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1. Introduction

The intrinsic limitations of the Black–Scholes model in describing real financial markets 
behaviour are very well known. Among the main assumptions underlying this model, the 
most relevant assumptions are probably constant volatility and no transaction costs. In this 
paper we consider the valuation problem of American options in a model in which both 
proportional transaction costs are taken into account and the volatility is assumed to 
evolve according to a stochastic process of the Cox–Ingersoll–Ross (CIR) type, as in the 
Heston model, see [11].

The pricing of a European option in presence of transaction costs was considered in 
several papers, we recall the asymptotic result by Whalley and Wilmott [16], where a 
correction term to the Black–Scholes pricing formula was derived. The pricing of 
American options in models with transaction costs has been considered by some authors. 
In particular, we cite the fundamental paper by Davis and Zariphopoulou [8], where the 
valuation problem is attacked via a utility indifference price approach: the related optimal 
control problem is formulated and the existence and uniqueness of the viscosity solution 
for the corresponding Hamilton–Jacobi–Bellman (HJB) equation is proved. We also cite 
the paper by Zakamouline [17], where there is a different formulation of the stochastic 
optimal control problem in terms of a quasi-variational inequality, which results to be 
more suitable for numerical applications. This formulation is proved to be equivalent to 
the one presented in [8] and a numerical procedure is illustrated in order to explicitly 
compute the solution.
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A large literature is available on the valuation problem of American options in a 
stochastic volatility framework, as well. We just recall the papers by Chiarella et al. [2,3], 
Chung et al. [4], and Clarke and Parrot [5].

On the contrary, the literature regarding option pricing in models including both 
transaction costs and stochastic volatility features is, to our knowledge, not so extensive. 
We cite the recent paper by Mariani et al. [12], where the authors proposed a numerical 
approximation scheme for European option prices in stochastic volatility models including 
transaction costs based on a finite-difference method.

In this paper our aim is to study the American option pricing problem in a modelling 
framework taking into account both stochastic volatility and transaction costs, based on 
the approach pioneered by Davis and Zariphopoulou [8].

The plan of the paper is as follows: In Section 2 we fix the notations and we introduce 
the model. In Section 3 we formulate the singular control problem related to the American 
option valuation problem and we obtain heuristically the associated HJB partial 
differential equation (PDE). In Section 4 we prove the existence of the viscosity solution 
for the HJB equation. In Section 5, we provide the comparison principle for our HJB 
equation, from which we deduce the uniqueness of the viscosity solution for the same 
problem. In Section 6 we reduce the problem dimensionality by a suitable choice of the 
utility function involved: we show how the choice of the exponential utility allows to 
formulate in a slightly simpler way the optimal control problem under investigation, we 
propose a discretization method for the associated variational inequality, and in Section 7 
we discuss the numerical results obtained. Finally, in Section 8 we present some 
concluding remarks and discuss possible extensions of the present investigation.

2. A stochastic volatility model with transaction costs
In this section we introduce the American option valuation problem in a financial market 
with proportional transaction costs, written on a risky asset which evolves according to the 
Heston model, see [10,11]. In the formulation of the model we keep the notations 
introduced in [8]. We suppose to have the following multidimensional stochastic process:

dzðtÞ ¼ rzðtÞdt2 ð1þ lÞSðtÞdLðtÞ þ ð12 mÞSðtÞdMðtÞ; ð1Þ
dyðtÞ ¼ dLðtÞ2 dMðtÞ; ð2Þ

dSðtÞ ¼ aSðtÞdt þ
ffiffiffiffiffiffiffiffi
nðtÞ

p
SðtÞdWðtÞ; ð3Þ

dnðtÞ ¼ jðh2 nðtÞÞdt þ q
ffiffiffiffiffiffiffiffi
nðtÞ

p
dZðtÞ: ð4Þ

In the above equations z represents the amount invested in the risk-free asset (the ‘Bond’),

S is the risky asset (the ‘Stock’), r is the risk-free interest rate, a is the drift rate of the

stock, l and m are the (proportional) costs of buying and selling a stock and
ffiffiffi
n

p
is the

volatility function, which we shall suppose to be driven by the Wiener process Z according

to a CIR-type dynamics. Parameters j, h and q are assumed to be constant. To avoid a zero

volatility we assume that jh . q2=2 (the strict inequality is required in the proof of the

comparison Theorem 5.1). The Wiener processes W and Z are defined on a complete

filtered probability space ðV;F ; F;PÞ, where the filtration F ¼ ðF tÞ0#t#T , with T . 0 the

final horizon, is the natural filtration generated by the two Wiener processes and satisfies

the usual conditions. W and Z are assumed to be correlated with coefficient r. LðtÞ and
MðtÞ are the cumulative number of shares bought or sold, respectively, up to time



t [ ½0; T�. Finally, Equations (1) and (2) imply that the trading strategies are self-
financing.

The cash value of a number of shares y [ R of the stock when its price is S [ ð0; þ1Þ 
is not simply yS, but is given by

cðy; SÞ ¼
ð1þ lÞyS; if y , 0;

ð12 mÞyS; if y $ 0;

(

where lyS and myS are the amounts that the investor has to pay, due to the presence of the 
transaction costs.

We shall formulate the American option valuation problem as a utility maximization 
problem in strict analogy with the approach pioneered by Davis and Zariphopoulou [8]. 
Let U : R ! R be the buyer utility function, assumed to be concave, increasing and such 
that Uð0Þ ¼  0. Let us suppose that the buyer of the option owns an initial wealth x in cash. 
At time t ¼ 0 he/she splits his/her wealth into the amounts x1 and x2 ¼ x 2 x1. He/she uses 
the quantity x1 to buy x1=p shares of American options written on the risky asset S, where p 
is the American option price we are going to define. The amount x2, instead, is used to 
construct a portfolio p composed of the bond and the stock, in order to maximize the 
expected utility of his/her terminal wealth:

Vðt; z; y; S; nÞ ¼ sup
At;T

E½UðzðTÞ þ cðyðTÞ; SðTÞÞÞjðzðt2Þ; yðt2Þ; Sðt2Þ; nðt2ÞÞ ¼ ðz; y; S; nÞ�:

Here 0 # t # T , ðz; y; S; nÞ [ R £ R £ ð0;þ1Þ £ ð0;þ1Þ is the state at time t2 and At;T

is the set of admissible trading strategies ðL;MÞ which we now define.

Definition 2.1. The set of admissible trading strategies At;T , for every 0 # t # T , is the

set of two-dimensional right-continuous, measurable, F-adapted and increasing stochastic

processes ðL;MÞ ¼ ðLðuÞ;MðuÞÞt#u#T , with Lðt2Þ ¼ Mðt2Þ ¼ 0. Furthermore, ðL;MÞ are
such that the corresponding processes ðzðuÞ; yðuÞ; SðuÞÞt#u#T satisfy

ðzðuÞ; yðuÞ; SðuÞÞ [ S �K; t # u # T ; ð5Þ

�K
�K

where K� is a positive constant and

S ¼ fðz; y; SÞ [ R £ R £ ð0; þ1Þ : z þ cðy; SÞ . 2  }:

Remark 1. Note that the set of admissible trading strategies At;T depends also on the initial 
state ðz; y; S; nÞ at time t 2. Constraint (5) is required in the proof of the comparison 
Theorem 5.1 and it only rules out strategies which are clearly non-optimal, as the objective 
is the maximization of the utility of final wealth. Moreover, we note that LðtÞ and MðtÞ may 
be positive, i.e. there can be a jump at the initial time t.

At time t, the buyer could decide to exercise the option and to transfer the money to the 
portfolio, i.e. he/she receives the cash amount Kx1=p and pays to the option writer the 
amount x1SðtÞ=p, which is the price of x1=p shares of the underlying security. If ½yðtÞ; zðtÞ� 
is the investor’s portfolio composition at exercise time t, after the money transfers are 
performed the new portfolio composition is given by



yðtÞ2 x1

p
; zðtÞ þ Kx1

p

� �
:

Therefore, let us define

V1ðt; z; y; S; n; x1Þ ¼ V t; zþ Kx1

p
; y2

x1

p
; S; n

� �
: ð6Þ

Then it is relevant to introduce the following value function:

Uðt; z; y; S; n; x1Þ ¼ sup
At;T ;t

E½V1ðt; zðtÞ; yðtÞ; SðtÞ; nðtÞ; x1Þjðzðt2Þ; yðt2Þ; Sðt2Þ; nðt2ÞÞ

¼ ðz; y; S; nÞ�;
ð7Þ

where t [ T t;T , the set of F-stopping times with values in ½t; T�. Now we define the

auxiliary functions:

aðx1; x2; S; pÞ ¼ Uð0; S; 0; x2; x1Þ;
bðx; S; pÞ ¼ sup

x1þx2¼x
aðx1; x2; S; pÞ;

X *ðp; S; xÞ ¼ argmaxaðx1; x2 x1; S; pÞ:
We can finally define the writing price of the American option as follows:

p*ðSÞ ¼ sup
x
fp : X *ðp; S; xÞ . 0}:

Hence, the fair price of the American option is defined to be the maximum price at 
which a positive investment is made in the option at time t ¼ 0.

In the following sections, in order to avoid cumbersome notations, we shall drop the 
explicit dependence of V1ðt; zðtÞ; yðtÞ; SðtÞ; nðtÞ; x1Þ on all the variables in some of the 
formulas presented.

We conclude this section by noting that in [8], therefore, without stochastic volatility, 
the authors proved that the above definition of the price of the American option reduces to 
the classical Black–Scholes price when transaction costs vanish.

3. The singular control problem
In this section, in strict analogy with [8] and also [7], we derive heuristically the singular 
control problem associated with the American option valuation for a market model 
including both stochastic volatility and transaction costs.

We begin by restricting temporarily our interest to trading strategies which are 
absolutely continuous with respect to time, i.e. to those that can be written as

LðtÞ ¼
ðt
0

lðsÞds; MðtÞ ¼
ðt
0

mðsÞds;

where lðsÞ and mðsÞ are non-negative functions uniformly bounded by a fixed constant k , 
1. In this particular case, Equations (1)–(4) become a vector stochastic differential



equation with controlled drift and the value function of the approximate problem, denoted

by Vk, satisfies the following HJB equation:

max
0#l;m#k

›Vk

›y
2 ð1þ lÞS ›Vk

›z

� �
l2

›Vk

›y
2 ð12 mÞS ›Vk

›z

� �
m

� �
þ ›Vk

›t
þ LVk ¼ 0;

with terminal condition VkðT ; z; y; S; nÞ ¼ Uðzþ cðy; SÞÞ for ðz; y; S; nÞ [ R £ R£
ð0;þ1Þ £ ð0;þ1Þ. Here the differential operator L is given by

LW ¼ rz
›W

›z
þ aS

›W

›S
þ 1

2
nS2 ›

2W

›S2
þ jðh2 nÞ ›W

›n
þ 1

2
q2n

›2W

›n2
þ rqnS

›2W

›S›n
:

The optimal trading strategy can be described by considering the following three possible cases:

(1)

›Vk

›y
2 ð1þ lÞS ›Vk

›z
$ 0;

where the maximum is achieved by taking m ¼ 0 and buying at the maximum

possible rate l ¼ k;

(2)

›Vk

›y
2 ð12 mÞS ›Vk

›z
# 0;

where the maximum is achieved by taking l ¼ 0 and selling at the maximum

possible rate m ¼ k;

(3)

ð12 mÞS ›Vk

›z
#

›Vk

›y
# ð1þ lÞS ›Vk

›z
;

where the maximum is achieved with l ¼ 0 and m ¼ 0, i.e. by neither buying nor

selling.

These remarks suggest that the optimization problem turns out to be a free boundary

problem, where, once the value function is known in the five-dimensional space, defined

by the state of the investor ðt; z; y; S; nÞ, the optimal trading strategy is determined by the

previous inequalities. Moreover, the state space is divided into three regions called the

Buy, Sell and No-Transaction regions, characterized by the same previous inequalities.

In the limit k!1 the class of admissible trading strategies becomes the class defined

before, see Definition 2.1.

Then we conjecture that the state space remains divided into a Buy, a Sell and a No-

Transaction region, where the value function satisfies the following set of equations:

(i) In the Buy region we have

Vðs; z; y; S; nÞ ¼ Vðs; z2 ð1þ lÞSdyb; yþ dyb; S; nÞ;

where dyb, the number of shares bought by the investor, can take any positive

value up to the number required to reach the boundary of the Buy region; when

dyb ! 0 the previous equation becomes



›V

›y
2 ð1þ lÞS ›V

›z
¼ 0:

(ii) In the Sell region the value function must satisfy the following equation:

Vðs; z; y; S; nÞ ¼ Vðs; zþ ð12 mÞSdys; y2 dys; S; nÞ;
where dys, the number of shares sold by the investor, can take any positive value

up to the number required to reach the boundary of the Sell region. In the limit

dys ! 0 the previous equation becomes

›V

›y
þ ð12 mÞS ›V

›z
¼ 0:

(iii) In the No-Transaction region the value function is the solution of the following

equation:

2
›V

›t
2 LV ¼ 0 ð8Þ

and the following inequalities must hold:

ð12 mÞS ›V
›z

#
›V

›y
# ð1þ lÞS ›V

›z
:

A direct inspection of the sign of the left-hand side of Equation (8) suggests
that this is positive in both the Buy and the Sell regions, in such a way that the set
of equations provided above can be condensed in the following fully nonlinear
PDE:

min 2
›V

›y
þ ð1þ lÞS ›V

›z
;
›V

›y
2 ð12 mÞS ›V

›z
;2

›V

›t
2 LV

� �
¼ 0;

for ðs; z; y; S; nÞ [ ½0; TÞ £ R £ R £ ð0;þ1Þ £ ð0;þ1Þ:
With regard to U, we remark that it follows from the definition of U that

Uðt; z; y; S; nÞ $ V1ðt; z; y; S; nÞ; on ½0; TÞ £ �S �K £ ð0;þ1Þ:
Therefore, using for U the same arguments just used for V and taking into account the last

inequality, we obtain, at least formally, the variational inequality that U must satisfy:

min U 2 V1;2
›U

›y
þ ð1þ lÞS ›U

›z
;
›U

›y
2 ð12 mÞS ›U

›z
;2

›U

›t
2 LU

� �
¼ 0:

4. Viscosity properties of the value functions

In the present section we characterize the two value functions V and U as the unique

constrained viscosity solutions to the corresponding HJB equations. To this end, we

consider a general HJB equation of the form:



F t;X;W ;
›W

›t
;DXW ;D2

XW

� �
¼ 0; in ½0; TÞ £ S; ð9Þ

where S is an open subset ofRn, moreoverDXW andD2
XW are the gradient and the Hessian

matrix of W with respect to X, respectively. We write the state vector as

X ¼ ðX1;X2Þ [ S1 £ S2 ¼ S, where X1 includes all the state variables on which some

constraint is imposed, while X2 is the set of state variables which is not subject to any

constraints. In our model state X corresponds to ðz; y; S; nÞ, with X1 ¼ ðz; y; SÞ and X2 ¼ n.
Moreover, the set S ¼ S1 £ S2 is given by S1 ¼ S �K and S2 ¼ ð0;þ1Þ. We assume that

the function F : ½0; T� £ �S1 £ S2 £ R £ R £ Rn £ Rn£n is continuous and degenerate

elliptic, i.e. for all n £ n symmetric matrices M; M̂ we have

Fðt;X; r; q; p;MÞ $ Fðt;X; r; q; p; M̂Þ; ifM # M̂:

Now we provide the definition of constrained viscosity solution to (9). For a general

overview of the theory of viscosity solutions we refer to the User’s Guide by Crandall et al.

[6], and to the books by Fleming and Soner [9] and by Pham [13].

Definition 4.1. A continuous function W : ½0; T� £ �S1 £ S2 ! R is a constrained

viscosity solution of (9) on ½0; TÞ £ �S1 £ S2 if:

(i) W is a viscosity subsolution of (9) on ½0; TÞ £ �S1 £ S2, that is for all ðt0;X0Þ [
½0; TÞ £ �S1 £ S2 and for all w [ C 1;2ð½0; TÞ £ �S1 £ S2Þ such that ðt0;X0Þ is a local
maximum point of W 2 w we have

F t0;X0;Wðt0;X0Þ; ›w
›t

ðt0;X0Þ;DXwðt0;X0Þ;D2
Xwðt0;X0Þ

� �
# 0:

(ii) W is a viscosity supersolution of (9) on ½0; TÞ £ S1 £ S2, that is for all ðt0;X0Þ [
½0; TÞ £ S1 £ S2 and for all w [ C 1;2ð½0; TÞ £ S1 £ S2Þ such that ðt0;X0Þ is a local
minimum point W 2 w we have

F t0;X0;Wðt0;X0Þ; ›w
›t

ðt0;X0Þ;DXwðt0;X0Þ;D2
Xwðt0;X0Þ

� �
$ 0:

Theorem 4.2. The value function U is a constrained viscosity solution of

min W 2 V1;2
›W

›y
þ ð1þ lÞS ›W

›z
;
›W

›y
2 ð12 mÞS ›W

›z
;2

›W

›t
2 LW

� �
¼ 0; ð10Þ

on ½0; TÞ £ �S �K £ ð0;þ1Þ.

Proof. We separate the proof into two steps.

(i) U is a viscosity subsolution of (10). Let ðt0;X0Þ [ ½0; TÞ £ �S �K £ ð0;þ1Þ, with
X0 :¼ ðz0; y0; S0; n0Þ and w [ C 1;2ð½0; TÞ £ �S �K £ ð0;þ1ÞÞ such that ðt0;X0Þ is a local

maximum point of U 2 w. Without loss of generality, we can assume that Uðt0;X0Þ ¼
wðt0;X0Þ and U # w on ½0; TÞ £ �S �K £ ð0;þ1Þ. We have to prove that



min wðt0;X0Þ2 V1ðt0;X0Þ;2›w

›y
ðt0;X0Þ þ ð1þ lÞS0 ›w

›z
ðt0;X0Þ; ›w

›y
ðt0;X0Þ

�

2ð12 mÞS0 ›w
›z

ðt0;X0Þ;2›w

›t
ðt0;X0Þ2 Lwðt0;X0Þ

�
# 0:

This amounts to say that at least one argument in the minimum operator must be non-

positive.

First we observe that wðt0;X0Þ $ V1ðt0;X0Þ, using the definition of U and the equality

Uðt0;X0Þ ¼ wðt0;X0Þ. If wðt0;X0Þ ¼ V1ðt0;X0Þ we get the thesis. Hence, we suppose that

wðt0;X0Þ2 V1ðt0;X0Þ . 0:

Now we argue by contradiction assuming that

›w

›y
ðt0;X0Þ2 ð1þ lÞS0 ›w

›z
ðt0;X0Þ , 0; ð11Þ

›w

›y
ðt0;X0Þ2 ð12 mÞS0 ›w

›z
ðt0;X0Þ . 0

and

›w

›t
ðt0;X0Þ þ Lwðt0;X0Þ , 0: ð12Þ

From the dynamic programming principle for U we have

Uðt0;X0Þ ¼ max sup
l[Rþ

Uðt0; z0 2 ð1þ lÞS0l; y0 þ l; S0; n0Þ
(

;

sup
m[Rþ

Uðt0; z0 þ ð12 mÞS0m; y0 2 m; S0; n0Þ
)
:

Suppose that there exists �l . 0 such that

Uðt0;X0Þ ¼ sup
l[½�l;þ1Þ

Uðt0; z0 2 ð1þ lÞS0l; y0 þ l; S0; n0Þ: ð13Þ

Then, using the dynamic programming principle, we deduce that

Uðt0;X0Þ ¼ Uðt0; z0 2 ð1þ lÞS0l; y0 þ l; S0; n0Þ; 0 # l # �l:

From this equality we obtain

wðt0; z0 2 ð1þ lÞS0l; y0 þ l; S0; n0Þ2 wðt0;X0Þ $ 0; 0 # l # �l:

As a consequence, dividing by l and taking the limit as l tends to 0, we get

›w

›y
ðt0;X0Þ2 ð1þ lÞS0 ›w

›z
ðt0;X0Þ $ 0;



Uðt0;X0Þ . Uðt0; z0 2 ð1þ lÞS0l; y0 þ l; S0; n0Þ; ;l . 0: ð14Þ

In an analogous way we can prove that

Uðt0;X0Þ . Uðt0; z0 þ ð12 mÞS0m; y0 2 m; S0; n0Þ; ;m . 0: ð15Þ

Now, it remains to show that if (12) holds, too, then we get a contradiction. Note that using

the continuity of V1 and the smoothness of w we deduce the existence of d . 0 such that

›w

›y
ðt;XÞ2 ð1þ lÞS ›w

›z
ðt;XÞ , 0

and

›w

›y
ðt;XÞ2 ð12 mÞS ›w

›z
ðt;XÞ . 0;

for every

ðt;XÞ [ Bðt0;X0Þ :¼ ðt0 2 d; t0 þ dÞ £ BdðX0Þ> ½0; TÞ £ �S �K £ ð0;þ1Þ;

where BdðX0Þ is the open ball of radius d centred at X0. Now, let 1 . 0, then using the

dynamic programming principle we find two controls L1 and M1 and a stopping time t1
such that for every stopping time ~t we have

Uðt0;X0Þ # E½Uð ~t;XL1;M1ð ~tÞÞ1f ~t#t1}

þ V1ðt1;XL1;M1 ðt1ÞÞ1f ~t.t1}jXL1;M1 ðt20 Þ ¼ X0� þ 1;
ð16Þ

where XL1;M1 is the state process corresponding to controls L1 andM1. Let us introduce the

following stopping time:

�t ¼ inf t [ ½t0; T� : ðt;XL1;M1ðtÞÞ � Bðt0;X0Þ
	 


:

We have that Pð �t . t0Þ ¼  1. Indeed, thanks to (14) and (15), we can choose L1 and M1

with no jumps at time t0. Since Uðt0;X0Þ . V1ðt0;X0Þ, we note that there exists an event

A [ F t0 , with PðAÞ . 0, such that t1ðvÞ . t0 for every v [ A.

Let t be a stopping time such that t # �t ^ t1. Applying Ito’s formula to wðt;XL1;M1 ðtÞÞ
we get

which is in contradiction with (11). We conclude that there does not exist l� . 0 such that 
(13) holds, then



E wðt;XL1;M1 ðtÞÞjXL1;M1 ðt0Þ ¼ X0

� � ¼ wðt0;X0Þ þ E

ðt
t0

›w

›y
t;XL1;M1 ðtÞ ���

2 ð1þ lÞSL1;M1 ðtÞ ›w
›z

ðt;XL1;M1 ðtÞÞÞdL1ðtÞ þ
ðt
t0

ð12 mÞSL1;M1 ðtÞ ›w
›z

t;XL1;M1 ðtÞ ��

2
›w

›y
ðt;XL1;M1 ðtÞÞÞdM1ðtÞ þ

ðt
t0

›w

›t
þ Lw

� �
ðt;XL1;M1ðtÞÞdtjXL1;M1 ðt0Þ ¼ X0

�

# wðt0;X0Þ þ E

ðt
t0

›w

›t
þ Lw

� �
ðt;XL1;M1ðtÞÞdtjXL1;M1 ðt0Þ ¼ X0

� �
:

Using the fact that U # w, Uðt0;X0Þ ¼ wðt0;X0Þ and inequality (16) with ~t ¼ t, we find

wðt0;X0Þ2 1 # wðt0;X0Þ þ E

ðt
t0

›w

›t
þ Lw

� �
ðt;XL1;M1 ðtÞÞdtjXL1;M1 ðt0Þ ¼ X0

� �
:

Hence

E

ðt
t0

›w

›t
þ Lw

� �
ðt;XL1;M1 ðtÞÞdtjXL1;M1 ðt0Þ ¼ X0

� �
$ 21:

Let 10 . 0 and define the following stopping time:

t0 ¼ inf t [ ½t0; T� : ›w

›t
þ Lw

� �
ðt;XL1;M1ðtÞÞ2 ›w

›t
þ Lw

� �
ðt0;X0Þ

����
���� . 10

� �
^ �t ^ t1:

Then t0ðvÞ . t0 for every v [ A, therefore, choosing 1 ¼ 10E½t0 2 t0�, we find

›w

›t
þ Lw

� �
ðt0;X0Þ $ 221:

From the arbitrariness of 10 we find a contradiction with (12).

(ii) U is a viscosity supersolution of (10). Let ðt0;X0Þ [ ½0; TÞ £ S �K £ ð0;þ1Þ, with
X0 :¼ ðz0; y0; S0; n0Þ, and w [ C 1;2ð½0; TÞ £ S �K £ ð0;þ1ÞÞ such that ðt0;X0Þ is a local

minimum point of U 2 w. We assume that Uðt0;X0Þ ¼ wðt0;X0Þ and U $ w on

½0; TÞ £ S �K £ ð0;þ1Þ. We have to prove that

min wðt0;X0Þ2 V1ðt0;X0Þ;2›w

›y
ðt0;X0Þ þ ð1þ lÞS0 ›w

›z
ðt0;X0Þ; ›w

›y
ðt0;X0Þ

�

2ð12 mÞS0 ›w
›z

ðt0;X0Þ;2›w

›t
ðt0;X0Þ2 Lwðt0;X0Þ

�
$ 0:

Therefore we need to show that each argument of the minimum operator is non-negative.

Clearly wðt0;X0Þ $ V1ðt0;X0Þ, using the definition of U and the fact that

Uðt0;X0Þ ¼ wðt0;X0Þ.
Now consider the trading strategy: LðtÞ ¼ l . 0 and MðtÞ ¼ 0, t0 # t # T . By the

dynamic programming principle



Uðt0; z0; y0; S0; n0Þ $ Uðt0; z0 2 ð1þ lÞS0l; y0 þ l; S0; n0Þ:

This inequality holds for w as well, and, by taking the left-hand side to the right-hand side,

dividing by l and sending l! 0, we get

›w

›y
ðt0;X0Þ2 ð1þ lÞS0 ›w

›z
ðt0;X0Þ # 0:

In an analogous way we can prove that

›w

›y
ðt0;X0Þ2 ð12 mÞS0 ›w

›z
ðt0;X0Þ $ 0:

Finally, to prove that the last argument inside the minimum operator is positive, consider

the following trading strategy: LðtÞ ¼ 0 and MðtÞ ¼ 0, t0 # t # T . Denote by X 0ðtÞ the
corresponding dynamic of the state process. Thanks to the dynamic programming

principle we have

Uðt0;X0Þ $ E½Uðt;X 0ðtÞÞjX 0ðt0Þ ¼ X0�; t0 # t # T:

This inequality also holds for w. Applying Ito’s formula to wðt;X 0ðtÞÞ we get

E

ðt
t0

›w

›t
þ Lw

� �
ðs;X 0ðsÞÞdsjX 0ðt0Þ ¼ X0

� �
# 0:

Therefore, dividing by t2 t0 and sending t # t0 we deduce the thesis.

We also have the following theorem regarding the value function V , whose proof is not

reported, since it is very similar to that of Theorem 4.2.

Theorem 4.3. The value function V is a constrained viscosity solution of

min 2
›W

›y
þ ð1þ lÞS ›W

›z
;
›W

›y
2 ð12 mÞS ›W

›z
;2

›W

›t
2 LW

� �
¼ 0; ð17Þ

on ½0; TÞ £ �S �K £ ð0;þ1Þ.

5. Comparison theorem and uniqueness

In this section we prove a comparison theorem, Theorem 5.1, which allows us to show that

the two value functions V and U are the unique constrained viscosity solutions to the

corresponding HJB equations. We do this under the additional assumption, very useful

also for numerical applications, that the utility function is of exponential type. More

precisely, we assume that U satisfies the following inequality for every

ðz; y; S; nÞ [ �S �K £ ð0;þ1Þ:

Uðzþ cðy; SÞÞ # M 2 e2gðzþcðy;SÞÞ; ð18Þ

where M and g are positive constants.



Theorem 5.1. Suppose that assumption (18) holds true. Let u be a bounded upper semi-

continuous viscosity subsolution of (10) on ½0; TÞ £ �S �K £ ð0;þ1Þ and v be a lower semi-

continuous function which is bounded from below exhibits sublinear growth and is a

viscosity supersolution of (10) on ½0; TÞ £ S �K £ ð0;þ1Þ. Suppose that uðT ;XÞ # vðT;XÞ
for every X [ �S �K £ ð0;þ1Þ. Then u # v on ½0; T� £ �S �K £ ð0;þ1Þ.
Proof. First we construct a positive strict supersolution of (10) on ½0; T� £ �S �K £ ð0;þ1Þ
when U satisfies (18). Let b . 1=2 be such that jh . bq2. Then define h :

½0; T� £ �S �K £ ð0;þ1Þ! R as follows:

hðt; z; y; S; nÞ ¼ M 2 e2gðzþkySÞ þ 1

n2b21
þ C1ðT 2 tÞ þ C2;

where C1 is a positive constant that will be fixed later, while constant k satisfies

12 m , k , 1þ l:

Finally, C2 is a positive constant that makes h strictly positive and h $ V1 þ K 0 on
½0; T� £ �S �K £ ð0;þ1Þ, for some constant K 0 . 0 (we observe that V1 is bounded on

½0; T� £ �S �K £ ð0;þ1Þ, thanks to assumption (18)). Note that hðT ; z; y; S; nÞ .
Uðzþ cðy; SÞÞ, for every ðz; y; S; nÞ [ �S �K £ ð0;þ1Þ, taking C2 large enough. It remains

to prove the strict supersolution property. We have

H t;X; h;
›h

›t
;DXh;D

2
Xh

� �
¼ min h2 V1;2

›h

›y
þ ð1þ lÞS ›h

›z
;
›h

›y
2 ð12 mÞS ›h

›z

�
;

2
›h

›t
2 Lh

�
$ e2gðzþkySÞmin K 0egðzþkySÞ; Sð1þ l2 kÞ; Sðk2 ð12 mÞÞ	

;

C1e
gðzþkySÞ 2 rgðzþ kySÞ þ 1

2
ng2k 2y2S2 2 ða2 rÞgkyS

þ jðh2 nÞ 2b2 1

n2b
egðzþkySÞ 2 q2 ð2b2 1Þb

n2b
egðzþkySÞ

�
:

Now we show that we can choose C1 large enough in such a way that the last argument in

the minimum operator is strictly positive. Note that the function DðzÞ ¼ ng2k 2z2=22
ða2 rÞgkz has minimum value equal to2ða2 rÞ2=ð2nÞ. Consequently, the last argument

inside the minimum operator is greater than or equal to the following expression:

C1 2
ða2 rÞ2

2n
2

jð2b2 1Þ
n2b21

þ ðjh2 bq2Þð2b2 1Þ
n2b

� �
egðzþkySÞ 2 rgðzþ kySÞ:

Since jh . bq2, the function GðnÞ ¼ 2ðða2 rÞ2Þ=ð2nÞ2 jð2b2 1Þ=n2b21 þ ðjh2
bq2Þð2b2 1Þ=n2b is bounded from below by a constant: GðnÞ $ 2A for every n . 0,

where A is a positive constant. Take C1 ¼ Aþ C3, where C3 is a positive constant that will

be fixed below. Then



C1 2
ða2 rÞ2

2n
2

jð2b2 1Þ
n2b21

þ ðjh2 bq2Þð2b2 1Þ
n2b

� �
egðzþkySÞ 2 rgðzþ kySÞ

$ C3e
gðzþkySÞ 2 rgðzþ kySÞ:

We can choose C3 large enough so that the function FðxÞ ¼ C3e
x 2 rx, with x $ 2g �K, is

bounded from below by a constant and, in particular, is strictly positive. In conclusion, we

have proved that there exists a strictly positive constant d such that

H t;X; h;
›h

›t
;DXh;D

2
Xh

� �
$ d;

on ½0; TÞ £ �S �K £ ð0;þ1Þ.
To conclude the proof of the theorem, define the function w1 ¼ ð12 1Þvþ 1h, with

0 , 1 , 1. Then uðT;XÞ # w1ðT;XÞ for every X [ �S �K £ ð0;þ1Þ. Moreover w1 is a

viscosity supersolution of H 2 1d ¼ 0 on ½0; TÞ £ �S �K £ ð0;þ1Þ. Now we may apply

Lemma 4.1 in [8] to u and w1 and we deduce that u # w1 on ½0; T� £ �S �K £ ð0;þ1Þ.
Therefore, sending 1 # 0, we get the thesis. A

Corollary 5.2. Under assumption (18), the value functions U and V are the unique

constrained viscosity solutions to (10) and (17), respectively.

Proof. Thanks to assumption (18) we have that both U and V are bounded. Therefore we

may apply the comparison Theorem 5 and we deduce the thesis. A

6. Negative exponential utility, dimensionality reduction and numerical

discretization

In this section we assume a particular expression for the utility function describing the

preferences of the investor. More precisely, we suppose that the utility function is a

negative exponential utility of the following kind:

UðxÞ ¼ 2expð2gxÞ:
Thanks to this assumption the dimensionality of the problem can be substantially

reduced. Moreover, the solution of the optimization problem does not depend on the

investor’s initial wealth. This kind of utility function describes the preferences of an

investor exhibiting constant risk-aversion, for this reason is sometimes called a constant

absolute risk vversion utility function. This choice has been also adopted in [7,17] dealing,

respectively, with European and American option pricing with transaction costs with

constant volatility.

This specific choice seems restrictive to some extent, but [1] has shown that the

dependence of option prices on the specific form of the utility function is very weak.

Therefore we decided to stick on this particular choice, which greatly simplifies the

computational procedure.

Now we introduce the following discount factor:

dðt; TÞ ¼ expð2rðT 2 tÞÞ;

and the ‘reduced utility functions’:



Uðt; z; y; S; nÞ ¼ exp 2g
z

dðt; TÞ
� �

Qðt; y; S; nÞ;

Vðt; z; y; S; nÞ ¼ exp 2g
z

dðt; TÞ
� �

Q0ðt; y; S; nÞ;

V1ðt; z; y; S; nÞ ¼ exp 2g
z

dðt; TÞ
� �

Q1ðt; y; S; nÞ:

Remark 1. In order to slightly simplify the notation, and in analogy with [17], in the

definition ofU and V1 provided by (7) and (6), respectively, we have assumed that a single

option is purchased by the investor, in such a way that x1 ¼ p and that, when the option

exercise takes place, only the z argument in functions U and V1 changes by the amount

gðSÞ :¼ maxðK 2 S; 0Þ, while the y argument is left unchanged. According to this

assumption, the definitions of V1 and U can be reformulated as follows:

V1ðt; z; y; S; nÞ ¼ V t; zþ gðSÞ; y; S; n �
;

which implies

Q1ðt; z; y; S; nÞ ¼ exp 2g
gðSÞ
dðt; TÞ

� �
Q0ðt; y; S; nÞ ð19Þ

and

Uðt; z; y; S; nÞ ¼ sup
At;T ;t

E½V1ðt; zðtÞ; yðtÞ; SðtÞ; nðtÞÞjðzðt2Þ; yðt2Þ; Sðt2Þ; nðt2ÞÞ

¼ ðz; y; S; nÞ�:

The purchase price of an American option simply becomes the value p such that

Vðt; z; y; S; nÞ ¼ Uðt; z2 p; y; S; nÞ;
i.e.

p ¼ dðt; TÞ
g

log
Q0ðt; y; S; nÞ
Qðt; y; S; nÞ

� �
:

As a consequence, we may express the variational inequalities for U and V in terms of

Q; Q0 and Q1, obtaining

min Q2Q1;2
›Q

›y
2 gð1þ lÞS Q

dðt;TÞ ;
›Q

›y
þ ð12 mÞS Q

dðt;TÞ ;2
›Q

›t
2DW

� �
¼ 0 ð20Þ

and

min 2
›Q0

›y
2 gð1þ lÞS Q0

dðt; TÞ ;
›Q0

›y
þ ð12 mÞS Q0

dðt; TÞ ;2
›Q0

›t
2DW

� �
¼ 0; ð21Þ

where operator D is defined as follows:



DQ ¼ aS
›Q

›S
þ 1

2
nS2 ›

2Q

›S2
þ jðh2 nÞ ›Q

›n
þ 1

2
q2n

›2Q

›n2
þ rqnS

›2Q

›S›n
;

and Q1 is given by (19). Now, functions Qðt; y; S; nÞ and Q0ðt; y; S; nÞ are defined on a four-
dimensional space ½0; T� £ R £ ð0;þ1Þ £ ð0;þ1Þ. The terminal conditions are given by

Q0ðT; y; S; nÞ ¼ 2e2gcðy;SÞ and QðT ; y; S; nÞ ¼ 2e2g gðSÞþcðy;SÞð Þ:

6.1. Discretization and solution of the problem
As in [7,17], we can couple the variational HJB inequalities (20) and (21) with a Markov 
chain approximation. More precisely, in both [7,17], the authors deal with the classical 
lognormal model, solving the pricing problem with a binomial model. Moreover, in [17] 
the author provides an alternative characterization of the value function which is based on 
a global maximum, and that is well suited for the application of the Markov chain 
approximation technique.

Since in this article we deal with stochastic volatility, first of all we have to introduce a 
tree-based method to price American options (without transaction costs) in the Heston 
model. Then we can easily couple this method with the variational HJB inequalities (20) 
and (21) (or their alternative characterization [17]) exploiting the Markov chain 
approximation as in [7,17].

We consider the tree-based model presented in [15]: the pricing approach is based on a 
modification of a combined tree for stock prices and volatilities, where the value of the 
derivative is computed on a two-dimensional grid (in stock and volatility) at each time 
step, exploiting interpolating techniques. In all our experiments we deal with the bilinear 
interpolation technique suggested in [15]. This pricing procedure allows to circumvent the 
problem of dealing with non-recombining tree, which often happens when dealing with 
lattice methods for the Heston model.

Coupling the model presented in [15] with the Markov chain approximation applied, 
among the others, in [7,17], we obtain the following procedure to compute Q and Q0. Let 
us consider a discrete time grid f0; dt; 2dt; . . .  ; Ndt} with N ¼ T=dt, T being the maturity 
of the American derivative. The Markov chain for the discrete stock price SðtÞ and 
volatility nðtÞ processes are modelled according to [15], i.e.

nððiþ 1ÞdtÞ ¼ max nðidtÞ þ j h2 nðidtÞ �
dt þ Y 1q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðidtÞdt

p
; 0

� �
;

Sððiþ 1ÞdtÞ ¼ SðidtÞeða2ð1=2ÞnðidtÞÞdtþY 2
ffiffiffiffiffiffiffiffiffiffiffi
vðidtÞdt

p
;

where Y 1; Y 2 have values in f21; 1}. We refer to [15] for the distribution of the two-
dimensional random variable ðY 1; Y 2Þ and for the construction of the two-dimensional 
binomial tree, avoiding the problems related to the fact that the considered tree is not 
recombining. Moreover, the discrete time equation for the amount invested in the risk-free 
asset is

zðði þ 1ÞdtÞ ¼  zðidtÞerdt:
Following [7], after defining a grid for the number of shares, i.e. y ¼ yj ¼ jdy; j ¼ 

2J; . . . ; J, the discretization scheme for the HJB equation (21) is



Q0ðidt; yj; SðidtÞ; nðidtÞÞ ¼ maxðE½Q0ððiþ 1Þdt; yj; Sððiþ 1ÞdtÞ; nððiþ 1ÞdtÞÞ�;
Fbðidt; dy; SðidtÞÞQ0ðidt; yjþ1; SðidtÞ; nðidtÞÞ;
Fsðidt; dy; SðidtÞÞQ0ðidt; yj21; SðidtÞ; nðidtÞÞÞ;

ð22Þ

with

Fbðt; dy; SÞ ¼ egðð1þlÞdyS=dðt;TÞÞ; and Fsðt; dy; SÞ ¼ e2gðð12mÞdyS=dðt;TÞÞ;

and

Q0ðidt; yj^1; SðidtÞ; nðidtÞÞ ¼ E Q0ððiþ 1Þdt; yj^1; Sððiþ 1ÞdtÞ; nððiþ 1ÞdtÞÞ
� �

;

where the expected values are computed exploiting the two-dimensional binomial tree

[15]. Notice that the first line in (22) corresponds to do nothing, while the second (third)

one corresponds to buy (sell) dy shares of the stock. Similarly, we have

Qðidt; yj; SðidtÞ; nðidtÞÞ ¼ max
�
E Qððiþ 1Þdt; yj; Sððiþ 1ÞdtÞ; nððiþ 1ÞdtÞÞ
� �

;

Fbðidt; dy; SðidtÞÞQðidt; yjþ1; SðidtÞ; nðidtÞÞ;
Fsðidt; dy; SðidtÞÞQðidt; yj21; SðidtÞ; nðidtÞÞ;
Q1ðidt; yj; SðidtÞ; nðidtÞÞ

�
;

where the last line corresponds to the early exercise of the American contract, and can be

evaluated exploiting (19) and function Q0 computed according to (22). The above

discretization procedure works also for the alternative characterization of the value

function based on a global maximum [17]: the main difference is that, to compute Q0 (and

similarly to compute Q), (22) is replaced by

Q0ðidt; yj; SðidtÞ; nðidtÞÞ ¼ maxðE½Q0ððiþ 1Þdt; yj; Sððiþ 1ÞdtÞ; nððiþ 1ÞdtÞÞ�;
max

l¼1; ... ;J2j
Fbðidt; ldy; SðidtÞÞQ0ðidt; yj þ ldy; SðidtÞ; nðidtÞÞ;

max
l¼2J2j; ... ;21

Fsðidt;2ldy; SðidtÞÞQ0ðidt; yj þ ldy; SðidtÞ; nðidtÞÞÞ;

i.e. selling or buying all the possible number of shares of the stock (remaining on the grid

y ¼ yj ¼ jdy; j ¼ 2J; . . . ; J) and not only dy shares (therefore the name ‘global

maximum’ [17]). From a financial point of view, this last approach is more reasonable,

since in computing the numerical solution we consider all the possible strategies the agent

can implement, i.e. doing nothing, buy or sell any number of shares, or early exercise the

option.

7. Numerical results

The algorithm developed in the previous section was implemented, computing the price of

an American put contract. In our numerical experiments we deal with the parameters

considered in [15], i.e. r ¼ a ¼ 0:1, and Sð0Þ ¼ 9, nð0Þ ¼ 0:0625, h ¼ 0:16, q ¼ 0:9,
j ¼ 5 and r ¼ 0:1. Moreover, the American put has strike K ¼ 10 and maturity T ¼ 0:25.
The discretization parameters of the Markov Chain are dt ¼ 0:007, dy ¼ 0:2 and J ¼ 50.



Figure 1. Price of an American put option plotted against the agent absolute risk-aversion.

In Figure 1 we plot the American put price for different values of parameter g and 
considering two different sets of proportional costs: l ¼ m ¼ 1% and l ¼ m ¼ 0:01%, 
while in Table 1 we deal with the influence of proportional transaction costs on the option 
price setting g ¼ 0:1.

It is clear that the option price decreases when both the proportional transaction costs 
and the absolute risk-aversion g increase. These results are in line with what is presented in 
[17] when a classical lognormal model is considered. Therefore, as expected, moving from 
the lognormal model to the Heston stochastic volatility model does not change the 
behaviour of the derivative price with respect to g and the proportional costs’ parameters l 
and m. Moreover, decreasing l, the option price approaches to its value when no 
transaction costs are considered.

To conclude, in Figure 2 we show the early exercise boundary at time ðT=2Þ in the 
space ðS; nÞ, i.e. underlying asset and variance, dealing with the same American put as 
above and considering different values of the risk-aversion parameter g and the 
proportional transaction costs l ¼ m. As expected, the early exercise boundary moves up

Table 1. Price of an American put option, g ¼ 0:1.

l ¼ m

0.0001 0.0005 0.001 0.005 0.01

Price 1.1088 1.1033 1.0988 1.0848 1.0848



as both l ¼ m and g increase, i.e. as both the proportional transaction costs and the risk-

aversion increase.

8. Concluding remarks

In this paper we investigated the American option pricing valuation problem in a

continuous-time financial model in which transaction costs are considered and the

volatility is assumed to be described by a stochastic process of a CIR type, as in the Heston

model. We provided a formulation of this problem as a singular control problem for which

we proved existence and uniqueness of a viscosity solution. By assuming a specific

assumption on the utility function describing the investor’s preferences, and after

reformulating our singular control problem through a variational inequality, we also

presented a discretization method and some numerical results. The results achieved in this

work may be extended in several directions. First, different transaction costs models can

be considered, as an example fixed transaction costs, and different stochastic dynamics for

the volatility can be assumed, as an example the Stein–Stein model, see [14]. Moreover, a

more systematic numerical investigation could be performed in order to provide results

also in different modelling frameworks like those just mentioned. All these issues will be

the topics of our future investigation.
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