are taken 

at high sampling rates, however, the dynamic response of 

a discrete system does not converge smoothly to its 

continuous counterpart. The above problem is avoided 

until a delta operator method is proposed to take place of 

the traditional shift operator in [32]. It was shown that 

when implemented in fixed-point digital control 

processors, delta operator requires smaller word length 

than shift operator does [33]. Thus the delta operator 

model can be regarded as a useful approach to deal with 

discrete-time systems under high sampling rates through 

the analysis methods of continuous-time systems [34]. 

Based on some significant early investigations [35,36], 

the numerical properties and practical applications of 

delta operator formulated model have been extensively 

investigated [37,38]. However, to the best of our 

knowledge, the fault detection observer design problem 

of positive switched systems via delta operator approach 

has not been fully investigated to date, which motivates 

the present research. 

In this paper, we focus our attention on investigating 

the fault detection observer design problem of positive 

switched systems with time-varying delay via delta 

operator approach. The main contributions of this paper 

are four-fold: 1) The fault detection problems of positive 

switched systems via delta operator are investigated for 

the first time; 2) In the framework of a linear Lyapunov 

function, an l– index, as a new sensitivity measure of the 

residual signal to faults, is introduced for the design of 

positive fault detection observer; 3) Based on the 

proposed l– index as well as the average dwell time, a 

fault sensitivity condition is developed and a positive l– 

fault detection observer is designed; 4) The mixed l– /l1 

fault detection observer design scheme is proposed such 

that the fault detection system is sensitive to faults and 

simultaneously robust to unknown disturbances. 

The remainder of the paper is as follows. The problem 

formulation and some necessary lemmas are provided in 

Section 2. In Section 3, l1 index robustness conditions 

and l– index fault sensitivity conditions are provided, 

respectively. Then based on the obtained results, the 

problems of the l– fault detection observer design and the 

multi-objective l– /l1 fault detection observer design are 

addressed and solved. Two numerical examples are 

presented to demonstrate the feasibility of the obtained 

results in Section 4. In Section 5, concluding remarks are 

given. 

Notations: 0( , , )A � ≺ � ≺  means that all entries of 

matrix A are nonnegative (nonpositive, positive, nega-

tive); ( )A B A B� �  means 0( 0);A B A B− −� �  A
T  

means the transpose of matrix A; R(R+) is the set of all 

real (positive real) numbers; R
n(R+

n     ) is n-dimensional 

real (positive real) vector space; R
m×n is the set of all 

m×n-dimensional real matrices; The vector 1-norm is 

denoted by 
1

n

k

k

x x

=

=∑  where xk is the k th element of

x ∈ R
n; Given v : R → Rn, the l1-norm is defined by 

1

0

( ) ;
L

k k

v v k

∞

=

= ∑  We define {1,2,..., }n n=  and 1
q
=

1
[1,1,...,1] ;

T
q× 1 0

[ , )l k ∞  is the space of absolute summable

sequences on [k0, ∞), i.e., we say z : [k0, ∞) → Rk is in 

1 0
[ , )l k ∞  if 

0

( ) 0.
k k

z k

∞

=

<∑  

2. PROBLEM FORMULATION AND 

PRELIMINARIES 

Consider the following switched delta operator system 

with time-varying delay: 

( ) ( )

( ) ( )

( ) ( ) ( )

0

( ) ( ) ( )

( ) ( ),

( ) ( ) ( ) ( ),  

( ) ( ),   , 1,...,0,

k d k k

k k

k k k

x k A x k A x k d

E w k G f k

y k C x k D w k H f k

x k d d

σ σ

σ σ

σ σ σ

δ

θ ϕ θ θ

= + −⎧
⎪

+ +⎪
⎨

= + +⎪
⎪

+ = = − − +⎩

 (1) 

where ( ) n

x k R∈  denotes the state; ( ) p
y k R∈  is the 

measured output; ( ) ,qw k R∈ ( ) zf k R∈  are the dis-

turbance input and the fault input, respectively, which 

belong to 
1 0
[ , ).l k ∞  k means the time t kT=  and T > 0

is the sampling period; k0 is the initial time. ( ) :kσ  

0
[ , ) {1,2,..., }k M M∞ → =  is the switching signal, with 

M representing the number of subsystems; ,
i

A ,
di

A ,
i

C

,
i

D ,
i

E
i

H  and ,
i

G ,i M∈  are constant matrices with 

appropriate dimensions. dk denotes the time-varying 

discrete delay which satisfies 0
k

d d d≤ ≤ ≤  for known 

constants d  and ;d { ( ), , 1,...,0}d dϕ θ θ = − − +  is a 

given discrete vector-valued initial condition. The switch 

is assumed to only occur at the sampling time in this 

paper. The delta operator is defined by 

( ) , 0
( )

( ( ) ( )) , 0,

dx t dt T
x t

x t T x t T T
δ

=⎧
= ⎨

+ − ≠⎩
(2)

where T is a sampling period. When T → 0, the delta 

operator model will approach the continuous system 

before discretization and reflect a quasi-continuous 

performance. 



Remark 1: Since a delta operator system can be 
regarded as a quasi-continuous system when T → 0, the 
term δx(k) can be applicable in normal continuous-time 
systems. 

Definition 1: System (1) is said to be positive if, for 
any initial conditions ( ) 0,ϕ θ , 1,...,0,d dθ = − − +  w(k) 

0, ( ) 0f k  and any switching signals ( ),kσ  the 
corresponding trajectories ( ) 0x k  and ( ) 0y k  hold 
for all 0.k k≥  

Lemma 1: System (1) is positive if and only if 
( ) 0,iI TA+ 0,diA 0,iE 0,iG 0,iC iD 0 
and 0,iH .i M∀ ∈  

Proof: From the definition of delta operator δ, the 
discrete form of system (1) can be obtained as follows: 

( ) ( )

( ) ( )

( ) ( ) ( )

0

( 1) ( ) ( ) ( )

( ) ( ),

( ) ( ) ( ) ( ),

( ) ( ),   , 1,...,0.

k d k k

k k

k k k

x k I TA x k TA x k d

TE w k TG f k

y k C x k D w k H f k

x k d d

σ σ

σ σ

σ σ σ

θ ϕ θ θ

+ = + + −⎧
⎪ + +⎪
⎨ = + +⎪
⎪ + = = − − +⎩

 (3) 

Combining Lemma 2 in [39] and Lemma 1 in [16], one 
can obtain the remaining proof easily. 

Remark 2: When T → 0, system (1) degenerates to a 
general continuous-time positive switched system as 
follows: 

( ) ( )

( ) ( )

( ) ( ) ( )

0

( ) ( ) ( ( ))

( ) ( ),

( ) ( ) ( ) ( ),

( ) ( ),   [ ,0],

t d t

t t

t t t

x t A x t A x t d t

E w t G f t

y t C x t D w t H f t

x t d

σ σ

σ σ

σ σ σ

θ ϕ θ θ

= + −⎧
⎪ + +⎪
⎨ = + +⎪
⎪ + = ∈ −⎩

(4) 

where ( )d t  denotes the time-varying delay which is 
everywhere time-differentiable and satisfies 0 ( )d d t≤ ≤  

d≤  for known constants d  and .d  Then according
to [12], system (4) is positive if and only if iA  are
Metzler matrices, and 0,diA 0,iC 0,iD 0,iE

0iG  and 0,iH .i M∀ ∈
The fault detection observer has the form 

( ) ( )

( )

( )

0

ˆ ˆ ˆ( ) ( ) ( )
ˆ( ( ) ( )),

ˆ ˆ( ) ( ),
ˆ( ) ( ) ( ),

ˆˆ( ) ( ),   , 1,...,0,

k d k k

k

k

x k A x k A x k d

K y k y k

y k C x k

r k y k y k

x k d d

σ σ

σ

σ

δ

θ ϕ θ θ

= + −⎧
⎪ + −⎪
⎪ =⎨
⎪ = −⎪
⎪ + = = − − +⎩

(5) 

where ˆ( ) nx k R∈  and ( ) pr k R∈  are the estimated state 
and the residual, respectively. Ki, ,i M∈  are the ob-
server gain matrices to be determined. 

Remark 3: For a non-positive system, the state of de-
signed observer is only required to tract asymptotically 
that of the considered system. However, as stated in [40], 
this requirement is not enough for positive system (1), 
the designed observer should also ensure that the esti-
mated state ˆ( )x k  is positive. That’s to say, the observer 
gain matrices Ki should guarantee that ( )i i iI T A K C+ −  

0  and 0.i iK C  

Letting ˆ( ) ( ) ( )e k x k x k= −  be the state estimation er-
ror, the residual error dynamic equations can be obtained 
from (1) and (5) as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0

( ) ( ) ( ) ( )

( ) ( )

( ) ( ),

( ) ( ) ( ) ( ),

ˆ( ) ( ) ( ),   , 1,...,0.

k k k d k k

k k k

k k k

k k k

e k A K C e k A e k d

E K D w k

G K H f k

r k C e k D w k H f k

e k d d

σ σ σ σ

σ σ σ

σ σ σ

σ σ σ

δ

θ ϕ θ ϕ θ θ

⎧ = − + −
⎪

+ −⎪
⎪ + −⎨
⎪ = + +⎪
⎪ + = − = − − +⎩

 (6) 

Set ,i i i iA A K C= − i i i iE E K D= −  and i iG G= −
,i iK H  then according to Lemma 1, the above residual 

error delta operator system (6) is positive if 0,iI TA+
0iE  and 0.iG  Also the fault detection observer 

will be designed to maximize both the robustness against 
disturbance input ( )w k  and the sensitivity to fault input 

( )f k . 
Remark 4: As stated in [40], the positivity require-

ment on the estimated error ( )e k  is introduced not only 
to be consistent with the observer case, but also to 
facilitate the synthesis of the desired positive observer. It 
should be pointed out that although this requirement may 
cause some certain conservatism, the positivity of ( )e k  
will not affect that of the estimated state ˆ( ).x k  If the 
initial condition does not satisfy ˆ( ) ( ),x k x k  the 
estimated error ( ) 0e k  may not hold for all 0 ,k k≥  
but ˆ( )x k  will still remain positive. 

Definition 2 [41]: System (6) with w(k) = 0 and 
( ) 0f k =  is said to be exponentially stable under ( )kσ  

if, for constants 0α >  and 0,κ >  the solution ( )e k  
satisfies 

0( )
0( ) ( ) ,k k

ce k e k e κα − −≤ 0 ,k k∀ ≥ (7)

where 0 0
0

( ) sup ( ) .c
d

e k e k
θ

θ
− ≤ ≤

= +

Definition 3 [42]: For any switching signal ( )kσ  
and any 2 1 0,k k> ≥  let 1 2( , )N k kσ  denote the number 
of switches of σ(k) over the interval 1 2[ , ).k k  For given 

0aτ >  and 0 0,N ≥  if the inequality 

2 1
1 2 0( , )

a

k k
N k k Nσ τ

−
≤ + (8)

holds, then the positive constant τa is called the average 
dwell time and N0 is called the chattering bound. 

Without loss of generality, we choose N0 = 0 in this 
paper. 

Definition 4 [12]: Given positive scalars 10
T

α< <
and γ, system (6) is said to have a weighted l1 perform-
ance index γ, if under zero initial condition, i.e., 

0( ) 0,e k θ+ = , 1,...,0,d dθ = − − +  it holds that  

0

0

0

( )

( ) 0, ( ) 0

(1 ) ( )

sup ,
( )

k k

k k

w k f k

k k

T r k

w k

α
γ

∞
−

=
∞

≠ =

=

−

<
∑

∑



1 0
( ) [ , )w k l k∈ ∞ (9) 

Remark 5: As stated in [10], in spite of being com-

puted with the assumption of nonnegative state values 

and nonnegative input signals which belong to 
1 0
[ , ),l k ∞

the l1 index is valid for any nonnegative initial state and 

any input signal in 
1 0
[ , ).l k ∞

Remark 6: In Definition 4, as shown in [12,13], the l1 

index characterizes system's disturbance attenuation 

performance as the frequently-used H∞ index. The 

smaller the value of γ is, the better the performance of 

the system is. 

Definition 5: Given positive scalars 
1

0
T

α< < and β, 

system (6) is said to have a weighted l– performance in-

dex β, if under zero initial condition, i.e., 
0

( ) 0,e k θ+ =

, 1,...,0,d dθ = − − + it holds that

0

0

0

( ) 0, ( ) 0 ( )

( )

inf ,

(1 ) ( )

k k

w k f k k k

k k

r k

T f k

β

α

∞

=

∞
= ≠

−

=

>

−

∑

∑

 

1 0
( ) [ , ).f k l k∈ ∞ (10)

Remark 7: The l– index is defined based on the l1 sig-

nal spaces, which is different from the H– index proposed 

in the literature [28,43]. Moreover, (10) means that the 

lower bound of the weighted l1 gain from faults to resi-

duals for any fault signals in 
1 0
[ , )l k ∞  is not less than β, 

which is contrary to the aim of the l1 index. Therefore the 

proposed l– index can be regarded as a measure of the 

fault sensitivity. 

Definition 6: Given positive switched delta operator 

system (1), for two positive scalars γ and β, the observer 

(5) is said to be an l– /l1 fault detection observer if

1) Error system (6) is exponentially stable when

( ) 0w k =  and ( ) 0;f k =

2) Under zero initial conditions, (9) and (10) hold.

The objective considered in this paper is to develop an

admissible fault detection observer (5) for positive 

switched delta operator system (1) to minimize γ and to 

maximize β simultaneously. 

l– fault detection observer design: Given switched pos-

itive system (1) and a performance bound β > 0, find a 

fault detection observer (5), if exists, such that the resi-

dual error system (6) is exponentially stable under the 

switching signals with average dwell time when w(k) = 0, 

and (9) holds under zero initial conditions. Then the ob-

server (5) is called an l– fault detection observer. 

Mixed l– /l1 fault detection observer design: Given 

switched positive system (1), find an l– /l1 fault detection 

observer, if exists, such that the residual error system (6) 

is exponentially stable under the switching signals with 

average dwell time when w(k) = 0 and ( ) 0,f k =  as 

well as (9) and (10) hold with γ β−  being minimized. 

Remark 8: Various mixed /H H
− ∞

 performance 
2 2( , , .)etcγ β γ β−  criteria were proposed in [30,31] 

using the H– index. In this paper, we adopt the γ β−

criterion, using the l1 index for easier comparison. 

After designing the residual generator, the remaining 

important task is to evaluate the generated residual. One 

of the widely adopted approaches is to select a threshold 

and a residual evaluation function. In this paper, the resi-

dual evaluation function is chosen as 

0

( ) ( ) ,

T

r

k k

J T r k

π

π

=

= ∑ (11)

where T
π
 is the evaluation time window. 

Once the evaluation function has been selected, we are 

able to determine the threshold. It is reasonable to choose 

the threshold as 

1 0[ , ), 0

sup ( ).th r
w l k f

J J T
π

∈ ∞ =

= (12)

Based on this, the faults can be detected by using the 

following logical relationships 

( ) With faults Alarm
r th

J T J
π

> ⇒ ⇒ (13)

( ) No Faults.
r th

J T J
π

≤ ⇒ (14)

3. MAIN RESULTS

3.1. Stability analysis

First, we consider the following error delta operator 

system with time-varying delay: 

( ) ( )

0

( ) ( ) ( )

ˆ( ) ( ) ( ),   , 1,...,0,

k d k k
e k A e k A e k d

e k d d

σ σ
δ

θ ϕ θ ϕ θ θ

⎧ = + −⎪
⎨

+ = − = − − +⎪⎩

�

 (15) 

where 0
i

I TA+
� �  for .i M∈  dk is defined as the same 

as system (1). 

Sufficient conditions of exponential stability for 

system (15) are provided in the following theorem. 

Theorem 1: Given a positive constant 
1

0 ,
T

α< <  if 

there exist ,
i

ν ,
i

υ ,

n

i
Rϑ
+

∈  such that, ,i M∀ ∈

(1 )( 1) (1 ) 0,T

i i i i i
A T d d Tν αν α υ α ϑ+ + − − + + −
� ≺  (16) 

1(1 ) 0,T d

di i i
A Tν α υ

+

− − ≺ (17)

where 
1 2

[ , ,..., ] ,
T

i i i in
ν ν ν ν=

1 2
[ , ,..., ] ,

T

i i i in
υ υ υ υ=

i
ϑ =  

1 2
[ , ,..., ] ,

T

i i in
ϑ ϑ ϑ  then system (15) is exponentially 

stable for any switching signals σ(k) with average dwell 

time satisfying  

*
ln

.
ln(1 )

a a

T

μ
τ τ

α
> = −

−

(18)

Furthermore, the state decay of system (15) is given by 

0( )
0( ) ( ) ,

k k

c
e k ab e k

−

≤ (19)

where 

3 32 4

1 1 1 1

0.5 ( )( 1)
,

T d T d d d d T d
a

ε εε ε

ε ε ε ε

− + −

= + + +  

1

(1 ),ab T
τ

μ α= − { }1 ( , )
min ,

r i n M ir
ε ν

∈ ×
=



{ }2 ( , )max ,r i n M irε ν∈ ×=  { }3 ( , )max ,r i n M irε υ∈ ×=  

{ }4 ( , )max ,r i n M irε ϑ∈ ×=  0 0
0

( ) sup ( ) ,c
d

e k e k
θ

θ
− ≤ ≤

= +

and 1μ ≥  satisfies 

,i jν μν≺  ,i jυ μυ≺  ,i jϑ μϑ≺  ,  .i j M∀ ∈  (20) 

Proof: Choose the following piecewise co-positive 
type Lyapunov functional for the i th subsystem in 
system (15) 

1 2

3 4

( , ( )) ( , ( )) ( , ( ))
( , ( )) ( , ( )),

i i i

i i

V k e k V k e k V k e k
V k e k V k e k

= +
+ +

(21)

where  

1( , ( )) ( ) ,T
i iV k e k e k ν=  

1

2 ( , ( )) (1 ) ( ) ,
k

k
k s T

i i
s k d

V k e k T T e sα υ
−

−

= −
= −∑  

1

3
1

( , ( )) (1 ) ( ) ,
d k

k s T
i i

l d s k l
V k e k T T e sα υ

− −
−

=− + = +
= −∑ ∑  

1

4 ( , ( )) (1 ) ( ) ,
k

k s T
i i

s k d
V k e k T T e sα ϑ

−
−

= −
= −∑  .i M∀ ∈

For simplicity, ( , ( ))iV k e k  is written as ( )iV k  (cor-
respondingly, ( , ( ))V k e k  is written as ( ))V k  in the later 
section of the paper. 

According to the definition ( 1) ( )( ) ,e k e k
T

e kδ + −=  the 
Lyapunov function in delta domain has the following 
form: 

1( , ( )) ( ( ) ) ( ( ))

( ) ( ) ,

T T
i i i

T T T T
i i k di i

V k e k e k e k

e k A e k d A

δ δ ν δ ν

ν ν

= =

= + −
 (22) 

2 2 2

1

1

1

1

1( , ( )) [ ( 1) ( )]

(1 ) ( )

(1 ) ( )

(1 ) ( )

(1 ) ( ) ,

k

i i i

k
k s T

i
s k d

T
i

d T
k i

k d
k s T

i
s k d

V k e k V k V k
T

T T e s

T e k

T e k d

T e s

δ

α α υ

α υ

α υ

α υ

−
−

= −

+

−
+ −

= + −

= + −

≤ − −

+ −

− − −

+ −

∑

∑

 (23) 

3 3 3

1

1

1

1

1( , ( )) [ ( 1) ( )]

(1 ) ( )

(1 )( ) ( )

(1 ) ( ) ,

i i i

d k
k s T

i
l d s k l

T
i

k d
k s T

i
s k d

V k e k V k V k
T

T T e s

T d d e k

T e s

δ

α α υ

α υ

α υ

− −
−

=− + = +

−
+ −

= + −

= + −

= − −

+ − −

− −

∑ ∑

∑

 (24) 

4 4 4
1( , ( )) [ ( 1) ( )]i i iV k e k V k V k
T

δ = + − (25) 

1

1

(1 ) ( )

(1 ) ( )

(1 ) ( ) .

k
k s T

i
s k d

T
i

d T
i

T T e s

T e k

T e k d

α α ϑ

α ϑ

α ϑ

−
−

= −

+

= − −

+ −

− − −

∑

According to (22)-(25), we have 

1

( , ( )) ( , ( ))

( )[ (1 )( 1)

 (1 ) ]+ ( )[ (1 ) ].

i i
T T

i i i i
T T d

i k di i i

V k e k V k e k

e k A T d d

T e k d A T

δ α

ν αν α υ

α ϑ ν α υ+

+

≤ + + − − +

+ − − − −

 (26) 

From (16) and (17), we have 

( ) ( ) 0
( 1) ( )

( ) ( )

( 1) (1 ) ( ).

i i

i i
i i

i i

V k V k
V k V k

V k V k
T

V k T V k

δ α

δ α

α

+ ≤
+ −

⇒ = ≤ −

⇒ + ≤ −

 (27) 

Then, along the trajectory of system (15), we have 
( )
0 ( )

0( ) (1 ) ( ),
ik k i

i iV k T V kα −≤ − ( )
0 ,ik k≥ (28)

10 1 1 0 ,T
T

α α< − < ⇒ < < (29)

where ( )
0
ik  denotes the initial instant of the i th activated

subsystem. 
Let 0 1 ,gk k k< < < 0,1, ,g =  denote the switch-

ing instants of σ(k) over the interval 0[ , ).k k  When k ∈  
1[ , ),g gk k +  consider the following piecewise Lyapunov 

functional candidate for system (15) 

( ) ( )( ) ( ) ( ),
gk kV k V k V kσ σ= =  1[ , ).g gk k k +∀ ∈  (30) 

From (20) and (21), we can obtain 

( ) ( )
( , ( )) ( , ( )).

g g
k g gk

V k e k V k e kσ σ
μ −

−≤ (31)

Then, it follows from (18), (28), (30) and the relation 
0

0( , )
a

k kN k kσ τ
−≤  that

1
1

1 1
1

0 0
0

( )0

0

( )
( ) ( ) ( )

( )
( )

( )
( ) 1

( , ) ( )
( ) 1

( , ) ( )
( ) 0

1

( ) 0

( ) ( ) (1 ) ( )

(1 ) ( )

(1 ) ( )

(1 ) ( )

(1 ) ( )

[ (1 )] ( )

g
g g

g

g

g
g

g g
g

k k
a

k k
k k k g

k k
gk

k k
k g

N k k k k
k g

N k k k k
k

k

V k V k T V k

T V k

T V k

T V k

T V k

T V k

σ

σ

σ σ σ

σ

σ

σ

σ

τ
σ

α

μ α

μ α

μ α

μ α

μ α

−

−
−

− −
−

−

−

− −

−
−

−
−

−

= < −

≤ −

= −

= −

≤ ≤ −

≤ − .

 (32) 

Considering the definition of ( ) ( ),kV kσ 1,ε 2 ,ε 3ε
and 4ε  in the condition of Theorem 1, it yields that 

( ) 1( ) ( ) ,kV k e kσ ε≥ (33)



0

0

( ) 0

2 0 3 0
1

3 0
1 1

4 0
1

2 3 3

4 0
0

( )

( ) sup ( )

0.5 ( )( 1) sup ( )

sup ( )

( 0.5 ( )( 1)

) sup ( ) .

k

k

d

d

d

d

V k

e k Td e k

T d d d d e k

Td e k

T d T d d d d

T d e k

σ

θ

θ

θ

θ

ε ε θ

ε θ

ε θ

ε ε ε

ε θ

− ≤ ≤−

− + ≤ ≤−

− ≤ ≤−

− ≤ ≤

≤ + +

+ − + − +

+ +

≤ + + − + −

+ +

 (34) 

Combining (32)-(34), we obtain 

0

2 3 3
1

1

( )
4 0

1
( ) [( 0.5 ( )( 1)

][ (1 )] ( ) ,a
k k

c

e k T d T d d d d

T d T e k
τ

ε ε ε
ε

ε μ α
−

≤ + + − + −

+ −

 (35) 

where 
0 0

0

( ) sup ( )
c

d

e k e k

θ

θ

− ≤ ≤

= + . 

When the dwell time of the system satisfies 

1

0 (1 ) 1,a T
τ

μ α< − < (36)

*

1
ln ln(1 ) 0,

a

Tμ α

τ

+ − < (37)

we have 

*
ln

.
ln(1 )

a a

T

μ
τ τ

α
> = −

−

 

Therefore, according to Definition 2, we can conclude 

that system (15) is exponentially stable. 

This completes the proof. 

3.2. l1 Index robustness condition 

In this subsection, the robustness requirement (9) is 

considered. Let ( ) 0f k =  in (6), we have 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ),

( ) ( ) ( ).

k d k k k

k k

e k A e k A e k d E w k

r k C e k D w k

σ σ σ

σ σ

δ⎧ = + − +⎪
⎨

= +⎪⎩

� �

 (38) 

The following result establishes a sufficient condition 

for the existence of l1 performance of system (38). 

Theorem 2: For given positive constants 
1

0
T

α< <

and γ, if there exist ,
i

ν ,
i

υ ,

n

i
Rϑ
+

∈ ,i M∀ ∈  such that 

0,
i

I TA+
� � 0,

i
E� � (39)

(1 )( 1)

(1 ) 0,

T

i i i i

i i

A T d d

T c

ν αν α υ

α ϑ

+ + − − +

+ − +

�

�
≺

(40)

1(1 ) 0,T d

di i i
A Tν α υ

+

− − ≺ (41)

1 0,
T
i i i qE dν γ+ −

�
� ≺ (42) 

where 
1 1 2 1 1 1

[ ] ,
T

i i i in n
c c c c

×
=

�
� � � � � � �

i
c
ς

 repre-

sents the ς th column of matrix ,
i

C {1,2,..., },n nς ∈ =  

1 1 2 1 1 1
[ ] ,

T
i i i iq qd d d d

×
=

�
� � � � � � �

i
d
ς

 represents 

the ς th column of matrix Di, {1,2,..., },q qς ∈ =  then 

system (38) is exponentially stable and has a weighted l1 

disturbance attenuation performance index γ for any 

switching signals ( )kσ  with average dwell time (18), 

where 1µ ≥  satisfies (20). 

Proof: By Theorem 1, if (40)-(41) hold, the exponen-

tial stability of system (38) with ( ) 0w k =  is ensured. 

To show the weighted l1-gain performance, we choose 

the Lyapunov functional (21). From (20), we have 

( ) ( )
( ) ( ),

g
g

k g gk
V k V k
σ

σ

µ
−

−

≤ 1,2,....g = (43)

For any 
1

[ , ),
g g

k k k
+

∈ noticing (40)-(42), we have 

( )

( )

-1
( 1)

( ) (1 ) ( )

(1 ) ( ),

g

g

g

k k

k g

k
k s

s k

V k T V k

T T s

σ
α

α

−

− −

=

≤ −

− − Λ∑
(44)

where ( ) ( ) ( ) .s r s w sγΛ = −  

Combining (43) and (44) leads to 

1

1

1

0 0

0

0

( )

( )

1
( 1)

( )

( ) 1

1

( 1)

1
( 1)

( , ) ( )
( ) 0

( , ) (

( ) (1 ) ( )

(1 ) ( )

(1 ) ( )

(1 ) ( )

(1 ) ( )

(1 ) ( )

(1 )

g

g

g

g

g

g

g

g

k k

gk

k
k s

s k

k k

k g

k

k s

s k

k
k s

s k

N k k k k
k

N k k k s

V k T V k

T T s

T V k

T T s

T T s

T V k

T T

σ

σ

σ

σ

σ

μ α

α

μ α

μ α

α

μ α

μ α

−

−

−

−

−
−

−

− −

=

−

−

−

− −

=

−

− −

=

−

−

≤ −

− − Λ

≤ −

− − Λ

− − Λ

≤ ≤ −

− −

∑

∑

∑

�

1

0

0 0

0

0

1
1)

1
( 1)

( , ) ( )
( ) 0

1
( , ) ( 1)

( )

(1 ) ( ) 

(1 ) ( )

(1 ) ( ).

g

k

s k

k
k s

s k

N k k k k
k

k
N s k k s

s k

s

T T s

T V k

T T s

σ

σ

σ

α

μ α

μ α

−

−

=

−

− −

=

−

−

− −

=

Λ

− − − Λ

= −

− − Λ

∑

∑

∑

�

 (45) 

Under the zero initial condition, from (45), we have 

0

1
( , ) ( 1)

0 (1 ) ( )
k

N s k k s

s k

T T sσμ α

−

− −

=

≤ − − Λ∑ (46)

namely, 

0

0

1
( , ) ( 1)

1
( , ) ( 1)

(1 ) ( )

(1 ) ( ) .

k
N s k k s

s k

k
N s k k s

s k

T r s

T w s

σ

σ

μ α

γ μ α

−

− −

=

−

− −

=

−

≤ −

∑

∑

(47)



Multiplying both sides of (47) by 0( , )N k kσμ−  yields 

0

0

0

0

1
( , ) ( 1)

1
( , ) ( 1)

(1 ) ( )

(1 ) ( ) .

k
N k s k s

s k

k
N k s k s

s k

T r s

T w s

σ

σ

μ α

γ μ α

−
− − −

=

−
− − −

=

−

≤ −

∑

∑
 (48) 

Noticing that 0 0( , ) ( ) / aN k s s kσ τ≤ −  and *
a aτ τ> =  

ln
ln(1 )

,
T
μ

α−
−  we have

0 0( , ) ( )(1 ) .N k s s kTσμ α− −≤ −  (49)

Combining (48) and (49) leads to 

0

0

0

1
( ) ( 1)

1
( 1)

(1 ) (1 ) ( )

(1 ) ( ) .

k
s k k s

s k

k
k s

s k

T T r s

T w s

α α

γ α

−
− − −

=

−
− −

=

− −

≤ −

∑

∑
(50)

Summing both sides of (50) from 0k k=  to ∞
leads to inequality: 

0

0 0

( )(1 ) ( ) ( ) .k k

k k k k
T r k w kα γ

∞ ∞
−

= =
− ≤∑ ∑  

From Definition 4, it can be concluded that system 
(38) is exponentially stable with a prescribed l1-gain
performance level γ.

This completes the proof. 

3.3. l– index fault sensitivity condition 
In this subsection, the fault sensitivity condition (10) is 

considered. Let ( ) 0w k =  in (6), we have 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ),

( ) ( ) ( ).
k d k k k

k k

e k A e k A e k d G f k

r k C e k H f k
σ σ σ

σ σ

δ⎧ = + − +⎪
⎨

= +⎪⎩
 (51) 

In the following theorem, a sufficient condition is 
provided for system (51) to have a weighted l– fault 
sensitivity index β. 

Theorem 3: For given positive constants 10
T

α< <
and β, if there exist ,oiν ,oiυ ,n

oi Rϑ +∈ ,i M∀ ∈  such 
that 

0,iI TA+  0,iG (52) 

(1 )( 1)
(1 ) 0,

T
i oi oi oi

oi i

A T d d
T c

ν αν α υ
α ϑ

+ + − − +
+ − − ≺

(53)

1(1 ) 0,T d
di oi oiA Tν α υ+− − ≺ (54) 

1 0,T
i oi i zG hν β− + ≺ (55) 

where 1 1 2 1 1 1[ ] ,T
i i i iz zh h h h ×= ihς  repre-

sents the ς th column of matrix Hi, {1, 2,..., },z zς ∈ =  
then system (21) is positive and has a weighted l– fault 
sensitivity index β  for any switching signals ( )kσ  
with average dwell time (18), where 1μ ≥  satisfies 

,oi ojν μν≺  ,oi ojυ μυ≺  ,oi ojϑ μϑ≺  ,  i j M∀ ∈  (56) 

Proof: Choose the following piecewise co-positive 
type Lyapunov functional for the i th subsystem in 
system (51) 

1 2

3 4

( , ( )) ( , ( )) ( , ( ))
( , ( )) ( , ( )),

i i i

i i

V k e k V k e k V k e k
V k e k V k e k

= +
+ +

(57)

where 

1( , ( )) ( ) ,T
i oiV k e k e k ν=  

1

2 ( , ( )) (1 ) ( ) ,
k

k
k s T

i oi
s k d

V k e k T T e sα υ
−

−

= −
= −∑  

1

3
1

( , ( )) (1 ) ( ) ,
d k

k s T
i oi

l d s k l
V k e k T T e sα υ

− −
−

=− + = +
= −∑ ∑  

1

4 ( , ( )) (1 ) ( ) ,
k

k s T
i oi

s k d
V k e k T T e sα ϑ

−
−

= −
= −∑  ,i M∀ ∈

where ,oiν oiυ  and n
oi Rϑ +∈  are to be determined. 

Denote 1 2, ,..., gk k k  the switching instants on the 
interval 0[ , )k k  and let ( ) .gk iσ =  Similar to the proof 
line of Theorem 1, for 1[ , ),g gk k k +∈  we can obtain 

1

( ) ( ) ( ) ( )

( )[ (1 )

(1 )( 1) ]

+ ( )[ (1 ) ]

( )( 1 ).

i i
T T

i oi oi oi

oi i
T T d

k di oi oi
T T

i oi i z

V k V k f k r k

e k A T

T d d c

e k d A T

f k G h

δ α β

ν αν α ϑ
α υ

ν α υ

ν β

+

+ + −

≤ + + −

+ − − + −

− − −

+ − +

(58)

It can be obtained from (53)-(55) that 

( ) ( ) ( ) ( ) 0.i iV k V k f k r kδ α β+ + − ≤  

It follows that 

g( )
( ) ( )

1
( 1)

( ) (1 ) ( )

(1 ) ( ),

g

g

k k
k k g

k
k s

s k

V k T V k

T T s

σ σα

α

−

−
− −

=

≤ −

− − Δ∑
(59)

where ( ) ( ) ( ) .s f k r kβΔ = −  
Following the proof line of Theorem 2, we have 

0

0 0

( )(1 ) ( ) ( ) ,k k

k k k k
T f k r kα β

∞ ∞
−

= =
− ≤∑ ∑  

which means that (10) is satisfied. 
This completes the proof. 
Remark 9: In the derivation of Theorem 3, the co-

positive type Lyapunov-Krasovskii functional is em-
ployed for the fault sensitivity analysis, which makes the 
results obtained be easier to analyze. However, unlike 
the l1 performance analysis problem, conditions in (53)-
(55) do not guarantee the negativity of the chosen
Lyapunov-Krasovskii functional. Hence, these condi-
tions given in Theorem 3 do not ensure the stability of
system (51).



3.4. Design of l– fault detection observer 

First consider the l– fault detection observer design 

problem. Note that the l– index measure requires no sta-

bility, (53)-(55) do not always provide a stable solution. 

Therefore, we should consider the stability of error 

system (6) in the design process. According to the 

stability condition given in Theorem 1, an additional 

condition for the stability of error system (6) is the 

existence of ,

n

oi i
Rν ν
+

= ∈

n

oi i
Rυ υ
+

= ∈  and 
oi i

υ υ=
n

R
+

∈  such that 

(1 )( 1)

(1 ) 0.

T

i oi oi oi

oi

A T d d

T

ν αν α υ

α ϑ

+ + − − +

+ −

�

≺

(60) 

Note that the condition (60) implies (53). Then (54)-

(55), and (60) provide a sufficient condition for the 

existence of a positive l– fault detection observer. In what 

follows, a positive l– fault detection observer design 

scheme is provided, and the designed observer gain 

matrices are obtained simultaneously. 

Theorem 4: For given positive constants 
1

0
T

α< <

and β, if there exist vectors ,

n

oi i
Rν ν
+

= ∈ ,

n

oi i
Rυ υ
+

= ∈

n

oi i
Rυ υ
+

= ∈  and ,

q
i Rρ

+
∈ ,i M∀ ∈  such that 

( ) 0,
i i i

I T A K C+ − �  0,
i i i

G K H− � (61)

(1 )( 1)

(1 ) 0,

T T

i i i i i i

i

A C T d d

T

ν ρ αν α υ

α ϑ

− + + − − +

+ − ≺

(62)

1(1 ) 0,T d

di i i
A Tν α υ

+

− − ≺ (63)

1 0,
T T

i i i i i z
G H hν ρ β− − +

�

≺ (64)

then there exist some certain positive l– fault detection 

observer satisfying (10) and guaranteeing the stability of 

error system (6) for any switching signals with average 

dwell time satisfying (18), where 1µ ≥  satisfies (20). 

Moreover, if the conditions above have a feasible 

solution, the observer gain matrices can be obtained by 

solving T

i i i
Kρ ν= and checking the condition (61). 

Proof: Denoting T

i i i
Kρ ν=  and substituting it into 

(54)-(55) and (60), we can obtain from Theorem 3 that 

the theorem is true. 

It can be seen that (62)-(64) can be solved via the 

linear matrix inequality (LMI) technique due to the fact 

that (62)-(64) are linear constrains. Furthermore, for a 

fixed α, a suboptimal solution β can be obtained by 

solving the following optimization problem: 

Problem 1: 

, , ,

min

s.t. (62)-(64), ,

i i i i

i M

ν υ ϑ ρ

β−

∈

then the corresponding suboptimal observer gain 

matrices can be obtained. 

We are now in a position to give a procedure for 

constructing the designed l– fault detection observer gain 

matrices. 

Algorithm 1 

Step 1: Given a parameter 
1

0 ,
T

α< <  one can obtain 

the solution of ,
i

ν ,
i

υ
i

ϑ  and 
i

ρ  by solving optimi-

zation Problem 1. 

Step 2: Compute the observer gain matrices Ki by 

.

T

i i i
Kρ ν=

Step 3: Check the condition (61). If it holds, the desire 

observer gain matrices Ki are obtained. Otherwise, return 

to Step 1. 

Step 4: Compute the values of μ and 
*

a
τ  by (18) and 

(20). 

3.5. Design of l– /l1 Fault Detection Observer 

In this subsection, we focus on the mixed l– /l1 fault 

detection observer design. The following theorem gives a 

sufficient condition for the existence of a mixed l– /l1 

fault detection observer. 

Theorem 5: For given positive constants 
1

0 ,
T

α< <  

β and γ, if there exist vectors ,

n

oi i
Rν ν
+

= ∈
oi i

υ υ= ∈  

,

n

R
+

n

oi i
Rϑ ϑ
+

= ∈  and ,

q
i Rρ

+
∈ ,i M∀ ∈  such that 

( ) 0

0

0,

i i i

i i i

i i i

I T A K C

E K D

G K H

+ −⎧
⎪

−⎨
⎪ −⎩

�

�

�

(65)

(1 )( 1)

(1 ) 0,

T T

i i i i i i

i i

A C T d d

T c

ν ρ αν α υ

α ϑ

− + + − − +

+ − +

�
≺

(66)

1(1 ) 0,T d

di i i
A Tν α υ

+

− − ≺ (67)

1 0,
T T

i i i i i z
G H hν ρ β− − +

�

≺ (68)

1 0,
T T
i i i i i qE D dν ρ γ− + −

�

≺ (69)

then there exist some certain positive l– /l1 fault detection 

observers satisfying (9) and (10) for any switching 

signals with average dwell time satisfying (18), where 

1µ ≥  satisfies (20). 

Moreover, if the conditions above have a feasible 

solution, the observer gain matrices can be obtained by 

solving T

i i i
Kρ ν= and checking the condition (65). 

Proof: Note that (60) can be directly obtained from 

(40) for ,

n

oi i
Rν ν
+

= ∈

n

oi i
Rυ υ
+

= ∈  and .

n

oi i
Rϑ ϑ
+

= ∈

Thus (9)-(10) and the stability of error system (6) can be 

guaranteed under the conditions (40)-(42) and (55). 

Denoting T

i i i
Kρ ν=  and substituting it into (40)-(42) 

and (55), we can obtain from Definition 6 that the 

theorem is true. 

Remark 10: It should be noted that based on the 

widely accepted H– index, mixed H– / H∞ fault detection 

problem has been investigated in the existing literatures 

[30,31]. However, because of the peculiar nonnegative 

property of positive systems, a straightforward appli-

cation of available FDI observer designs for non-positive 

dynamical systems to positive dynamical systems may 

not be applicable. Thus an l– index, as a new sensitivity 

measure of the residual signal to faults, is introduced for 

the design of positive fault detection observer. It is 

required that the designed l– /l1 observer not only ensures 

the robustness against disturbance input w(k) and the 

sensitivity to fault input f (k), but also guarantees the 

positivity of the residual error system (6). 



Similarly, for a fixed α, a suboptimal solution to the 
mixed l– /l1 fault detection observer design problem can 
be obtained by solving the following optimization 
problem: 

Problem 2: 

, , ,
min

s.t. (66)-(69), ,
i i i i

i M
ν υ ϑ ρ

γ β−

∈

then the corresponding suboptimal observer gain mat-
rices can be obtained. 

We are now in a position to give a procedure for 
constructing the designed l– /l1 fault detection observer 
gain matrices. 

Algorithm 2 
Step 1: Given a parameter 10 ,

T
α< <  one can obtain 

the solution of ,iν ,iυ iϑ  and iρ  by solving optimi-
zation Problem 2. 

Step 2: Compute the observer gain matrices Ki by 
T

i i iKρ ν= . 
Step 3: Check the condition (65). If it holds, the desire 

observer gain matrices Ki are obtained. Otherwise, return 
to Step 1. 

Step 4: Compute the values of μ and *
aτ  by (18) and 

(20). 

4. NUMERICAL EXAMPLE

In this section, two examples are presented to check 
the validity of the proposed results. 

Example 1: Consider system (1) with w(k) = 0. The 
parameters of the system are as follows: 

Subsystem 1: 

1
3.8 1.3

,
1.5 3.1

A
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
1

0.1 0.0
,

0.1 0.0dA
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 1
1.16

,
1.20

G
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

1 [0.12 0.13],C =  1 0.13,H =  

Subsystem 2: 

2
3.8 1.5

,
1.3 3.2

A
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
2

0.1 0.0
,

0.1 0.0dA
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 2
1.25

,
1.30

G
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

2 [0.14 0.15],C =  2 0.12,H =

and 10,d = 0,d = 1.5,α = 0.2.T =  Then, by solving 
optimization Problem 1, we can obtain the following 
solutions: 

1
0.3567

,
0.2958

ν ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 2
0.1782

,
0.1742

ν ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

1
0.3278

,
0.1834

υ ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

2
0.1868

,
0.1204

υ ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

1
0.2226

,
0.2160

ϑ ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

2
0.1424

,
0.1521

ϑ ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

1 5.3619,ρ =  2 2.9715,ρ = * 0.0132.β =

By ,T
i i iKρ ν=  the observer gain matrices Ki can be 

obtained as follows: 

1
8.9080

,
7.3857

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 2
8.5257

.
8.3359

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

Obviously, the condition (61) is satisfied. Moreover, 
by (18) and (20), we get 2.0460μ =  and * 2.0071.aτ =  
Then by Theorem 4, we can conclude that the considered 
system has a positive l– fault detection observer. 

In this example, the initial states are as follows: 

(0) [0.3 0.5] ,Tx = ( ) [0 0] ,Tx k = 10, 9,...,0.k = − −  

The fault signal f (k) is set up as 

0.1 ,     3 8
( )

0,      others.
k k

f k
≤ ≤⎧

= ⎨
⎩

The switching signal with average dwell time 3aτ =  
is shown in Fig. 1. The generated residual r(k) is shown 
in Fig. 2. Fig. 3 shows the evolution of residual evalua-
tion function Jr(k), where the solid line is fault-free case, 
the dashed line is the case with the fault f (k). The 
threshold can be determined as 0.027thJ =  for 15.k =  
The simulation results shows that ( ) 0.031rJ k = >  
0.027  when 6,k =  which means that the fault f (k) 
can be detected 3 times after its occurrence. 
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Fig. 1. Switching signal. 
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Fig. 2. Residual signal r(k). 
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Fig. 3. Evolution of the residual evaluation function J
r
(k). 

Example 2: Consider system (1) with parameters as 

follows: 

Subsystem 1: 

1

3.5 1.4
,

1.5 3.1
A

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

1

0.1 0.0
,

0.1 0.0
d

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

1
[0.12 0.13],C =

1
0.1,D =

1

1.5
,

1.5
E

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

1

1.5
,

1.6
G

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
1

0.12;H =

Subsystem 2: 

2

3.9 1.5
,

1.3 3.2
A

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

2

0.1 0.0
,

0.1 0.0
d

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

2
[0.12 0.15],C =  

2
0.1,D =

2

1.6
,

1.4
E

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
2

1.4
,

1.5
G

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

2
0.12,H =

and 10,d = 0,d = 1.5,α = 0.2.T =  Then, by solving 

optimization Problem 2, we can obtain the following 

solution: 

1

0.5283
,

0.4963
ν

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

2

0.1356
,

0.1280
ν

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

1

0.4840
,

0.4206
υ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

2

0.1120
,

0.0573
υ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

1

0.3720
,

0.5404
ϑ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

2

0.0601
,

0.0839
ϑ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

1
12.4301,ρ =

2
2.3487,ρ =

*

0.0095,β =

*

2.1516.γ =

By ,

T

i i i
Kρ ν=  the observer gain matrices Ki can be 

obtained as follows: 

1

11.4987
,

11.7406
K

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
2

9.1578
.

8.6711
K

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Obviously, the condition (65) is satisfied. Moreover, 

by (18) and (20), we get 7.7202µ =  and *

5.7303.
a

τ =  

Thus by Theorem 5, we can conclude that the considered 

system has a mixed l– /l1 fault detection observer. 

In this example, the external disturbance and the initial 

state are as follows: 
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Fig. 4. Switching signal. 
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Fig. 5. Residual signal r(k). 

0.5( ) 0.5 ,kw k e
−

=  (0) [0.3 0.5] ,T
x =

( ) [0 0] ,T
x k =  10, 9,...,0.k = − −

The fault signal f (k) is set up as 

0.1 ,     3 8
( )

0,   others.

k k
f k

≤ ≤⎧
= ⎨
⎩

The switching signal with average dwell time 6
a

τ =  

is shown in Fig. 4. The generated residual r(k) is shown 

in Fig. 5. Fig. 6 shows the evolution of residual evalua-

tion function J
r
(k), where the solid line is fault-free case, 

the dashed line is the case with the fault f (k). The 

threshold can be determined as 0.149
th
J =  for 30.k =  

The simulation results shows that ( ) 0.152
r

J k = >

0.149 when 19,k =  which means that the fault f (k) can 

be detected 16 times after its occurrence. 

5. CONCLUSIONS

In this paper, we have presented a solution to the 

problem of fault detection observer for positive switched 

systems with time-varying delay via delta operator. The 

l– index, as a new fault sensitivity measure, is proposed. 

By using the average dwell time approach and the 



piecewise co-positive type Lyapunov-Krasovskii func-
tional method, sufficient conditions for the existence of a 
mixed l– /l1 fault detection observer are given. Finally, 
two examples are provided to show the effectiveness and 
applicability of the proposed method. Our future work 
will focus on the design of robust l– /l1 fault detection 
filter for positive switched systems with parameter 
uncertainties via the delta operator approach. 
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