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1. Introduction
In recent years, there has been a steady interest focused on the
interpretation of the mechanical behaviour of masonry at
failure (Cecchi et al., 2007; Gilbert et al., 2006; Milani et al.,
2006a, 2006b, 2006c; Portioli et al., 2013, 2014; Restrepo-
Vélez et al., 2014). The aim is to always provide reliable and
efficient tools for fast estimates of brickwork behaviour near
collapse.

There are two main approaches widely used in the literature
for the constitutive description of masonry, usually known as
macro- and micro-modelling.

Macro-modelling (Lourenço et al., 1997; Shieh-Beygi and
Pietruszczak, 2008) does not make any distinction between
masonry units (bricks, blocks, stones etc.) and joints, averaging
the effect of mortar through the formulation of a fictitious
continuous material. Despite this, macro-modelling is – at a
first glance – the most straightforward from an engineering
point of view, because it makes it possible to apply the rough
discretisation needed for actual large-scale computations, it
usually requires many mechanical parameters to be set, which
are obtained by best fitting of costly experimental campaign
on masonry wallettes. However, the analysis of a different

masonry material or texture would require a new calibration of
the model parameters, with the subsequent need to perform
new experimentations.

The alternative micro-modelling approach (Lotfi and Shing,
1994; Lourenço and Rots, 1997) consists of separately repre-
senting mortar joints and units. In some cases, reasonable
simplifications have been introduced; for example, utilising
zero-thickness interfaces for the joints. Nevertheless, a draw-
back of this approach is related to the need of separately
modelling units and mortar, with a consequent numerical
effort proportional to the number of bricks present in the
structure, which limits its applicability to small panels.

Homogenisation (de Buhan and de Felice, 1997; Luciano and
Sacco, 1997; Milani et al., 2006a, 2006b, 2006c; Pegon and
Anthoine, 1997) represents a fair compromise between micro-
and macro-modelling, because it allows the necessary rough
discretisation at a structural level, but at the same time repre-
senting in detail what happens at the meso-scale on each
Gauss point. The practical advantage of homogenisation
stands therefore in the fact that only the knowledge of constitu-
ent materials (brick and mortar) mechanical parameters are
required to provide an estimate of masonry average behaviour



to use at a structural level. In addition, texture properties are
not needed anymore in large-scale computations and meshes
that do not depend on brick size may be used.

The major limitation of homogenisation is related to non-
linear finite-element (FE) computations, because a continuous
interaction between meso- and macro-scale is needed in the
non-linear range. The practical translation of this issue is a
huge computational effort, since the field problem has to be
solved numerically for each loading step, in all Gauss points.

For the above reasons, limit analysis combined with homogen-
isation technique still seems to be one of the most powerful
and direct structural analysis methods to provide reliable
and fast results at collapse. Such an approach requires only
a reduced number of material parameters and allows the
avoidance of independent modelling of units and mortar. In
addition, it provides limit multipliers of loads, failure mech-
anisms and, at least on critical sections, the stress distribution
at collapse. It belongs to the so-called ‘direct’ methods,
because the results are obtained in a single step solving a suit-
able optimisation problem. Different homogenisation models
have been recently proposed in the technical literature for the
evaluation of homogenised strength domains for masonry
walls in-plane loaded (de Buhan and de Felice, 1997; Milani
et al., 2006a, 2006b).

The paper is aimed at critically reviewing some of the most
effective models already available, with a comparison of their
numerical performance within some applications of technical
interest.

In particular, four different strategies for the evaluation of the
homogenised strength domain of running bond masonry in-
plane loaded are discussed and critically compared. Under the
assumption of mortar and bricks obeying a rigid plastic behav-
iour with associated flow rule, and within basic assumptions of
the homogenisation theory (such as periodicity and anti-
periodicity of the local velocity field and micro-stress, respect-
ively), an estimation of masonry macroscopic strength domain
is possible by means of the application of both the classic
upper and lower bound theorems of limit analysis on the
chosen elementary cell (Suquet, 1983). In particular, the lower
bound approach requires the imposition of micro-stress equili-
brium, admissibility as well as anti-periodicity and allows
obtaining lower bound estimates of the actual homogenised
failure surface by means of the constrained maximisation of
the homogenised internal actions. The upper bound approach,
dually, requires dealing with kinematically admissible velocity
fields (i.e. obeying associated flow rules), with periodicity con-
ditions applied at the boundary of the elementary cell, allow-
ing upper bound estimates of the actual homogenised failure
surface by means of the constrained minimisation of the total

internal power dissipation. In both cases, the mechanical
problem translates mathematically into (non)-linear program-
ming, where the total number of optimisation unknowns is
reduced. Four different models recently proposed by the
author, two lower bounds and two upper bounds, are analysed
and critically compared. The first lower bound model (Milani
et al., 2006a, 2006b), model I, subdivides the elementary cell
into a few rectangular sub-domains, where the micro-stress
field is expanded using polynomial expressions. In the second
lower bound procedure (Milani, 2011a, 2011b), model II,
joints are reduced to interfaces and bricks are subdivided into
a few constant stress triangular elements (CST). In this latter
case, closed-form estimates of the homogenised strength
domain may be determined in some special cases. The third
procedure (Cecchi and Milani, 2008; Milani, 2009), model III,
is an upper bound heuristic approach also known as ‘compati-
ble identification’, with joints reduced to interfaces and bricks
assumed infinitely resistant. The periodic velocity field results
as a linear combination of elementary deformation modes a
priori applied on the elementary cell. The last model, model
IV, is a kinematically admissible procedure based on the so-
called method of cells (MoC) (Aboudi, 1991; Milani and
Taliercio, 2015; Taliercio, 2014), where the elementary cell is
subdivided into six rectangular sub-cells with pre-assigned
polynomial fields of periodic velocity. Models I and IV have
the advantage that the reduction of joints to interfaces is not
required. The second approach, albeit reduces joints to inter-
faces with frictional behaviour, still allows considering failure
inside bricks. The third model is the most straightforward, but
is reliable only in case of thin joints and strong blocks. A criti-
cal comparison of pros and cons of all models is discussed,
with reference to realistic benchmarks.

2. Homogenisation theory: basic
assumptions

Masonry is a composite material usually made of units
bonded with mortar joints. In most cases of building practice,
units and mortar are periodically arranged. Such periodicity
gives the possibility to consider an entire wall Ω as the rep-
etition of a representative element of volume Y representative
element of volume (REV) or elementary cell. Y contains
all the information necessary for describing completely the
macroscopic behaviour of Ω. If a running bond pattern is con-
sidered, it can be easily checked that the elementary cell is
rectangular.

For periodic arrangements of units and mortar, homogenis-
ation techniques can be used both in the elastic and inelastic
range, taking into account the micro-structure only at a cell
level. This leads to a significant simplification of the numerical
models adopted for studying entire walls, especially for the
inelastic case.



The basic idea of the homogenisation procedure consists in
introducing averaged quantities representing the macroscopic
strain and stress tensors (respectively E and Σ), as follows

1:
E ¼, ε .¼ 1

A

ð
Y
ε dY

Σ ¼, σ .¼ 1
A

ð
Y
σ dY

where A stands for the area of the elementary cell, ε and σ
stand for the local quantities (strains – or strain rates in limit
analysis – and stresses, respectively) and <*> is the averaging
operator.

Periodicity conditions are imposed on the stress field σ and the
displacement (or velocity in limit analysis) field u, and are
given by

2:
u ¼ Eyþ uper; uper on @ Y
σn; anti� periodic on @Y

�

where uper stands for a periodic displacement (velocity) field.

Let fm, fb and fhom denote, respectively, the strength domains
of the mortar, of the units and of the homogenised macro-
scopic material. It has been shown by Suquet (1983) that the
fhom domain of the equivalent continuum is defined in the
space of the macroscopic stresses as follows

3: fhom ¼ Σj

Σ ¼, σ .¼ 1
A

ð
Y

σ dY ðaÞ

div σ ¼ 0 ðbÞ
σ½ �½ �nint ¼ 0 ðcÞ

σn; anti-periodic on @Y ðdÞ
σ yð Þ [ fm; 8y [ Ym σ yð Þ [ f b; 8y [ Yb ðeÞ

8>>>>>>>>>>><
>>>>>>>>>>>:

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

Here, σ½ �½ � is the jump of micro-stresses across any discontinu-
ity surface of normal n int. Conditions 3a and 3d are derived
from periodicity, condition 3b imposes the micro-equilibrium
and condition 3e represents the yield criteria for the com-
ponents (brick and mortar).

A dual kinematic definition of fhom, also due to Suquet
(1983), can be derived through the support function πhom(D)
as follows

4: fhom ¼ Σj

Σ : D � πhom Dð Þ 8D

πhom Dð Þ ¼ inf
v

P vð ÞjD ¼ 1
2Γ

ð
@Y¼Γ

v� nþ n� vð ÞdS
� �

P vð Þ ¼ Ð
Y π dð ÞdYþ Ð

S π ½½v��; nð ÞdS

8>>>>><
>>>>>:

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

where v=Dy+ vper is the microscopic velocity field; vper is a
periodic velocity field; d and D are, respectively, the micro-
scopic and macroscopic strain rate fields; S is any
discontinuity surface of v in Y; n is the normal to S; π([[v]];n)=
1/2([[v]]�n+ n�[[v]]); and π dð Þ ¼ maxσ σ:d; σ [ S yð Þf g.

3. Model I: polynomial expansion of the
micro-stress field

In Milani et al. (2006a, 2006b), a model based on the assump-
tion of equilibrated polynomial stress fields inside the unit cell
is presented. Essentially, the approach relies on a rough subdi-
vision of the unit cell by means of rectangular sub-domains,
where a polynomial interpolation of the stress field is a priori
given. Equilibrium inside each element and at the interface
between contiguous elements, as well as anti-periodicity con-
ditions are imposed. In this way, the micro-stress field is anti-
periodic and auto-equilibrated, fully complying constraints
3b–d.

As shown in Figure 1, one-fourth of the REV is sub-
divided into nine geometrical elementary entities (sub-
domains), so that the whole cell is sub-divided into 36
sub-domains.

For each sub-domain, polynomial distributions of degree (m)
are a priori assumed for the stress components. The generic
ijth component can be written as follows

5: σðkÞ
ij ¼ X yð ÞST

ij ; y [ Yk

where X(y)= [1 y1 y2 y1
2 y1 y2 y2

2…]; Sij=[Sij
(1) Sij

(2) Sij
(3) Sij

(4)

Sij
(5) Sij

(6) …] is a vector of length Ñ ¼ ððmþ 1Þ þ ðmþ 2Þ=2Þ
representing the unknown stress parameters; and Yk represents
the kth sub-domain.

The imposition of equilibrium with zero body forces inside
every sub-domain, the continuity of the stress vector on inter-
faces and anti-periodicity of σn allows for a strong reduction of
the total number of independent stress parameters.

In particular, equilibrium has to be imposed everywhere inside
each sub-domain, that is, σij,j(x, y)=0, i=1, 2 8(x, y)[ sub-
domain. Since σij(x, y) is a polynomial expression of degree
(m), a linear combination of its derivatives (div σ) is a poly-
nomial of degree (m−1). This leads to write (2N ) linear
independent equations in the stress coefficients, where N=
((m−1)2/2)+ (3(m−1)/2)+1=(m(m+1)/2).

A further reduction of the total unknowns is obtained a
priori imposing the continuity of the stress vector on internal



opposite sides of ∂V

6: X̂
ðmÞ
ij yð ÞŜðmÞ

n1 ¼ �X̂
ðnÞ
ij yð ÞŜðnÞ

n2

where n (m) and n (n) are oriented vectors of the external faces of
the paired sub-domains (m)(n).

Again σn on ∂V is a polynomial expression of degree (m) in
the abscissa s of the external edge of the sub-domain.

1/4 of 
elementary cell
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y
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b
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Figure 1. Subdivision in sub-domains adopted: left: subdivision 
and geometrical characteristics of one-fourth of the 
elementary cell; right: subdivision into 36 sub-domains for the 
entire cell

interfaces (σ(ijk)nj + σ(ijr)nj =0;  i = 1, 2) for every (k) and (r) contig-
uous sub-domains with a common interface of normal 
n (Figure 2(a)). Being σn polynomial expressions of degree (m) 
in the abscissa s of the interface, other 2N′ equations (where 
N′ =m+1)  in  Ŝ ðkÞ and Ŝ ðrÞfor each k–r interface can be 
written.

Finally, anti-periodicity of σn on ∂V requires 2N′ additional 
equations per pair of external faces (m)(n) (Figure 2(b)), that 
is, it should be imposed that stress vectors σn are opposite on

Local frame of reference

Elementary cell

(r) (k)

(q)

(k–r) Interface 

(q–k) Interface 

y2

y1

n2
n1
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3σ (n)n2

σ (m)n1
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Figure 2. (a) contiguous sub-domains, geometry and frame of 
reference of the sub-domains with vertical/horizontal interfaces 
between adjacent sub-domains; (b) anti-periodicity conditions on

the unit cell; and (c) linear dependence of some equilibrium
equations



The equations written in order to satisfy internal equilibrium,
equilibrium on interfaces and anti-periodicity of the stress
vector lead to a system of equations in the form AS=0, where
S is the vector of total stress parameters. Nevertheless, not all
the rows of this system are linearly independent. This can be
easily shown if four generic rectangular elements with four
common interfaces and subjected only to constant non-zero
shear stress are considered, as reported in Figure 2(c). Internal
equilibrium is a priori satisfied, whereas four equations for
ensuring equilibrium on interfaces have to be written.
Nevertheless, only three of these four equations are linearly
independent.

The detection of linearly dependent equations is automatically
checked with a ‘for’ cycle, evaluating the rank of the sub-
matrices Ai, where Ai collects the first i-rows of A.

After some trivial assemblage operations on the local variables
(again handled automatically), it is possible to write the stress
vector inside every sub-domain as follows

7: σ̃ðkÞ ¼ X̃
ðkÞ

yð ÞS̃; k ¼ 1; . . . ; kmax

where σ̃ðkÞ is the stress vector inside the kth sub-domain;
X̃

ðkÞðyÞ is a 3�Nun matrix that contains only geometrical coef-
ficients; its elements are polynomial forms in the microscopic
coordinate y; S̃ is the vector (of length Nun) of the total stress
parameters unknown.

Four different models of increasing accuracy (P0, P2, P3, P4)
have been obtained (Milani et al., 2006a, 2006b, 2006c), pro-
gressively increasing the degree of the polynomial expansion.
It can be shown that the stress unknown independent par-
ameters are 69, 39, 29 and 8 for models P4, P3, P2 and P0,
respectively.

Micro-stress fields 7 are equilibrated and anti-periodic, but not
necessarily admissible. Condition 3d has to be checked in every
point of the cell, or alternatively where the stress status is the
maximum. This is feasible only for polynomial expressions
with degree 0 and 1. Alternatively, in Milani et al. (2006a,
2006b, 2006c), a collocation method is adopted, enforcing, in
every sub-domain, the admissibility condition in a regular grid
of ‘nodal points’ with step r�q. In Milani et al. (2006a), it is
shown how even coarse grids (3�3) provide quite reliable
results.

To evaluate a point of the homogenised failure surface
solving problem 3, a direction nΣ in the homogenised stress
space [ΣxxΣyyΣxy]

T is a priori chosen. Traditionally, principal
stresses Σh− Σv are applied up to failure on wallettes, with
an orientation ϑ of the bed joint with respect to Σh.

Under such assumptions, the failure multiplier Λ is
estimated by means of the following linear programming (LP)
problem

8:

max Λf g

ΛnΣ ¼ 1
Y

X
k

ð
Y
X̃

ðkÞ
yð ÞS̃ dY

yj ; nodal point

σ̃j ¼ X̃
ðkÞ

yjð ÞS̃
σ̃j [ f k; j ¼ 1; . . . ; rq; k ¼ 1; . . . ; 4kmax

nΣ;1 ¼ 1
2

cos ψð Þ 1þ cos 2ϑð Þð Þ þ sin ψð Þ 1� cos 2ϑð Þð Þð Þ

nΣ;2 ¼ 1
2

cos ψð Þ 1� cos 2ϑð Þð Þ þ sin ψð Þ 1þ cos 2ϑð Þð Þð Þ

nΣ;3 ¼ 1
2

cos ψð Þ cos 2ϑð Þ � sin ψð Þ cos 2ϑð Þð Þ tan 2ϑð Þ

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

where, apart from the symbols already introduced, fk is the kth
sub-domain yield criterion. ψ denotes the loading angle, given
by tan(ψ)=Σv/Σh (Σv and Σh are the principal homogenised
internal actions). ϑ denotes the angle between Σh and the bed
joint orientation.

It is interesting to note that, from problem 3, the
membrane strength components are Σxx=ΛnΣ,1, Σyy=ΛnΣ,2 and
Σxy=ΛnΣ,3.

4. Model II: equilibrated model with joints
reduced to interfaces and CST
discretisation of the bricks

In Milani (2011a, 2011b), an equilibrated model relying on the
subdivision of the unit cell into 24 CSTs and joints reduced to
interfaces is presented. In Milani (2011a), it is also shown that,
in particular cases, due to the very limited number of optimis-
ation variables involved, the model can be handled also
without the assistance of a computer.

Joints are reduced to interfaces with zero thickness and blocks
are discretised by means of a coarse mesh constituted by con-
stant stress (CST) elements (Figure 3). The choice of meshing
one-fourth of the brick through at least three triangular
elements is due to the need of reproducing the presence of
shear stress in the bed joint (element 2 in Figure 3) in horizon-
tal stretching. All the non-linearity in the REV is concentrated
exclusively on interfaces between the adjoining elements both
on the brick and the joint. Brick–brick interfaces allow, at
least in principle, the reproduction of blocks failure. The six
CST elements used for the discretisation of the upper-right
one-fourth of the REV are indicated in Figure 3 as 1, 2, 3, 1′,
2′ and 3′.



9:
σð2Þ
xx ¼ σð1Þ

xx þm�1 τð1Þ � τð2Þ
� �

σð2Þ
yy ¼ σð1Þ

yy þm τð1Þ � τð2Þ
� �

having denoted, as in de Buhan and de Felice (1997), with m−1

being the ratio between the semi-length and the height of

the brick (m−1=b/2a). Similar equations must be written at
all the remaining interfaces, which are globally 28. Fifty-six
equilibrium equations at the interfaces are obtained. Seventy-
three are the unknowns of the problem, including 72 stress
components (three for each triangular element), and the load
multiplier Λ.

Anti-periodicity constrains for the stress vector are prescribed
on the couples of triangles 1–6, 7–12, 1′–6′, 7′–12′, 1–7′, 3–9′,
4–10′, 6–12′, leading to additional 16 equalities. For instance,
referring to couple 1–6, stress anti-periodicity amounts at
setting

10:
σð1Þ
xx ¼ σð6Þ

xx

τð1Þ ¼ τð6Þ

Not all the equations are, however, linearly independent. In
particular, it can be shown that the corner elements 1, 6, 7′
and 12′ provide four linearly dependent equations on shear.

To summarise, the optimisation problem involves 73
unknowns, 68 linearly independent equations and a set of
inequality constraints representing the yield conditions at the

Elementary cell
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Figure 3. The micro-mechanical model proposed. Subdivision of 
the REV into 24 CST triangular elements (and one-fourth into six 
elements), anti-periodicity of the micro-stress field and equilibrium 
on interfaces

From here onwards, the superscript (n) will indicate any 
stress component belonging to the nth element. Accordingly, 
assuming the wall to undergo plane-stress conditions, the 
Cauchy stress tensor in the nth CST element, σ(n), is character-
ised by the three non-vanishing components σ(xxn) (horizontal 
stress), σ(yyn) (vertical stress) and σ(xyn) (shear stress, also denoted 
by τ (n)).

Neglecting the body forces, equilibrium within any element is 
a priori satisfied, divσ = 0. On the contrary, two equality con-
straints involving stress components in adjoining triangular 
elements have to be prescribed at any internal interface. For 
instance, when dealing with the interface between elements 1 
and 2, the stress vector must be continuous when passing from 
an element to the other. It can be shown that stress com-
ponents of elements 1 and 2 are linked by the following two 
equations



interfaces and involving unknown stress components. The
objective function, in the framework of the lower bound
theorem of limit analysis, is simply the load multiplier Λ.

To estimate a single point of the homogenised yield domain, it
is thus necessary to solve the following LP problem

11: max Λ s:t:

Λα ¼
P24

i¼1 σ
ðiÞ
xxAi

2ab

Λβ ¼
P24

i¼1 σ
ðiÞ
yyAi

2ab

Λγ ¼
P24

i¼1 τ
ðiÞAi

2ab

AI
eqX ¼ bIeq

Aap
eqX ¼ bapeq

f iE σðiÞ
xx; σ

ðiÞ
yy ; τðiÞ

� �
� 0; i ¼ 1; . . . ; 24

f iI σðiÞ
I ; τðiÞI

� �
� 0; i ¼ 1; . . . ; 32

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

The symbols used in Equation 11 have the following meaning.

& α, β and γ indicate the components of the unit vector nΣ, in
the homogenised in-plane stress space and already defined
for model I. The solution of the optimisation problem 11
allows a point on the homogenised failure surface to be
determined, having coordinates Σxx=αΛ, Σyy=βΛ; and Σxy

= γΛ.
& Ai is the area of the ith element (ab/8 or ab/16).
& X is a 73�1 array, gathering all the LP problem

unknowns (element stress components and collapse
multiplier). More precisely, the stress components in any
element (i) are assembled into X as X(3(i−1)+1)=σxx

(i) ,
X(3(i−1)+2)=σyy

(i) and X(3(i−1)+3)= τ(i), whereas
X(73)=Λ.

& Aeq
IX=beq

I is a set of linear equations collecting equili-
brium constraints on all the interfaces. Aeq

I is a 56�73
matrix and beq

I is a 56�1 array with entries equal to zero.
To show practically how matrix Aeq

I is populated, let us
consider the two equilibrium equations to be imposed at
the interface between elements 1 and 2, – that is Equation
9. Assuming that Equation 9 corresponds to the first two
rows of matrix Aeq

I, all the entries in these rows are equal
to zero except for Aeq

I(1, 1)=1, Aeq
I(1, 3)=m−1 Aeq

I(1, 4)=
−1, Aeq

I(1, 6)=−m−1, Aeq
I(2, 2)=1, Aeq

I(2, 3)=m, Aeq
I(2,

5)=−1, Aeq
I(2, 6)=−m.

& Aeq
apX=beq

ap collects the anti-periodicity conditions and it is
therefore a set of 16 equations (some of them linearly
dependent). Thus, Aeq

ap is a 16�73 matrix and beq
ap is a

16�1 array with entries equal to zero. To show practically

how matrix Aeq
ap is populated, let us consider the two hom-

ologous elements 1 and 6, where anti-periodicity holds at
the vertical boundaries, Equation 10. Assume that
Equation 10 corresponds to the first two rows of matrix
Aeq
ap, hence Aeq

ap(1, 1)=1, Aeq
ap(1, 16)=−1, Aeq

ap(2, 3)=1,
Aeq
ap(2, 18)=−1.

& fE
i (σxx

(i) , σyy
(i), τ (i)) ≤ 0 is a set of (possibly) non-linear inequal-

ity constraints representing the failure surface adopted for
the ith element.

& fI
i(σI

(i), τI
(i)) ≤ 0 8i=1, …, 32 plays the role of fE

i at the inter-
faces, with σI

(i) and τI
(i) indicating the normal and shear

stress acting on the ith interface, respectively. Two typolo-
gies of interfaces are present in the model, namely brick-
to-brick interfaces and mortar joints.

In general, it is stressed that any non-linear failure criterion
fE,I

i for the constituent materials can be assumed. As experi-
mental evidences show, basic failure modes for masonry walls
with weak mortar are a mixing of sliding along the joints (a),
direct tensile splitting of the joints (b) and compressive crush-
ing at the interface between mortar and bricks (c). These
modes can be gathered adopting a Mohr–Coulomb failure
criterion combined with tension cut-off and cap in com-
pression. In addition, for bricks, a classic Mohr–Coulomb
failure criterion in plane stress seems to approximate in a
reasonable manner block behaviour at failure. Both failure
surfaces are schematically represented in Figure 4.

Interfaces failure surfaces are inherently linear and no lineari-
sation routines are needed. Non-linear failure surfaces,
however, might be easily dealt with within an LP scheme
(abundant literature is available on this topic, see e.g. Milani
et al., 2006b): a discussion on the effects of the linearisation of
non-linear failure surfaces, however, is beyond the scope of this
paper and is, in any case, a classic issue that has been exten-
sively treated in specialised literature.

5. Model III: compatible identification with
joints reduced to interfaces and infinitely
strong blocks

In this third model, presented by Cecchi et al. (2007) for the
analysis of Reissner Mindlin homogenised plates, bricks are
supposed infinitely resistant, whereas for joints a Mohr–
Coulomb failure criterion with tension cut-off and compressive
limited strength is adopted (Figure 3(b)). In this way, a full
description of the model can be given at a ‘micro-scale’ consid-
ering a representative volume constituted by a generic brick
interacting with its six neighbours (Figures 5 and 6). A sub-
class of possible elementary deformation modes acting in the
unit cell is a priori chosen with the aim of describing
joints cracking (Figure 6). Then, a numerical procedure of
identification between the three-dimensional (3D) discrete



system and a continuum 2D equivalent model is proposed,
equating internal power dissipation of the two models
(Figure 5).

It is interesting to note that the heuristic ‘identification
approach’ here recalled may be regarded as a special appli-
cation of the general upper bound limit analysis homogenis-
ation problem 4, where joints are reduced to interfaces and
bricks are infinitely resistant. When joints obey a classic
Mohr–Coulomb failure criterion, problem 4 has been solved in
closed form using a rhombic elementary cell by de Buhan and
de Felice (1997). In such a case, the homogenised failure
surface is constituted by either four or six planes, as schemati-
cally illustrated in Figure 7.

Here, a more intuitive and straightforward formulation is pro-
vided, that in Cecchi et al. (2007) is denoted as ‘compatible

Bricks/thick joints

  fc : Compression strength

  ft : Tensile strength

   c : Cohesion

   (a)    (b)

   φ : Friction angle

φ2 : Compression linearised cap

 Interfaces/thin joints

σyy

σxx

σxy

σ xy

σxx

fc

ft

o

φ2

φ

fc
ft

c

Figure 4. Typical piecewise linear approximation of the failure 
criteria adopted for bricks and joints: (a) plane stress Mohr–
Coulomb failure criterion and (b) Mohr–Coulomb failure criterion 
with tension cut-off and linearised compression cap
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p
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B
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H

Figure 5. Representative volume element and identification 
between discrete model and continuous model

E11
· +

(a) (b) (c)

E12 E21
·· E22

·

Figure 6. Deformation modes considered in the compatible 
identification model: (a) horizontal stretching; (b) shear; and (c) 
vertical stretching



12:
vA ξð Þ ¼ vC

A þM ΦA
zz

� �
ξ � CA� �

vB ξð Þ ¼ vC
B þM ΦB

zz

� �
ξ � CB� �

where M(Φzz
A) is a standard skew rigid rotation matrix.

In Equation 12, the position ξ of point P is evaluated
with reference to a local frame of reference (ξ1 ξ2) with
origin on the centroid on the interface (Figure 5). Jump of
velocity [v(ξ)] between bricks A and B in a point ξ[ I is
expressed by

13: v ξð Þb c ¼ vB ξð Þ � vA ξð Þ
¼ vC

A � vC
B þM ΦA

zz

� �
ξ � CA� ��M ΦB

zz

� �
� ξ � CB� �

Power dissipated at the interface I can be written as

14: π ¼
ð
I
tA ξð Þ � vA ξð Þ þ tB ξð Þ � vB ξð Þ� �

dS

¼
ð
I
tA ξð Þ � v ξð Þ½ �dS

where tA(ξ)= [τnt(ξ) σnn(ξ)]
T is the stress vector acting at ξ on

brick A, tA(ξ)=−tB(ξ) and τnt(σnn) is the tangential (normal)
stress acting on the interface.

A standard 2D Cauchy continuum, identified by its middle
plane S, is assumed as a 2D homogenised model (Figure 5).

Power dissipated by the equivalent plate model is π=ND,
where D ¼ Ė11 Ė12 þ Ė21 Ė22

� �T
is the in-plane strain rate

vector and N= t[ΣxxΣxyΣyy] is the vector collecting homogen-
ised internal actions, with t being the thickness of the wall.
The application of D vector to the elementary cell corresponds
to a univocal deformation mode. Figure 6 shows the effect on
the elementary cell of the application of unitary values of D
components, stretching along the horizontal axis, shear and
vertical axis. It is interesting to note that, when the REV is
subjected to horizontal in-plane stretching, both head and bed
joints contribute to the ultimate strength, whereas in vertical
stretching only in the bed joints a non-null jump of velocities
is present.

P5 = [0 0 c] P6 = [0 0 c]
P4 = [c/f-cf 0 0]

P3 = [c/f+c/m 0 0] P2 = [c/f c/f 0]
P3 = [c/f+c/m 0 0]

P5 = [c/mf(1/f-f ) 0 0]

P4 = [c/mf(m-1/m) 0 c/mf]

P1 = [0 c/f 0]

∑xx: MPa ∑xx: MPa
∑yy: MPa

∑
xy

: M
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∑yy [MPa]
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Figure 7. de Buhan and de Felice (1997) failure surface obtained in 
the presence of infinitely resistant bricks and joints reduced to 
interfaces with Mohr–Coulomb failure criterion, m=2a/b, f = tanΦ:
(a) mf ≤ 1 and (b) mf > 1

identification’. Let us assume that the motion of a generic 
brick A is described as a function of its centroid (CA) velocity 
vC

A 
(components vCxx

A 
, vCyy

A 
) and of out-of-plane rotation rate 

Φzz
A.

When two contiguous bricks A and B are considered, the vel-
ocity of a generic point P in a position ξ[ I belonging, respect-
ively, to A and B (where I indicates the common interface 
between the two bricks) is



In the evaluation of the internal power dissipation, it should
be noted that, since the jump of velocity on interfaces is
assumed to vary linearly in the discrete model, see Equation
13, for each interface 3nlin independent plastic multiplier rates
are assumed as optimisation variables.

In this way, for each interface I, the following equality con-
straints between plastic multiplier rate fields λ̇

I
i ξ1; ξ2ð Þ and

jump of velocity [w(ξ1, ξ2)] field on the interface are imposed
(associated flow rule)

15: w ξ1; ξ2ð Þ½ � ¼
Xnlin
i¼1

λ̇
I
i ξ1; ξ2ð Þ @f I

@σ

where ξ= (ξ1, ξ2) is a local frame of reference laying on the
interface plane and with axis ξ3 orthogonal to the interface
plane; [w(ξ1, ξ2)]= [Δwnt Δwnn]

T is the jump of velocity field
(linear in (ξ1, ξ2)) on the Ith interface, with Δwnt and Δwnn

being the tangential and normal jumps, respectively; λ̇
I
i ξ1; ξ2ð Þ

is the ith plastic multiplier rate field (linear in (ξ1, ξ2)) of the
interface I, associated with the ith linearisation plane of the
failure surface.

To satisfy Equation 15 for each point of the interface I, nine
equality constraints for each interface have to be imposed that
corresponds to evaluate 15 in three different positions
Pk ¼ ξPk

1 ; ξPk
2

� �
on the interface I as follows

16: w ξPk
1 ; ξPk

2

� �� � ¼ Xnlin
i¼1

λ̇
I
i ξPk

1 ; ξPk
2

� � @f I
@σ

; k ¼ 1; 2; 3

where λ̇
I
i ξPk

1 ; ξPk
2

� �
is the ith plastic multiplier rate of the inter-

face I corresponding to Pk ¼ ξPk
1 ; ξPk

2

� �
.

Internal power dissipated on the Ith interface, defined as the
product of the interface stress vector for the jump of velocities,
is evaluated by means of the following equation

17: πIint ¼
ð
AI

w½ �Tσ dAI ¼
ð
AI

Xnlin
i¼1

λ̇
I
i ξ1; ξ2ð Þ @φ

@σ

	 
T
σ dAI

¼ 1
3

Xnlin
i¼1

cIi
X3
k¼1

λ̇
I
i ξPk

1 ; ξPk
2

� �
AI

External power dissipated can be written as πext= (Σ0
T+ΛΣ1

T)D,
where Σ0 is the vector of permanent loads, Λ is the load multi-
plier and Σ1

T is the vector of loads dependent on the load multi-
plier (i.e. the optimisation direction in the space of
macroscopic stresses). As the amplitude of the failure mechan-
ism is arbitrary, a further normalisation condition Σ1

TD=1 is

usually introduced. Hence, the external power becomes linear
in D and Λ and can be written as πext=Σ0

TD + Λ.

From previous considerations, it is quite straightforward to
conclude that a linear relation between D and [w(ξ1, ξ2)] may
be written for each interface I as follows

18: w ξ1; ξ2ð Þ½ � ¼ G I ξ1; ξ2ð ÞD

where GI(ξ1, ξ2) is a 3�10 matrix that depends only on the
geometry of the interface under consideration.

Making use of both Equations 15–18 and of the kinematic for-
mulation of limit analysis, the following constrained minimis-
ation problem is finally obtained to estimate the load
multiplier Λ (having the same meaning of the previous lower
bound models)

19:

Λ ¼ min
x̂¼½D;λIi Pkð Þ�

PnI
I¼1

πIint � ΣT
0D

ΣT
1D ¼ 1

GI Pkð ÞD ¼ w Pkð Þ½ � ¼ Pnlin
i¼1

λ̇
I
i ξPk

1 ; ξPk
2

� � @φ
@σ

; Pk [ I

8>>>>><
>>>>>:

where nI is the total number of interfaces considered and x̂ is
the vector of total optimisation unknowns. Vector x̂ of global
unknowns collects only 3nlinn

I plastic multiplier rates and
macroscopic kinematic variable D.

Problem 19 leads to reproduce the macroscopic in-plane failure
surface of masonry through a kinematic approach.

6. Model IV: upper bound MoC with actual
joint thickness

The so-called MoC was originally proposed by Aboudi (1991)
for unidirectional composites reinforced by a regular pattern of
long, reinforcing fibres. MoC has been recently extended to
masonry by Taliercio (2014) for the macroscopic elastic and
creep coefficients determination in closed form and by Milani
and Taliercio (2015) in the limit analysis case. The method,
applied to running bond masonry in-plane loaded, consists of
the subdivision of the REV into six rectangular sub-cells, as
shown in Figure 8, where the velocity field is approximated
using two sets of strain-rate periodic piecewise differentiable
velocity fields, one for normal and one for shear deformation
mode.

Let us indicate with symbols u1
(i) and u2

(i), vertical and horizon-
tal velocity fields of the ith cell for the deformation mode
acting axially along vertical and horizontal directions.
Assuming the same periodic field proposed for displacements
in the elastic range by Taliercio (2014), the following



relations hold

An additional constraint W1=W2 is imposed in the model in
order to avoid bilinear terms of the velocity field in cross-

joints. Bilinearity makes the check of the associated flow rule
inside cross-joints cumbersome, with an experienced negligible
modification of the final result.

Fields 20 depend on U1, U2, W1, W2=W1 and W2 degree of
freedom (DOF) velocities, with clear physical meaning rep-
resented in Figure 9. Frame of reference x1–x2 and geometrical
meaning of the symbols are provided in Figure 8. αb is the
ratio between bm and bb, respectively, bed joint thickness and
brick length. It is interesting to note that the velocity fields
inside each cell are either linear (cells 1, 3, 4) or quadratic
(cells 2, 5, 6).

When a shear deformation mode is applied on the REV, the
following fields of velocity are assumed to be inside each cell

Symbols u1
t (i) and u2

t (i) in Equation 21 indicate vertical
and horizontal velocity fields of the ith cell for the shear
deformation mode imposed. In Equation 21, independent
variables (DOFs) are represented by U1

t, U2
t, W1

t and W2
t.

An additional constraint W1
t=2W2

t is imposed in the
model to make the velocity field compatible between cross-
joints and contiguous sub-cells. The physical meaning of
the unknown shear velocity parameters is depicted in
Figure 10.

According to the kinematic theorem of limit analysis,
Equation 4 and assuming the velocity field over the REV to be

20:

uð2Þ1 ¼ 2U1
x1
bb

; uð1Þ2 ¼ �2W1
x2
hb

uð2Þ1 ¼ U1 þ
U2 �U1ð Þ x1 � bb

2

� �

bm
; uð2Þ2 ¼ �2

x2
hb

2 W1 �W2ð Þ bm þ bb
2

� x1




bm
þW2

0
BB@

1
CCA

uð3Þ1 ¼ uð1Þ1 �
U1 1þ 2αbð Þ �U2ð Þ hb

2
� x2

� �

2hm
; uð3Þ2 ¼ �W1 þ

W1 �W3ð Þ x2 � hb
2

� �

hm

uð4Þ1 ¼ uð1Þ1 þ
U1 1þ 2αbð Þ �U2ð Þ hb

2
� x2

� �

2hm
; uð4Þ2 ¼ uð3Þ2

uð5Þ1 ¼ U1 �
U1 1þ 2αbð Þ �U2ð Þ bb þ bm

2
� x1

� �
x2 � hb

2

� �

bmhm
�

U1 �U2ð Þ x1 � bb
2

� �

bm

uð5Þ2 ¼ �W3

x2 � hb
2

hm
� 2

W2
bm
2

� W2 �W1ð Þ bb þ bm
2

� x1




� �
hb
2
þ hm � x2

� �

bmhm

uð6Þ1 ¼ 2
x1
bb

U1 �
U1 þU1 �U2

2αb

� �
x2 � hb

2

� �

hm

0
BB@

1
CCA

uð6Þ2 ¼ �W1 þ
W2 �W3 þ 2 W1 �W2ð Þ x1j j

bm

� �
x2 � hb

2

� �

hm

21:

ut 1ð Þ
1 ¼ 2U t

1
x2
hb

; ut 1ð Þ
2 ¼ 0; ut 2ð Þ

1 ¼ ut 1ð Þ
1 ; ut 2ð Þ

2 ¼ W t
1
x1 � ðbb=2Þ

bm

ut 3ð Þ
1 ¼ U t

1 þ
U t

2 �U t
1

hm
x3 � hb

2

� �
; ut 3ð Þ

2 ¼ �W t
2
x2 � ðbb=2Þ

hm

ut 4ð Þ
1 ¼ ut 3ð Þ

1 ; ut 4ð Þ
2 ¼ �ut 3ð Þ

2

ut 5ð Þ
1 ¼ ut 3ð Þ

1 ; ut 5ð Þ
2

¼ �W t
1
x1 � ðbb þ bm=2Þð Þ x2 � ðhb=2Þð Þ � hm x1 � ðbb=2Þð Þ

bmhm

ut 6ð Þ
1 ¼ ut 3ð Þ

1 ; ut 6ð Þ
2 ¼ W t

1

x1 x2 � ðhb=2Þð Þ
bmhm



translates into three equality constrains, which can be written as
ε̇ðiÞpl ¼ ð@v1=@y1Þ ð@v2=@y2Þ ð@v1=@y2Þ þ ð@v2=@y1Þ½ � ¼ λ̇

ðiÞð@f b;m=@σÞ,
where ε̇ðiÞpl is the plastic strain rate field in the (i)th sub-cell; λ̇ðiÞ

(≥0) is the rate of the plastic multiplier, and fb,m is the (non)-
linear failure surface of either bricks (b) or mortar (m). Let the
failure surfaces of bricks and mortar be approximated by m
planes (see Figure 4), so that each strength criterion is defined
by a set of linear inequalities of the form fb,m;A inσ ≤ b in. As
ε̇ðiÞpl varies at most linearly within each sub-cell, plastic admissi-
bility is checked only at three of the corners. Hence, nine linear
equality constraints per sub-cell are introduced in the matrix
form as Aeq

UðiÞU þ Aeq
λðiÞλ̇

ðiÞ ¼ 0, where U is an array collecting
the seven DOFs describing the microscopic velocity field (i.e.
U={U1, U2, W1, W2, U1

t, U2
tW1

t}T); λ̇ðiÞ ¼ λ̇
ðiÞT
A λ̇

ðiÞT
B λ̇

ðiÞT
C

h iT
is an

array of 3m entries, collecting the rates of the plastic multi-
pliers λ̇

ðiÞ
J at three of the corners of the rectangular sub-cell (J

=A, B, C); and AU(i)
eq, Aλ(i)

eq are 9�7 and a 9�3m matrices,
respectively. The plastic admissibility conditions are then
assembled cell by cell into the following global system of
equality constraints

22: Aeq
U U þ Aeq

λ λ̇ ¼ 0

where Aeq
U ¼ Aeq

Uð1ÞT . . . Aeq
Uð6ÞT

h iT
, λ̇ ¼ λ̇

ð1Þ
T . . . λ̇

ð6Þ
T

h iT
and Aλ

eq is a block matrix of dimension (6�9)� (6�3m),

bm

x2

x1

bm

hm

hb

bb

21

3 6 4 5

Figure 8. REV adopted in the MoC approach and subdivision into 
cells

approximated by means of the expressions provided by 
Equations 20 and 21, the associativity of the plastic flow over 
each sub-cell must be prescribed.

Let v1 = v1n(i) + v1t (i) and v2 = v2n(i) + v2t (i) denote the horizontal 
and vertical components of the velocity field in the (i)th sub-
cell. At each point of any sub-cell, the associated flow rule
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23: Aeq
λ ¼ Aeq

λð1Þ � Aeq
λð2Þ � � � � � Aeq

λð6Þ

where � denotes direct sum.

Let B and C be a couple of corners at the opposite ends of one
of the diagonals of the (i)th rectangular sub-cell. The internal
power dissipated within the sub-cell can be written as

24: πðiÞin ¼ ΩðiÞ

2
bðiÞTin λ̇

ðiÞ
B þ bðiÞTin λ̇

ðiÞ
C

� �

¼ ΩðiÞ

2
01�m bðiÞTin bðiÞTin

h i
λ̇
ðiÞ

where 01�m is an array of m zero entries and Ω(i) is the area of
the (i)th sub-cell. The power dissipated inside the whole RVE is
obviously the sum of the contributions of each sub-cell, that is

25: πin ¼
X6
i¼1

ΩðiÞ

2
01�m bðiÞTin bðiÞTin

h i
λ̇
ðiÞ

The array of the macroscopic stress components can be
expressed as Σ=Λ[α β γ]T, where Λ is the load multiplier and α,
β, γ are the already defined director cosines of the Σ direction.

The power of the external loads is simply πex=Λ[α β γ]D with
the normalisation condition given by [α β γ]D=1.

Similarly to model III, any point of the homogenised failure
surface is thus determined solving the following constrained

minimisation problem

26:

min πin

s:t:

α β γ½ �D ¼ 1 ðaÞ
Aeq

U U þ Aeq
λ λ̇ ¼ 0 ðbÞ

D ¼ 1
A

ð
@Y

v�s n dS ðcÞ

λ̇ � 0 ðdÞ

8>>>>>>><
>>>>>>>:

8>>>>>>><
>>>>>>>:

where (a) is the normalisation condition, (b) is the set of
equations representing the admissibility of the plastic flow,
Equation 22, and (c) links the homogenised strain rate with the
local velocity field.

It is interesting to note that the independent variables entering
into the optimisation problem 26 are the three components of
the macroscopic strain rate D, the 6�3m plastic multipliers λ̇
and the seven DOFs defining the microscopic velocity field.
By way of the normalisation condition and equating the
internal power dissipation to the power of the external loads, it
can be easily shown that Λ=min πin.

7. Comparison on real case studies
Some case studies are considered in this section, in order to
evaluate the capabilities and the limitations of the four limit
analysis homogenisation strategies reviewed in the paper. Some
considerations on the numerical efficiency of the models pre-
sented are also briefly recalled.
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Figure 10. Strain rate periodic kinematically admissible velocity 
field under shear

which can be expressed as



7.1 Failure surfaces in the tension–tension and
compression–compression regions

The first numerical simulations are referred to a running bond
masonry constituted by standard Italian bricks (dimensions
250�120�55mm3) and joints of 10 mm thickness.

Mechanical properties adopted for mortar are summarised in
Table 1, whereas bricks are assumed as infinitely resistant. It is
interesting to note that when the actual thickness of the joints
is considered in the computations, – that is for the first and
fourth models, a limited tensile and compressive strength is
assumed for mortar, automatically defined for plane stress con-
ditions with relations reported in Table 1. When dealing with
interface models (i.e. first and third models), an infinite com-
pression strength is assumed, whereas for tensile strength ft a
cut-off equal to that assumed for thick joint is adopted.

As already pointed out, an explicit homogenised strength
domain in the case of infinitely resistant units and joints
reduced to interfaces has been derived by de Buhan and de
Felice (1997). The reduction of joints to interfaces with a

Mohr–Coulomb failure criterion combined with the infinite
resistance of units makes possible to find, through a kinematic
approach, an explicit solution for the homogenisation problem
in the rigid-plastic case. It can be shown that the homogenised
material so derived is infinitely resistant in the compression–
compression region, while is orthotropic at failure in the
tension–tension field (Figure 7).

The convergence of the polynomial expansion to the actual
solution has been demonstrated in Milani et al. (2006a), where
the reader is referred for further details, and occurs obviously
with a lower bound approximation, as shown in Figure 11,
where a comparison with finite-element method (FEM) sol-
ution is provided in the tension–tension region assuming that
the bed joint direction is parallel to one of the principal load
directions.

As can be noted, both P3 and P4 models well approximate
FEM, whereas for P0 orthotropy at failure is completely lost.
Results for P1 are not reported because, due to the boundary
conditions to be imposed on the REV, they coincide with P0.

In Figure 12, a comparison among failure surfaces obtained
using the four discussed models is presented in the tension–
tension region and for the masonry material of Table 1. In par-
ticular, Figure 12(a) refers to ϑ=45°, Figure 12(b) refers to ϑ=
22·5° and Figure 12(c) refers to ϑ=0°. CST equilibrated
approach (model II) and compatible identification (model III)
provide the same results. Since the first is a lower bound
approach and the latter an upper bound approximation, theo-
rems of classic limit analysis secure that the approximations
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Figure 11. Convergence of the different polynomial expansion 
models for the masonry material of Table 1 and the direction of 
the principal axes parallel to that of material axes (ϑ = 0°)

Frictional angle (Φ) Cohesion (c)

36° 0·1MPa

ft ¼ 2c cos Φð Þ
1þ sin Φð Þ fc ¼ 2c cos Φð Þ

1� sin Φð Þ
Table 1. Mechanical properties adopted in the first set of numeri-
cal simulations



or P4 with model II output). The presence of thick joints is
linked to the evaluation of a smoother failure surface, which
reduces to the multi-plane strength domain in the case of
joints reduced to interfaces, as shown by de Buhan and de
Felice (1997).

Maximum horizontal strength is obtained for ϑ=0°, but
results lower in the case of thick joints (0·28 against 0·33MPa,
with a percentage difference equal to around 15%).

It is worth mentioning that when the joint thickness is reduced
to interface in both models I and IV, a perfect agreement with
compatible identification (or CST equilibrated model) is
experienced.

Another interesting remark deduced from results reported in
Figure 12 is that models I and IV closely bracket the actual
homogenised failure surface in the case of finite thickness of
joints. The maximum percentage difference between P4 and
MoC collapse loads is indeed experienced in pure horizontal
stretching (Figure 12(c)), with a difference not exceeding 7%.
Considering that model I-P4 is a lower bound, whereas model
IV-MoC is an upper bound, the actual failure surface lays
somewhere between the aforementioned predictions, with
expected errors of lower than 5%, a result fully satisfactory
from an engineering standpoint.

It is finally worth mentioning that to obtain the failure surface
sections depicted in Figure 12, an extremely reduced compu-
tational cost is needed on standard PCs, as shown in Table 2,
where processing times are reported, especially in comparison
with classic incremental elasto-plastic FEM. Table 2 demon-
strates the advantage of using ‘direct methods’ in the evalu-
ation of the ultimate behaviour of masonry instead of
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Figure 12. Comparison among the different homogenisation 
models proposed in the tension–tension region for the masonry 
material of Table 1: (a) ϑ = 45°; (b) ϑ = 22·5°; and (c) ϑ=0°

represent the actual homogenised failure surface in case of 
joints reduced to interfaces.

The dependence of the homogenised failure surfaces from joint 
thickness is worth noting, looking into the results reported in 
Figure 12 (compare, for instance, results obtained with MoC

Optimisation time
min:s

Model I: polynomial expansion
Degree 0 00:12
Degree 2 01:28
Degree 3 06:33
Degree 4 09:33

Model II: equilibrated triangular coarse
mesh

01:44

Model III: kinematic model with rigid
blocks and interfaces

01:33

Model IV: MoC 02:19

Table 2. Computational time needed for the estimation of the
failure surface sections in Figure 12 (standard 64 bit PC with Win7
OS, 8 GB RAM, SeDuMi LP package solver)



conventional incremental approaches. In addition, it should be
remembered that all models presented are much more efficient
than a classic discretisation of the unit cell with limit analysis
FEs, due to the extremely reduced number of optimisation
variables involved.

In Figure 13, the REV deformed shape at collapse for MoC is
also represented in the case of ϑ=0° and ψ=0°.

As can be noted (and consistently with all other homogenis-
ation models previously presented), the head joint is subjected
to pure tensile strength, whereas bed joints to pure shear.
Cross-joints, conversely, exhibit a mixed mode failure, which,
however, does not influence much the ultimate homogenised
strength, due to their negligible area, especially for thin joints.

For the same example of Table 1, the comparison done in the
tension–tension region is repeated in the compression–com-
pression region and the results are reported in Figure 14.
Results are normalised against mortar joint fc compression
strength. Again the agreement between P4 and MoC models
appears rather satisfactory, with negligible differences from an
engineering viewpoint.

It is worth noting here that vertical masonry compression
strength coincides with mortar compression resistance. Indeed,
in all models it is assumed that mortar and bricks undergo
plane-stress conditions. As well known, such assumption has
strong limitations, especially for the prediction of the ultimate
compressive strength of masonry pillars. As a matter of fact,
when a plane-stress approach is used, it has been shown by
different authors (see, for instance, Addessi and Sacco, 2014;
Milani et al., 2006a; Sahlaoui et al., 2011; Stefanou et al.,
2014) that the vertical compression strength of masonry is
always equal to mortar joint compression resistance, whereas
the exact formulation of the unit cell problem is neither reduci-
ble to a plane strain nor to a plane stress, but is a truly 3D one
(Sahlaoui et al., 2011; Stefanou et al., 2014).

To capture the real behaviour in the compression–compression
region, a full 3D approach would be therefore required,
namely either by means of an enrichment of the velocity field
along the direction perpendicular to the middle plane when an
upper bound approach is adopted or with the utilisation of full
3D stress fields in the lower bound case. A work in progress by
the author is the extension of MoC to the full 3D case. Such
generalisation requires also the utilisation of conic
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2

–50 0

(a)

(b)

5 10

∑h

Shear failure of bed joint

Mixed failure of cross-joint Tensile failure of head joint

Figure 13. MoC deformed shape for horizontal stretching (single 
cell (a) and repetition of several unit cells (b))



Two different failure surfaces are critically investigated both
for thick and thin joints, as shown in Figure 15.

Figure 15(a) shows the two plane stress multi-surface failure
criteria used for thick joints. Dashed lines in Figure 15(a) rep-
resent sections of the failure surface along the plane Σxx=Σyy).
The first failure criterion is obtained as the convex envelope of
a Mohr–Coulomb failure criterion in plane strain (character-
ised by parameters c and Φ) and a Rankine failure criterion in

θ = 45°
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Figure 14. Comparison between polynomial lower bound 
approximation and MoC in the compression–compression region, 
mechanical properties of Table 1: (a) ϑ = 45°; (b) ϑ = 22·5°; and 
(c) ϑ=0°

programming (Portioli et al., 2014) instead of classic LP to 
evaluate collapse multipliers.

7.2 Failure surfaces assuming complex strength
domains for joints

The last numerical example is devoted to the analysis of a 
masonry wall, again built with standard Italian bricks disposed 
in running bond and joints considered either reduced to inter-
faces or with a thickness equal to 10 mm.
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tension and compression (characterised by parameters ft and
fc). The intersection in the compression region between the
Mohr–Coulomb failure criterion and the Rankine failure cri-
terion is obtained with a linear cap, fully defined by the non-
dimensional parameter β, with the meaning of the symbol
clearly explained in Figure 15(a). The second failure surface is
identical, exception made for a cut of the previous surface
obtained with a Tresca failure surface in plane strain, univo-
cally determined by the parameter cu.

When dealing with joints reduced to interfaces, reference is
made to the multi-linear failure surfaces depicted in Figure 15
(b) and characterised by a pure Mohr–Coulomb failure cri-
terion, with cap in compression (identified by mechanical par-
ameters Φ2 and fc, defining, respectively, the shape of the
compression cap and the uniaxial compressive strength),
tension cut-off (value of the tensile strength equal to ft) and
eventually (second failure surface) superimposed with a Tresca
failure criterion with ultimate cohesion equal to cu.

The aim of the comparison is to show how the choice of the
failure surface may be paramount for an accurate determi-
nation of the homogenised ultimate behaviour, especially in the
presence of tangential stresses.

A comparison with two well-known macroscopic orthotropic
failure criteria, the first proposed by Lourenço (1996) and
Lourenço et al. (1997) and the second by Berto et al. (2002), is
also reported, in order to show that macroscopic orthotropic
failure criteria are not always predictive of the actual ultimate
strength under different loading conditions. A non-negligible
effect on the failure surface is also expected reducing joints to
interfaces, which reflects in a less smooth shape of the resultant

strength domain, as also observed experimentally (Casapulla
and Portioli, 2015; Vasconcelos and Lourenço, 2009).

Mechanical properties adopted for both the homogenisation
and the macroscopic models are summarised in Table 3.

Three sections of the homogenised failure surface are investi-
gated, and correspond to lines 1, 2 and 3 in Figure 16(a). Line
1 is the failure surface section with Σyy=0, line 2 corresponds
to the constraint Σxx=0, whereas for line 3 Σxx=Σyy.

The resulting failure surface sections are depicted in Figure 16
(b) (line 1), Figure 16(c) (line 2) and Figure 16(d) (line 3). The
corresponding failure modes obtained in the presence of thick
joints are depicted in Figure 17 for some meaningful points of
the obtained failure surface, as for instance in horizontal
stretching (point A) or pure shear (point B). As in the previous
case, the behaviour in compression is again driven by the
limited joint strength, an outcome not fully in agreement with
experimental evidences (see point F in Figure 17), for the
reasons discussed in the previous sub-section. However, as
already pointed out, this is an intrinsic limitation of 2D
models that cannot be avoided.

In the case of thin joints, failure surfaces presented are
obtained with models II and III (but very similar results are
obtained using models I and IV when joints are reduced to
interfaces), whereas for thick joints obviously only models I
and IV are adopted. In all cases, in model I a fourth-order
expansion of the micro-stress field is used. The author experi-
enced very little differences on the computed failure surfaces
using the different models. Hence, only two homogenised
curves are reported for the sake of clearness, one for thin and

Thick joints
fc: MPa ft: MPa c: MPa Φ: deg cu: MPa
4·0 0·1 1·2 ft 30 2·5c

Thin joints
fc: MPa ft: MPa c: MPa Φ: deg Φ2: deg cu: MPa
4·0 0·1 1·2 ft 30 45 2·5c

Orthotropic macroscopic model by Lourenço (1996)
fcxx: MPa fcyy: MPa ftxx: MPa ftyy: MPa fc45: MPa cu: MPa
4·5 4·0 0·5 0·2 4·5 0·2

Orthotropic macroscopic model by Berto et al. (2002)
fcxx: MPa fcyy: MPa ftxx: MPa ftyy: MPa tan Φxx: dimensionless tan Φyy: dimensionless cu: MPa
4·5 4·0 0·5 0·2 cu/ftxx cu/ftyy 0·2

fcxx ( fcyy), masonry compressive strength along the x (y)-axis; ftxx ( ftyy), masonry tensile strength along x (y)-axis; cu, pure shear 
strength; Φxx (Φyy), friction angle along the x (y) direction

Table 3. Mechanical properties adopted in the last set of numeri-
cal simulations



It should be therefore pointed out that particular care is
required when macroscopic approaches are utilised, because in
some cases they should provide incorrect evaluations of
masonry strength along some directions of the load applied.

8. Conclusions
A detailed set of comparisons among homogenised running
bond masonry strength domains provided by four different
homogenisation models has been discussed. The first two pro-
cedures are lower bounds, whereas the last two approaches are
upper bounds.
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Figure 16. Homogenised failure surface sections along lines 1, 2, 3: 
(a) assuming for joints the strength domains reported in Figure 15; 
(b) Σyy = 0; (c) Σxx = 0; and (d) Σxx = Σyy

one for thick joints. As can be noted, there are some non-negli-
gible differences among the results obtained with the first and 
second failure surfaces considered in Figure 15, and also the 
effect of the reduction of the joint to an interface modifies 
rather visibly the failure surface, consider for instance 
Figure 16(c) and the first failure surface.

The most relevant outcome of the comparison is, however, the 
inaccuracy of the macroscopic orthotropic models, especially 
along section lines 1 and 3, even in comparison with the hom-
ogenised failure surfaces obtained assuming for joints the 
second strength domain (i.e. with Tresca cut-off).



interest, focusing in particular on the role played by joint
thickness, constituent materials failure surfaces and numerical
efficiency, putting in evidence also the intrinsic limitations of
the single approaches.

The original contribution of the present work is to put
together four simple models coming from different sources, in
single, ready-to-use software. The purpose is practical, and an
open source version of the software will be available soon in a
dedicated platform (as for instance SoftwareX) for free down-
loading at academic and professional levels. In this way, the
comprehensive code allows a reliable and fast estimate of
masonry failure surfaces with different approaches (upper and
lower bounds), as well as a quantitative evaluation of the effect
on the homogenised strength domain of the different hypoth-
eses done on the constitutive behaviour of both mortar and
bricks and on the thickness of the joints (reduction or not to
interfaces).

NumericalPoint

A Line 1

B Line 1, 2, 3

F Line 1

Experimental

∑xx = +1·00λ

∑xy = +1·00λ

∑xx = –1·00λ

Figure 17. Comparison between numerical and experimentally 
observed failure modes for some meaningful points of the 
strength domain of Figure 16

In the first model, the elementary cell is subdivided into a few 
rectangular sub-domains, where the micro-stress field is 
expanded using polynomial expressions. Four polynomial 
expansions are presented (P0, P2, P3 and P4). P3 and P4 
proved good convergence to either the actual solution in the 
case of joints reduced to interfaces or alternative upper bound 
approaches (MoC) and FEM in the case of thin joints. The 
second is again a lower bound, where joints are reduced to 
interfaces and bricks are subdivided into a few CST. The third 
procedure is a compatible identification, – that is an upper 
bound, where joints are reduced to interfaces and bricks are 
assumed infinitely resistant. The last model, MoC, is again a 
kinematic procedure where the elementary cell is subdivided 
into six rectangular sub-cells with pre-assigned polynomial 
fields of periodic velocity. The first and latter models have the 
advantage that allow the study of masonry with thick joints. A 
detailed comparison on results provided by all models has 
been discussed in the paper for a couple of cases of technical



In conclusion, it is stressed how, thanks to the very limited
number of variables involved, the utilisation of the discussed
‘direct’ methods to estimate the ultimate behaviour of masonry
through homogenisation is much more efficient with respect to
both incremental elasto-plastic approaches and direct limit
analysis FEM discretisation of the elementary cell.
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