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1 Introduction

The study of compaction processes occurring in rock lay-ers 
during sedimentation is relevant to study, for instance, the 
distribution of possible over-pressures and of the induced 
variation of porosity and permeability. Together with the 
mechanical processes, compaction and overpres-sure are 
affected by fluid ↔ solid conversion through two basic 
mechanisms. Firstly, fluid production/consumption by 
chemical reactions acts as a source/sink term and may cause 
changes in the fluid pressure and thus in the effective stress. 
Secondly, dissolution/precipitation mechanisms alter the 
solid matrix porosity, and consequently permeability, in the 
areas where the reactions occur.

It is well known that porosity is influenced by the local 
stess field. In particular, the Terzaghi assumption postulates 
the existence of a relation of the type φ = φ(σ  ), where  φ 
is the porosity and σ the effective stress, which in the simpler 
cases is taken to be σ = s − αpf , s being the overburden, or 
more precisely the vertical stress, and pf the pore fluid 
pressure. Here, the Biot-Willis coefficient [2] α is a 
parameter that accounts for grain-to-grain interfa-cial area. 
Its expression is α = 1 − Kd/Ks , where  Kd and Ks are the 
bulk modulus of the drained rock and of the
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solid grains, respectively. In our numerical experiments, for 
the sake of simplicity, we have taken α = 1, which cor-
responds to incompressible solid grains, yet the proposed 
model accounts for any value of α.

Different relations and rheological laws have been pro-
posed for this type of problem, as in [13, 14, 25, 29]; 
however, algebraic laws that relate porosity to effective 
stress directly are still the most used in practice, since they 
are easy to calibrate. In particular, to describe mechanical 
compaction, we make use of Athy’s law φ = φ0e

−βσ  , even 
if the proposed scheme may be readily adapted to other 
algebraic relations φ = φ(σ  ). Extensions to viscous or vis-
coelastic relations are still possible but they require more 
extensive changes in the scheme. We also point out that the 
use of a simple compaction law that only depends on the 
vertical effective stress is a reasonable approximation for 
basins that do not exhibit inherently three-dimensional fea-
tures such as faults, salt-diapirism, extensional behavior. In 
the aforementioned cases, the formation and dynamics of 
basins have been successfully modeled with a stratified fluid 
model, see [17, 19].

We then account for chemical reactions using simpli-fied 
chemical kinetics describing the conversion of either a solid 
matrix into a fluid, like in kerogen-oil conversion (see [22, 
24]), or the precipitation of a mineral solute, such as quartz 
(see [15, 18]). We follow the model proposed in [27] 
assuming vertical compaction and recasting the gov-erning 
equations in a Lagrangian frame. The effect of the fluid-solid 
conversion on porosity is accounted for by a suitable 
modification of the constitutive law for φ. We simu-late the 
sedimentation process by providing a sedimentation rate, yet 
we assume that the rock layer under considera-tion has 
already been buried at the start of the simulation. Therefore 
sedimentation effectively acts as a variation of the 
overburden.

In this work, we present in detail a numerical scheme 
for the solution of the set of differential equations govern-
ing the problem, which comprises chemical reaction, rock 
displacement, and flow in the porous matrix, with perme-
ability depending on the porosity. For the sake of simplicity, 
we have assumed a given temperature field, which may, 
however, vary in space and time, yet the addition of the 
energy equation would not cause major difficulties. We have 
also adopted a rather simple model for the chemical reac-
tions. Again, it is possible to use more complex models 
within the same methodological framework. The aim of 
this work, however, is to investigate the coupling effects 
among flow, deformation and reaction, at the expense of 
some simplifications in the model and in the geometry of 
the test cases. Commercial software (such as VISAGE) are 
indeed available to simulate sediments dynamics, includ-
ing compaction, on complex geometries. However, they 
are designed to model dynamics at a much shorter time

scale, i.e., that of reservoir exploitation, and do not account 
for porosity changing reactions. Conversely, software for 
reactive transport such as TOUGHREACT can account for 
multiphase-multicomponent problems and simulate mineral 
dissolution/precipitation on fixed domains.

We propose a splitting strategy, as it has been done in 
[9], that allows to treat each differential problem with an 
appropriate numerical scheme. In particular, we have used 
mixed finite elements for the Darcy equations and a mass 
preserving monotone scheme for the saturation equation. 
The reason for choosing a splitting strategy is that for more 
realistic computations, one may want to use already avail-
able code with minimal modifications. We have cast the 
procedure in rather general frame so to be able to treat 
the different situations of mineral precipitation and kerogen 
conversion. Stability has been gained by choosing a suitable 
time discretization of the continuity equation. Care has been 
taken to control mass imbalance linked to the splitting. We 
show with numerical experiments that the splitting is stable 
and able to describe the phenomena correctly.

The paper is organized as follows. In Section 2, we 
present the mathematical model and the derivation of the 
various equations. Section 3 describes the proposed numer-
ical discretization in details for the case of mineral pre-
cipitation, while Section 4 deals with the specialization 
to kerogen conversion. Section 5 illustrates three different 
strategies for the discretization of the continuity equa-
tion in both the two cases. Some numerical results are 
shown in Sections 6 and 7, while conclusions are drawn 
in Section 8.

2 A basic model

The objective of this section is to outline a mathematical 
model for compaction in sedimentary rocks that accounts 
for porosity changes due to chemical effects, such as solid-
fluid conversion process. The model that we are going to 
describe is rather general and can be representative of all 
processes that involve conversion to liquid of part of the 
solid matrix (e.g., in case of kerogen degradation in source 
rock) and precipitation of part of the fluid in pores on the 
solid matrix of the rock (e.g., in case of mineral precipitation 
in sandstone rocks).

We consider an open-bounded domain Ω ⊂ IR2 with 
coordinate system (x, z), yet the derivation can be read-ily 
extended to the 3D case. In particular, we consider a two-
dimensional cross section of a layer within a sedimentary 
basin. The rock is assumed to consist of three basic parts: inert 
part of rock that does not undergo any solid-fluid conversion, 
rock subject to dissolution and precipitation, and a void part 
initially filled with water. The inert mineral part and the 
reactive part of the rock together form the



solid sediment matrix. We point out that, due to dissolu-
tion/precipitation events and to mechanical compaction, the
solid matrix evolves in time.

The flow is assumed to obey Darcy’s law. To derive the
model, we introduce some additional hypotheses. The first
is that the compaction process is governed by the same basic
mechanisms that give rise, when only mechanical com-
paction is present, to Athy’s law of mechanical compaction
(see [27] and [28]).

The second hypothesis is that the dissolvable part of
the rock can be considered distributed in the solid matrix.
Indeed, following [27] and [28], we assume that at any point
x inside the domain and at any time t , we can define a field
C = C(x, t) that represents the volume fraction of reactive
rock with respect to the initial state.

We also make the usual assumption that compaction only
acts vertically. The extension to more general situations is
possible but, because of its complexity, is beyond the scope
of this paper.

In the following sections, we will sometimes make use
of some standard notations of functional spaces. We recall
here the basic definitions, the interested reader may find
more precise and complete details in, for instance, [4] or
[23]. Given a domain Ω ⊂ R

d , with d either 1 or 2, we
indicate with Ck(Ω) the space of functions in Ω contin-
uous up to the kth derivative. While, L2(Ω) is the space
of square-integrable functions, i.e., functions v for which∫
Ω

v2 dΩ exists and is finite and L∞(Ω) is the space of
bounded functions inΩ . WithH 1(Ω), we indicate the space
of function in L2(Ω) with all first derivatives in L2(Ω) and
with W 1,∞(Ω) the space of function in L∞(Ω) with first
derivatives inL∞(Ω) (i.e., bounded functions with bounded
first derivatives). In the case of vector functions, like dis-
placements or velocities, the above definitions are applied to
each component. The space H(div,Ω) is the space of vec-
tor functions in L2(Ω) with divergence in L2(Ω), it is the
natural functional space for the Darcy’s velocity field.

2.1 Rock description and coordinates

Because of the solid-fluid conversions and of the com-
paction of the rock due to the vertical stress, the solid matrix
is not fixed and the domain Ω is time dependent. To avoid
this complication and write the equations on a fixed domain,
we follow [27] and introduce the auxiliary domains Ω∗(t)
and Ω̂ , whose coordinates will be indicated in the following
with (x, η) and (x, ξ), respectively. Notice that, since we
assume that compaction leads only to a vertical movement
of the solid matrix, all the domains share the same coor-
dinate x. Fixed the time instant t , Ω∗(t) is obtained from
the actual domain Ω(t) as its completely compacted con-
figuration, while Ω̂ is obtained from Ω∗(t) by removing
the reactive part of the rock. Thus, Ω̂ represents the volume

occupied by inert material and is fixed with time. Indeed,
the ξ coordinate is neither influenced by compaction of the
sediment column due to the overburden nor by the fact that
a part of the solid sediment skeleton can dissolve into the
fluid. For these reasons, we choose it as the Lagrangian
coordinate of our model.

We recall that we are studying the evolution of a single
sedimentary layer, which moreover has already been buried
at the initial time. Thus, the sedimentation of the overlying
layers is only taken into account by a suitable modification
of the boundary conditions and of the overburden, without
the addition of material to the domain of interest.

Let z be the vertical coordinate which has the bottom
layer as the origin and ξ be the coordinate that measures the
height of the non-dissolvable part of the completely com-
pacted rock and has the bottom layer as the origin (see
Fig. 1). Both axes are oriented upwards.

As explained in [27], the map ϕt : Ω̂ → Ω(t),
ϕt (x, ξ) = (x, z(ξ, t)) is given by

ϕt (x, ξ) =
(

x, ztop(x, t) −
∫ ξ∗(x)

ξ

1 − C0(x, ξ ′) + C(x, ξ ′, t)
(1 − C0(x, ξ ′))(1 − φ(x, ξ ′, t))

dξ ′
)

,

(1)

where ξ∗(x) is the height of the layer along the ξ -axis and
is computed knowing the porosity and the concentration
field at the initial configuration. ztop is the height of the
domain along the z-axis and may depend on time. Finally,
C0(x, z) = C(x, z, 0), and φ is the porosity.

In fact, fixed the x-coordinate and the time instant t , in a
small sediment section of thickness dz the thickness of the
fully compacted solid is given by

dη = (1 − φ) dz. (2)

The thickness of the section measured as compacted rock
without any degradable material is

dξ = (1 − C0) dη0, (3)

where C0 is the initial volume fraction of the reactive
material and dη0 is the initial amount of solid sediment.

Since

dη = (1 − C0 + C) dη0, (4) by inserting Eq. 4 in Eq. 3 and 

considering Eq. 2, we obtain

dξ = 1 − C0

1 − C0 + C
dη = (1 − C0)(1 − φ)

1 − C0 + C
dz. (5)

Thus, it follows that

∂z

∂ξ
= 1 − C0 + C

(1 − C0)(1 − φ)
. (6)

Integrating between ξ and ξ∗, we obtain the relationship
between z and ξ , that is

z = ztop −
∫ ξ∗

ξ

1 − C0 + C

(1 − C0)(1 − φ)
dξ ′. (7)



Fig. 1 The three coordinates
systems. On the right, the
physical domain Ω(t). The
domain Ω∗(t) is obtained from
Ω(t) as its completely
compacted configuration, and Ω̂

is obtained from Ω∗(t) by
removing all the reactive part of
the rock

Remark 1 Notice that, under some restrictive hypotheses,
ϕt is actually a change of coordinates. In fact, since both

1−C0+C
(1−C0)(1−φ)

and (1−C0)(1−φ)
1−C0+C

are positive, ϕt is bijective.

Moreover, if C0 ∈ C0(Ω) and φ ∈ C0(Ω) then ϕt ∈
C1(Ω). Finally, the deformation gradient F of the map ϕt is

F := ∇ϕt =
[

1, 0
∂z/∂x, ∂z/∂ξ

]

. (8)

and

J := det(F) = ∂z

∂ξ
= 1 − C0 + C

(1 − C0)(1 − φ)
> 0. (9)

Let us observe that, due to the choice of the reference
configuration Ω̂ , the time derivative of the map from the
reference to the actual configuration coincides with the
velocity of the solid matrix, i.e., ∂ϕt

∂t
= us . We point out

that, due to the hypothesis of vertical compaction, one has
us = usz ez, where ez is the unit vector of the z-axis.

Finally, ∂z
∂x

is given by

∂z

∂x
= ∂ztop

∂x
− 1 − C0(ξ

∗) + C(ξ∗)
(1 − C0(ξ∗))(1 − φ(ξ∗))

∂ξ∗

∂x

−
∫ ξ∗(x)

ξ

∂

∂x

(
1 − C0 + C

(1 − C0)(1 − φ)

)

dξ ′. (10)

Remark 2 If C0 is in L∞(Ω̂), C, φ are in L∞(Ω̂) for each
t , and

∂z

∂x
∈ L∞(Ω̂),

∂ξ∗

∂x
∈ L∞(Ω̂),

∂

∂x

(
1 − C0 + C

(1 − C0)(1 − φ)

)

∈ L∞(0, ξ∗(x)),

∂

∂x

(
(1 − C0)(1 − φ)

1 − C0 + C

)

∈ L∞(0, ztop(x, t)),

then ϕt ∈ W 1,∞(Ω̂) and ϕ−1
t ∈ W 1,∞(Ω(t)) for all t ∈

(0, T ). In this case, it can be shown (see [12] for the proof)
that v̂ = v ◦ ϕt ∈ H 1(Ω̂) if and only if v ∈ H 1(Ω(t)).
Moreover, ||v||H 1(Ω(t)) is equivalent to ||v̂||

H 1(Ω̂)
.

We conclude this section by observing that a generic
partial differential equation in conservation form

∂g

∂t
+ ∇ · (gu) = Q in Ω(t) × (0, T ), (11)

with g = g(x, z, t), can be formulated in the fixed reference
system as

∂(ĝĴ )

∂t
+ ∇̂ · (ĝ(û − ûs)) = Q̂ Ĵ in Ω̂ × (0, T ), (12)

where here and in the following we set, for a generic func-
tion f , f̂ = f ◦ ϕt , for a generic velocity vector v̂ =
Ĵ F̂−1v ◦ ϕt , and we have defined the operator

∇̂ =
(

∂/∂x

∂/∂ξ

)

= F̂∇ = F̂
(

∂/∂x

∂/∂z

)

. (13)

2.2 The governing equations

In the two-dimensional domain Ω(t) and in the assump-
tion of vertical compaction, mass conservation for the solid
implies

∂

∂t
((1 − φ)ρs) + ∂

∂z
((1 − φ)ρsusz) = Qs, (14)

inΩ(t)×(0, T ), whereQs is a source/sink term that models
solid ↔ fluid conversions.

The solid matrix density ρs in Eq. 14 is the mean over
the densities of the two solid components, i.e., the inert one
and the reactive one, weighted with their respective volume
fractions, that is

ρs = (1 − C0)ρr + Cρd

1 − C0 + C
. (15)

From Section 2.1, it follows that Eq. 14 can be formulated
in Ω̂ × (0, T ) as

∂

∂t

(
(1 − φ̂)ρ̂s Ĵ

)
= Q̂s Ĵ . (16)

From Eq. 16, we can obtain an expression for Qs =
Qs(φ, C). Indeed, since

Ĵ = 1 − Ĉ0 + Ĉ

(1 − Ĉ0)(1 − φ̂)
, (17)



Eq. 16 can be rewritten as

∂

∂t

(

ρ̂s

1 − Ĉ0(x, ξ) + Ĉ(x, ξ, t)

(1 − Ĉ0(x, ξ))

)

= Q̂s Ĵ . (18)

Using Eq. 15, we obtain

∂

∂t

(

ρr + Ĉ(x, ξ, t)

1 − Ĉ0(x, ξ)
ρd

)

= Q̂s Ĵ . (19)

Thus, since both ρr and ρd are constant, rearranging the
expression and substituting Ĵ , we finally have

Q̂s = ρd

(1 − φ̂)

1 − Ĉ0 + Ĉ

∂Ĉ

∂t
. (20)

which, brought back to the current domain provides the
following relation

Qs = ρd

1 − φ

1 − C0 + C

DC

Dt
, (21)

where DC
Dt

= ∂Ĉ
∂t

◦ ϕ−1
t . As expected, if DC

Dt
> 0, then

Qs > 0 is a source term for Eq. 14, while, if DC
Dt

< 0,
then Qs < 0 is a sink term. Here, DC

Dt
will be computed

according to the geological processes of our interest.
We formulate the mass conservation of water in pores in

a general way, to account for both the case where the disso-
lution of the rock induces a two-phase flow, as in the case of
kerogen degradation into oil, and that where the dissolved
material is transported by a single phase flow, as in the case
of mineral dissolution/precipitation in flowing water. For
this reason, we introduce the water saturation Sw, with the
understanding that Sw is a variable only in the first case,
while Sw ≡ 1 in the second one.

Mass conservation of water in Ω(t) × (0, T ) can be
expressed as:

∂

∂t
(φρwSw) + ∇ · (φρwSwuw) = Qw, (22)

where ρw = ρw(x, z, t) is the water density, which may
depend on temperature and pressure, and uw = uw(x, z, t)

its velocity. In the following, we will assume that Qw = 0,
i.e., no water is released by reactions or injected.

The relative velocity uw −us of water with respect to the
solid matrix is prescribed in Ω(t) × (0, T ) by Darcy law as

φSw(uw − us) = −kr,wK

μw

(∇pw − ρwg) , (23)

being g = −gez the gravity acceleration. Here, kr,w =
kr,w(Sw) > 0 is the relative permeability of water and is a
given function of the saturation Sw with kr,w(1) = 1, again
to maintain a general framework. Finally, μw denotes the
water viscosity, which may depend on temperature, and K

is a symmetric positive definite permeability tensor, which
depends on the porosity φ according to

K(φ) = K (φ)

[
kxx, kxz

kzx, kzz

]

, (24)

with kxz = kzx and K (φ) being a given function.
According to [27], the porosity of the rock can be

expressed as

φ = (φ0 + (1 − φ0)(C0 − C)) e−β σ , (25)

which is a generalization of Athy’s law [1]. Here, σ =
σ(x, z, t) is the vertical effective stress

σ = s − αpf . (26)

The standard Athy’s law may be derived from a simple
poro-elastic mechanical law [30] and the modification pro-
posed in [27] basically changes the reference porosity (i.e.,
the porosity at σ = 0) to account for the solid-fluid
conversion due to chemical reactions. Several alternative
constitutive relations for porosity are present in the litera-
ture, see for instance [10, 20], which may be modified to
account for degradation/deposition processes. However, we
have preferred to consider in this work a relation of Athy’s
type because, despite its shortcomings, it is still the most
widely used in engineering practice, particularly in indus-
trial environments. By using Eq. 25, we are also neglecting
viscoplastic effects; their inclusion may be the subject of
a further work. Another important simplification we have
made is to consider the vertical stress as the dominant stress
component, and a quasi-static situation. This is true for
buried almost horizontal layers and relatively low sedimen-
tation processes. In this situation, Eq. 26 may be considered
a valid approximation.

The overburden at depth z is computed as

s(x, z, t) =
∫ ztop(x,t)

z

[(1 − φ)ρs + φρf ] g dz′ + stop(x, t),

(27)

where stop is the weight of overlying layers and may be
variable in time, while ρf is the density of the fluids in the
pores. It is convenient to write the equivalent differential
formulation:
∂s

∂z
= −[(1−φ)ρs+φρf ] g with s(x, ztop, t) = stop(t).

To sum up, the equations that we are dealing with are
∂
∂t

(φρwSw) + ∇ · (φρwSwuw) = 0,

φSw(uw − us) = − kr,wK
μw

(∇pw − ρwg) ,

φ = (φ0 + (1 − φ0)(C0 − C)) e−β σ ,
∂s
∂z

= −[(1 − φ)ρs + φρf ] g,

(28)

in Ω(t) × (0, T ), to be completed with a proper set of
boundary and initial conditions and with an advection dif-
fusion reaction equation for the solute concentration, or the
oil saturation, using a suitable reaction rate for C.



As we have anticipated, it is convenient to solve the
problem numerically in the fixed domain Ω̂ introduced in
Section (2.1). In this reference system, since

uw − us = Ĵ−1F̂(ûw − ûs),

∇pw = F̂−T ∇̂p̂w,

the Darcy Eq. 23 becomes

φ̂Ŝw(ûw − ûs) = −Ĵ
k̂r,wF̂−1K(φ̂)

μw

(
F̂−T ∇̂p̂w − ρ̂wĝ

)
.

(29)

where ĝ = −geξ .
Let Ûw = φ̂Ŝw(ûw − ûs). We can write

Ûw = −Ĵ
k̂r,wK̃

μw

(
∇̂p̂w − ρ̂wF̂T ĝ

)
, (30)

where we have set K̃ := F̂−1K(φ̂)F̂−T , which is symmetric
and positive definite because K is symmetric and positive
definite.

Finally, from Eq. 12, it is straightforward to derive

∂(φ̂ρ̂wŜwĴ )

∂t
+ ∇̂ · (ρ̂wÛw) = 0 in Ω̂ × (0, T ), (31)

∂ŝ

∂ξ
= −[(1 − φ̂)ρ̂s + φ̂ρ̂f ] ĝĴ in Ω̂ × (0, T ). (32)

Therefore, system (28) in Ω̂ × (0, T ) reads

∂(φ̂ρ̂wŜwĴ )
∂t

+ ∇̂ · (ρ̂wÛw) = 0

Ûw = −Ĵ
k̂r,wK̃
μw

(
∇̂p̂w − ρ̂wF̂T ĝ

)

φ̂ = (φ0 + (1 − φ0)(Ĉ0 − Ĉ)) e−β σ̂

∂ŝ
∂ξ

= −[(1 − φ̂)ρ̂s + φ̂ρ̂f ] ĝĴ

, (33)

where in the last equation ρs is given by Eq. 15, while ρf

and pf are specified depending on the application.
Once these equations are solved, one can recover Ω(t),

by solving for usz

{
∂
∂t

((1 − φ)ρs) + ∂
∂z

((1 − φ)ρsusz) = Qs in Ω(t) × (0, T )

usz = 0 on ∂Ωb
,

(34)

where we recall that Qs is given by Eq. 21, and integrating
to obtain z,
{

∂z
∂t

= usz in Ω(t) × (0, T )

z = z0 on Ω(0) × {0} . (35)

We have assumed, for the sake of simplicity, that ∂Ωb, i.e.,
the bottom boundary of Ω(t), is fixed. However, we point
out that the possible movement of the bottom of the domain
is a datum and in the real cases it can be given by a study of
the basin history.

2.3 Specialization to the case of mineral precipitation
and dissolution in sandstone rocks

Here, we specialize the model to study the effect of min-
eral, such as quartz, cementation in sandstone rocks on
the porosity and overpressure dynamics. As explained in
[11], cementation can be described as the sequence of
three events, i.e., the dissolution of grains into the fluid in
the pores, the diffusion of the dissolved products, and the
precipitation of the solute on the solid matrix of the rock.

In this case, C represents the volume fraction of precipi-
tated mineral, and γ the dissolved mineral concentration in
terms of moles per unit volume of water.

Let us derive the mass balance equation for the mineral.
If B(t) ⊂ Ω(t) is an arbitrary compact subset in the spa-
tial configuration, r = r(C, γ ) is a source/well term which
represents the dissolution/precipitation of the mineral, and
χ the mass flux through ∂B(t), we have that

∂

∂t

∫

B(t)

γ φ dΩ =
∫

B(t)

rφ dΩ −
∫

∂B(t)

χ · n dA,

and

χ = φ(γu − D∇γ ),

where D > 0 is a diffusion coefficient and u = uw − us .
Note that, given the low velocities typical of the problem of
our interest, we are neglecting dispersion effects. Hence, in
Ω̂ × (0, T ), one has

∂

∂t
(γ̂ φ̂Ĵ ) + ∇̂ ·

(
φ̂γ̂ û − Dφ̂F̂−T ∇̂γ̂

)
= r̂(Ĉ, γ̂ )φ̂Ĵ . (36)

On the other hand, the dissolution/precipitation rate r causes
a decrease/increase of the concentration C of the precipi-
tated mineral, according to

∂Ĉ

∂t
= −Vmr̂(Ĉ, γ̂ )φ̂, (37)

where Vm is the molar volume of the mineral.
Following [3], we model r as a discontinuous function of

γ and C. Let us introduce the following notation:

x+ := max(0, x), x− := (−x)+.

We assume that

r(C, γ ) = λ
(
sign(C)+F(γ )− − F(γ )+

)
, (38)

where

F(γ ) = γ

γeq

− 1, and λ = λ̄e− E
RT > 0, γeq > 0. (39)

Here, γeq denotes an equilibrium concentration. Note that
we have assumed an Arrhenius law for the reaction rate λ,
which depends on a pre-exponential factor λ̄, and on the
absolute temperature according to an activation energy E.



Here, R is the gas constant. We observe that, if γ > γeq ,
then F(γ ) > 0 and

r = −λ

(
γ

γeq

− 1

)

< 0.

In this case, precipitation occurs. On the other hand, if γ <

γeq , then F(γ ) < 0 and r = λ sign(C)+
(
1 − γ

γeq

)
≥ 0.

In this case, if sign(C) > 0 (i.e., if some precipitated is
available in the rock), dissolution occurs. Finally, in case
γ = γeq , F(γ ) = 0 and the chemical equilibrium implies
r = 0.

Equations 36 and 37 are added to system (33) to complete
the model. In this case, ρf = ρw and pf = pw are the
density and pressure of water, and ρd = ρm is the mineral
density.

2.4 Specialization to the case of kerogen degradation
in source rocks

In this section, we specialize the model to analyze how the
porosity in the source rock is influenced by the thermal
degradation of kerogen into oil. We deal with a simplified
chemical kinetic in which a single type of kerogen gener-
ates one type of oil, yet this model can be extended to more
complex kinetics. For a detailed description of the different
types of kerogen and the kinetic cracking of kerogen into
oil, see [26].

The breakdown of kerogen is modeled as a first-order
reaction of Arrhenius-type. Let us denote with C the volu-
metric concentration of kerogen. Then, C evolves as

∂C

∂t
= −k C in Ω̂ × (0, T ), (40)

where the reaction rate k is given by

k = Ae−E/RT .

Here,A is the Arrhenius factor,E is the activation energy,R
is the gas constant, and T is the absolute temperature, which
is here a given datum.

The mass conservation of the oil phase can be expressed
in the fixed domain as

∂(φ̂ρ̂oŜoĴ )

∂t
+ ∇̂ · (ρ̂oÛo) = Q̂oĴ in Ω̂ × (0, T ), (41)

where we have introduced the density ρ̂o of the oil phase,
which may depend on temperature and pressure, the oil
saturation So

So(x, z, t) := 1 − Sw(x, z, t), (42)

and Ûo = φ̂Ŝo(ûo − ûs), where uo = uo(x, z, t) is the oil
phase velocity. Finally, Qo is a source term that accounts for
the generation of oil through the breakdown of kerogen, and
corresponds to a sink term of the solid matrix mass balance
equation. Hence, Qo = −Qs , where Qs is given by Eq. 21.

To a first approximation, one can assume that the consump-
tion of kerogen in rock only generates oil, which justifies
the assumption Qw = 0, stated in Section 2.2.

The relative velocity of the oil phase uo − us obeys the
Darcy law, which written in the reference domain is

Ûo = −Ĵ
k̂r,oK̃

μo

(
∇̂p̂o − ρ̂oF̂

T ĝ
)

in Ω̂ × (0, T ). (43)

In Eq. 43, μo is the viscosity of the oil phase, which may
depend on temperature, and kr,o is its relative permeability
and is a given function of So.

In this framework, it is necessary to add a coupling con-
dition for the pressures of water and oil in pores, which
involves the capillary pressure pc, namely

po − pw = pc, (44)

where pc is a given function of either the oil or the water
saturation.

From now on, for the sake of notation, we omit the ·̂ sign
on variables and differential operators. It is understood that
all equations are in Ω̂ × (0, T ).

Under the simplifying assumption of constant densities
and viscosities of water and oil, and neglecting capillary
pressure, we reformulate Eqs. 33.1, 33.2, 43, 41, 44, and 42
in the so called Global Pressure Formulation, see [7], i.e.,
{

∇ · U = QoJ
ρo

− ∂
∂t

(φJ )

U = −JλK̃ (∇p − G) ,
(45)

{
∂
∂t

(ρoφSoJ ) +∇ · (ρoUo) = QoJ

Uo = λo

λ
U −J λwλo

λ
K̃

(
(ρw − ρo)FT g

)
,

(46)

where we have introduced the total velocityU asU := Uo +
Uw, p = pw = po, the modified vector gravity G as

G := λwρw + λoρo

λ
FT g, (47)

and the total mobility λ as

λ(So) := λw(1 − So) + λo(So), (48)

with

λα(Sα) := kr,α(Sα)

μα

α = o,w. (49)

The Eq. 45 can be interpreted as a volume balance for the 
fluids—oil and water—in the rock.

Notice that the Eq. 45 are coupled with Eq. 46 through 
the functions λw and λo, which depend on saturation.

This formulation is convenient in our case because the 
constraint that the saturations must sum to one has been 
integrated directly into the model, and because it suggests a 
straightforward splitting strategy for the numerical solution.
   The Eqs. 40, 45, and 46, in which  Qo = −Qs , together 
with Eqs. 33.3 and 33.4 form a model for the source rock.



In this case, ρd = ρk is the density of kerogen, which
differs from that of the rock, and the density of the fluid
ρf is

ρf = Swρw + Soρo. (50)

2.4.1 The constitutive equations

To close the model, we also need some constitutive rela-
tions. In particular, we have to prescribe the relative perme-
ability functions kr,w and kr,o, and the permeability function 
K (φ) in Eq. 24. In the numerical tests, we will employ the 
Brooks-Corey relative permeability curves in [6], namely

kr,w(Sw) = S3
w, (51)

kr,o(So) = S2
o (1 − (1 − So)

2), (52)

and, see [9], the following relation between permeability
and porosity

K (φ) =
{

k0φ
3 if φ ≥ 0.1

100 k0φ
5

(1−φ)2
if φ < 0.1

. (53)

2.5 Some remarks on the nature of the equation
for the pressure

Let us assume that the densities and the viscosities of water
and oil are constant. In the case of precipitation and dis-
solution, the volume balance of the fluids is governed by

∂

∂t
(φJ ) + ∇ · Uw = 0 in Ω̂ × (0, T ), (54)

i.e., by Eq. 33.1 with Sw ≡ 1.
In the case of kerogen breakdown, the volume balance of

the fluids in the rock in the fixed domain is given by

∂

∂t
(φJ ) + ∇ · U = QoJ

ρo

in Ω̂ × (0, T ), (55)

which is the Eq. 45.1.
Let us observe that, since φ depends on the overburden

and on pressure, C depends on the temperature, and

φJ = φ

1 − φ

1 + C − C0

1 − C0
,

one has that

∂(φJ )

∂t
= ∂(φJ )

∂pf

∂pf

∂t
+ ∂(φJ )

∂s

∂s

∂t
+ ∂(φJ )

∂T

∂T

∂t
, (56)

where in the single phase case pf = pw, and in the two-
phase model pf is equal to the global pressure, since we are
neglecting pc .

Equations 54 and 55 can be reformulated as

∂(φJ )

∂pw

∂pw

∂t
+ ∇ · Uw = −∂(φJ )

∂s

∂s

∂t
− ∂(φJ )

∂T

∂T

∂t
, (57)

and

∂(φJ )

∂p

∂p

∂t
+∇ ·U = QoJ

ρo

− ∂(φJ )

∂s

∂s

∂t
− ∂(φJ )

∂T

∂T

∂t
, (58)

respectively, where

∂(φJ )

∂pf

= αβφJ

1 − φ
, (59)

∂(φJ )

∂s
= − βφJ

1 − φ
, (60)

∂(φJ )

∂T
=

(
φ

(1 − C0)(1 − φ)
− J

1 − φ0

1 − φ
e−βσ

)
∂C

∂T
. (61)

s

Equations 57 and 58 highlight the parabolic nature of 
the Darcy’s problem whenever the porosity depends on 
pressure.

3 Discretization: the case of mineral precipitation 
and dissolution

The system of equations we have presented is rather com-
plex and non-linear. A possible approach is to solve the 
problem as a single non-linear system and use a global fixed 
point strategy like Newton or quasi-Newton iteration. This 
is bound to be rather costly. Moreover, it does not give 
the advantage of using already available solver for some of 
the differential problems involved, for instance the Darcy 
flow and the transport/saturation equations. With the objec-
tive to have a workable method in view of some future 
more challenging applicative problems or the extension to 
3D, we have devised a splitting strategy for its solution. 
However, a straightforward sequential strategy has proved 
to be unstable, therefore the proposed algorithm contains 
a combination of implicit and explicit parts. A thorough 
mathematical analysis is out of the scope of this work, 
but numerical investigations, some of which are reported 
in this work, have shown that the method has very good 
stability properties. Moreover, we have investigated some 
conservation properties, as we will detail in the following.

We use a constant time step Δt = T/N , T being the final 
instant of the simulation and N the number of time steps. 
Given the solution at time tn, we compute the precipitated 
concentration Cn+1 and the solute in water concentration 
γ n+1. We then compute the solid matrix density ρn+1, and
use some fixed point iterations, to solve the coupled prob-
lem for φn+1 and pn+1. The strategy adopted is summarized 
in Fig. 2.

Namely, for n = 0, . . . , N  − 1, given C0, φ−1 = φ0, σ 0, 
U0

w, p0
w, and γ 0, we compute:

(a) Precipitate concentration

Cn+1 − Cn

Δt
= −Vmr(Cn, γ n)φn;



(b) Solute concentration

φnJ n γ n+1−γ n

Δt
+ ∇ · (

γ n+1Un
w − DφnFn −T ∇γ n+1

)

+γ n+1 φ∗J ∗−φnJn

Δt
= r(Cn, γ n)φnJ n,

(62)
where

φ∗ := 2φn − φn−1, J ∗ := J (φ∗, Cn+1),

and

Fn =
[
1 0
0 J n

]

, J n := J (φn, Cn);

(c) Solid matrix density

ρn+1
s = (1 − C0)ρr + Cn+1ρk

1 − C0 + Cn+1
;

(d) Fixed point iterations for porosity and pressure
For k = 0, . . . , Kmax , given φn+1

0 := φn and
pn+1
0 := pn, solve:

1. Bulk pressure (overburden)

∂sn+1
k+1

∂ξ
= −[(1 − φn+1

k )ρn+1
s + φn+1

k ρw] g J n+1
k ,

where J n+1
k := J (φn+1

k , Cn+1);
2. Effective stress

σn+1
k+1 = sn+1

k+1 − pn+1
k ;

3. Porosity

φn+1
k+1 = (φ0 + (1 − φ0)(C0 − Cn+1))e−βσn+1

k+1 ;
4. Darcy’s problem
⎧
⎨

⎩

∇ · Un+1
w,k+1 = − ∂(φJ )

∂t

∣
∣
∣
tn+1

Un+1
w,k+1 = − Jn+1

k+1
μw

K̃(φn+1
k+1 )

(
∇pn+1

w,k+1 − ρwFn+1,−T
k+1 g

)
,

(63)

where

Fn+1
k+1 =

[
1 0
0 J n+1

k+1

]

;

5. Verify stopping criteria

(e) Final updating

φn+1 = φn+1
k , pn+1 = pn+1

k , Un+1
w = Un+1

w,k+1;
We consider a conforming and regular triangulation of

Ω̂ and proceed with the space discretization of the afore-
mentioned equations. We have used a regular and structured
triangulation because we are considering a simple config-
uration, focusing on one single sedimentary layer without
faults, and synthetic heterogeneities. However, the methods
can be implemented on arbitrary conforming triangulations.

We have chosen a mixed finite element method for
both the Darcy’s problem and the equation for the solute

concentration. This allows us to use the same finite element 
approximation for the water velocity Uw in Eqs. 62 and 63. 
The finite element space chosen for the water velocity is the 
lowest order Raviart Thomas IR T0( Ω̂,  Th) ⊂ H(div, Ω̂), 
while the solute concentration γ and the water pressure p are 
in the space of the piece-wise constant functions IP0( Ω̂,  Th) 
⊂ L2( Ω̂). For more details on these finite ele-ment spaces 
and their properties, the interested reader may consult [5, 8].

We point out that, to avoid non conservative interpo-
lations, since the discretization of the map between the 
physical and the fixed domain is piecewise-linear, both 
deformation gradient and the jacobian are consistently dis-
cretized with piecewise-constant IP0 elements. Moreover, 
the use of mixed formulation for the Darcy’s and the 
advection-diffusion problems allows us to use a locally 
conservative approximation of the velocity.

In both equations, the Dirichlet boundary conditions are 
naturally included in the weak formulation, while the Neu-
mann boundary conditions are imposed with a Nitsche’s 
penalization technique (see [21]). Finally, the equation for 
the bulk pressure s is solved with a SUPG stabilized finite 
element method [16, 23], using P1 elements.

4 Discretization: the case of oil generation

For the case of oil generation from kerogen, we are deal-ing 
with a two-phase flow. Therefore, the algorithm requires 
some modifications. We propose a time discretization based 
on a splitting of the problem. Being T the final instant of the 
simulation, we use a constant time step Δt = T/N . For  all 
n = 0, . . . , N  − 1, given the solutions at the instant n, we 
first compute the concentration of kerogen Cn+1, which 
only depends on the concentration at the previous instant. 
We then compute a prediction So

∗ of the saturation, which

is obtained by solving the saturation Eq. 46 for φJ So, and 
by dividing that solution by a prediction, via linear extrap-
olation of φn and φn−1, of the product φn+1J n+1, that is  
φ∗J ∗. When φn+1 are J n+1 are available, a correction of 
the saturation is performed, exploiting the fact that

φn+1J n+1Sn+1
o = φ∗J ∗S∗

o .

Now, having Cn+1 and S∗
o , we have enough information to

compute the solid matrix density ρn+1
s and a prediction ρ∗

f

of the fluid density. With a fixed point iteration, we then 
solve the strongly coupled problem for φn+1 and pn+1. At  
the end of these iterations, we can correct the saturation and 
the fluid density, as explained above. The strategy adopted 
is summarized in Fig. 3.

Namely, for n = 0, . . . , N  − 1, given C0, φ−1 = φ0, σ 0, 
U0, p0, and So

0, we perform the following steps.



Fig. 2 Splitting strategy to solve the problem with the mineral

Fig. 3 Splitting strategy to solve the problem with kerogen



Fig. 4 Mass conservation error
relative to the initial mass of
water obtained with the
discussed methods. The Newton
parabolic method was tested
with two different values of
T OLmc, i.e., 10−7 and 10−5
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(a) Kerogen concentration

Cn+1 − Cn

Δt
= −k Cn+1;

(b) Prediction of saturation

φ∗J ∗S∗
o − φnJ nSn

o

Δt
ρo = −∇ · (ρoUn

o) + (QoJ )n+1,

where

φ∗ := 2φn − φn−1, J ∗ := J (φ∗, Cn+1), J n := J (φn, Cn);

(c) Prediction of the fluid density

ρ∗
f = S∗

oρo + (1 − S∗
o )ρw;

Fig. 5 Number of fixed point
iterations obtained with the
discussed methods. The Newton
parabolic method was tested
with two different values of
T OLmc, i.e., 10−5 and 10−7
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Table 1 Relative mass conservation errors at the end of the simula-
tion. T OLmc is the required tolerance on the relative mass conserva-
tion error at the end of the simulation

Non parabolic 3.3e-13

Parabolic standard −9.0e-5

Parabolic Newton with T OLmc = 1.e-5 1.1e-6

Parabolic Newton with T OLmc = 1.e-7 −1.0e-8

(d) Solid matrix density

ρn+1
s = (1 − C0)ρr + Cn+1ρk

1 − C0 + Cn+1
;

(e) Fixed point iterations
For k = 0, . . . , Kmax , given φn+1

0 := φn and
pn+1
0 := pn, compute:

1. Bulk pressure

∂sn+1
k+1

∂ξ
= −[(1 − φn+1

k )ρn+1
s + φn+1

k ρ∗
f ] g J n+1

k ,

where J n+1
k := J (φn+1

k , Cn+1);
2. Effective stress

σn+1
k+1 = sn+1

k+1 − pn+1
k ;

3. Porosity

φn+1
k+1 = (φ0 + (1 − φ0)(C0 − Cn+1))e−βσn+1

k+1 ;
4. Darcy’s problem

⎧
⎨

⎩

∇ · Un+1
k+1 = (QoJ )n+1

ρo
− ∂(φJ )

∂t

∣
∣
∣
tn+1

Un+1
k+1 = −J n+1

k+1 λ(S∗
o )̃K(φn+1

k+1 )
(
∇pn+1

k+1 − G
)

;
(64)

5. Test stopping criteria

Table 2 Physical parameters for the simulation

Value Unit Value Unit

β 10−8 Pa−1 φ0 0.5 –

d0 2000 m ∂d
∂t

100 m/My

T0 20 ◦C ∂T
∂z

0.035 ◦C/m
k0 10−6 Darcy g 9.81 m/s2

μw 0.001 Pa s D 1.58 10−8 m2/s

ρw 1000 kg/m3 Vm 0.0226 m3/mol

ρm 2660 kg/m3 ρr 2500 kg/m3

ρ̄ 2500 kg/m3 γeq 0.167 mol/m3

E 60.1 kJ/mol λ̄ 8.37 10−6 mol/(m3 s)

Fig. 6 A sketch of the boundary conditions for the problem of mineral
precipitation and dissolution. Notice that the domain represented in the
sketch is the initial domain Ω(0), while the problem is solved in Ω̂ .
The density ρ̂ represents an average of the overlying material densities

(f) Fixed point updating

φn+1 = φn+1
k+1 , pn+1 = pn+1

k+1 , Un+1 = Un+1
k+1

(g) Correction of the saturation

Sn+1
o = φ∗J ∗

φn+1J n+1
S∗

o

(h) Correction of the fluid density

ρn+1
f = Sn+1

o ρo + (1 − Sn+1
o )ρw;

As in the previous case, we adopt a mixed finite ele-
ment method IR T0 − IP0 for the space discretization of
the global pressure-velocity system, and a SUPG stabilized
finite element method for the equation for the bulk pres-
sure. The saturation equation is solved with the Godunov
method, which guarantees by construction the oil phase
mass conservation, and the time step is chosen such that the
CFL condition holds.

Fig. 7 A sketch of the initial domain Ω(0), and the initial precipitated
mineral concentration



Fig. 8 The mineral concentration in rock at t = 0 My, t = 15 My, t = 30 My, t = 45 My, and t = 60 My

5 Approximation of the fluid mass balance
equation

A relevant issue is the approximation of the term ∂(φJ )
∂t

∣
∣
∣
tn+1

in Eqs. 63 and 64. In fact, the different discretizations of
this term have an impact on the approximation of the mass
conservation for the fluids and on stability.

Indeed, we have verified that an explicit discretization of
∂φJ
∂t

using quantities available at the previous steps leads to

stability problems in the fixed point iterations in both the 
case of mineral precipitation/dissolution and that of kerogen 
breakdown. One possibility is then to solve (63) and (64) in 
their parabolic forms (57) and (58), respectively. This choice 
has proven to be very good for stability, but it does not 
assure mass conservation at the numerical level, unless Eq. 
56 holds also at the discrete level. A technique that assures 
good stability and numerical mass conservation, consists 
of linearizing the equation with respect to pressure. More

Fig. 9 The mineral concentration in solution at t = 0 My, t = 15 My, t = 30 My, t = 45 My, and t = 60 My



Fig. 10 Plot of porosity versus z at t = 0 My, t = 15 My, t = 30 My, t = 45 My, and t = 60 My, taken on the vertical line that halves the domain

precisely, in the case of mineral precipitation and dissolu-
tion at each time step tn+1, we solve the following nonlinear
equation for pn+1

w

∇ · Un+1
w + (φJ )n+1(pn+1

w ) − (φJ )n

Δt
= 0.

By applying Newton linearization, recalling Eq. 59, we 
obtain

αβ
φn+1

k+1Jn+1
k+1

1 − φn+1
k+1

pn+1
w,k+1 − pn+1

w,k

Δt
= −∇·Un+1

w,k+1−
φn+1

k+1Jn+1
k+1 − (φJ )n

Δt
.

Fig. 11 Plot of the overpressure versus z at t = 0 My, t = 15 My, t = 30 My, t = 45 My, and t = 60 My, taken on the vertical line that halves the
domain



Table 3 Physical parameters for the simulation

Value Unit Value Unit

β 10−8 Pa−1 φ0 0.5 -

d0 2000 m ∂d
∂t

50 m/My

T0 20 ◦C ∂T
∂z

0.035 ◦C/m
k0 10−6 Darcy g 9.81 m/s2

μw 0.001 Pa s μo 0.001 Pa s

ρw 1000 kg/m3 ρo 750 kg/m3

ρk 1150 kg/m3 ρr 2500 kg/m3

ρ̄ 2500 kg/m3 A 1012 1/s

E 200 kJ/mol R 8.31 J/(K mol)

With this approach, we can obtain discrete mass conser-
vation at the same time, up to a fixed tolerance depending
on Δt . In fact, the absolute conservation error per time
step is

∣
∣
∣
∣
∣

∫

Ω̂

(
pn+1

w,k+1 − pn+1
w,k

) αβφn+1
k+1J

n+1
k+1

1 − φn+1
k+1

dΩ̂

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫

Ω(tn+1)

(
pn+1

w,k+1 − pn+1
w,k

) αβφn+1
k+1

1 − φn+1
k+1

dΩ

∣
∣
∣
∣
∣

≤

|Ω(0)||pn+1
w,k+1 − pn+1

w,k |αβ
φ0

1 − φ0
.

Hence, using the tolerance tol on the pressure increment
between consecutive fixed point iterations as stopping crite-
rion induces a tolerance T OLmc on the conservation error
at the end of the simulation, i.e., when t = T , relative to the
initial volume V0, such that

tol = T OLmc

V0

αβLxLz

1 − φ0

φ0

Δt

T
.

Fig. 12 A sketch of the boundary conditions for the problem of
kerogen. Notice that the domain represented in the sketch is the ini-
tial domain Ω(0), while the problem is solved in Ω̂ . The density ρ̂

represents an average of the overlying material densities

Having set T OLmc, we can compute the tol  that we should 
use to stop the fixed point iterations, which, fixed the final 
time of the simulation, depends linearly on Δt . Notice that 
we have considered a volume balance, under the assumption 
of constant densities.

The same argument, with the proper modifications due 
to the presence of the oil source term, holds in the case of 
kerogen breakdown.

An example is given in Figs. 4 and 5, where we show 
the mass conservation error relative to the initial mass of 
water, and the number of fixed point iterations performed as 
a function of time, for a simplified problem of pure mechan-
ical compaction. Hence, the three methods discussed can be 
summarized as follows:

– Non parabolic

∇ · Un+1
w,k+1 = −φn+1

k+1J
n+1
k+1 − φnJ n

Δt
, (65)

– Standard parabolic

αβφn+1
k+1

(
1 − φn+1

k+1

)2
pn+1

k+1 − pn

Δt
+∇·Un+1

w,k+1 = βφn+1
k+1

(
1 − φn+1

k+1

)2
sn+1
k+1 − sn

Δt
,

(66)

– Newton parabolic

αβφn+1
k+1(

1−φn+1
k+1

)2
pn+1

k+1−pn

Δt
+ ∇ · Un+1

w,k+1 =

−φn+1
k+1Jn+1

k+1 −φnJn

Δt
+ βφn+1

k+1(
1−φn+1

k+1

)2
pn+1

k −pn

Δt
.

(67)

Note that the right hand side of Eq. 67 is an approximation
of −βφJ

1−φ
∂s
∂t
, according to Eq. 56. Also, Eq. 67 reduces to

Eq. 65 at convergence of the fixed point iteration.
The figures show the results for the non parabolic and

standard parabolic methods and for the Newton-linearized
parabolic method, for two different values of T OLmc. We
observe that the non parabolic method is the one that
best conserves mass, but it is not stable, in the sense
that a large, growing number of iterations is required.
On the other hand, the standard parabolic method is the

Fig. 13 A sketch of the initial domain Ω(0), and the initial kerogen
concentration



Fig. 14 The initial domain
Ω(0) (at the top) and the fixed
domain Ω̂ (at the bottom).
Notice the extra compaction of
Ω̂ in the center, due to the
greater amount of kerogen in
that region than in the
neighborhood (see Fig. 13 for
the initial kerogen concentration
field)

less expensive method in terms of computational effort,
but the mass conservation error diverges during the sim-
ulation. The Newton-linearized parabolic method proves
to be a very good compromise, with the advantage that

the desired tolerance of mass conservation error can be
arbitrarily set. In Table 1, we report the relative mass con-

servation errors at the end of the simulation, for each
method.

Fig. 15 The physical domain Ω(t) at t = 0 My, t = 20 My,
t = 40 My, t = 60 My, and t = 80 My. Notice that most of the kero-
gen breaks down approximately between t = 20 My and t = 30 My.

This is why in the second figure, in which little kerogen breakdown
has happened, one can only observe mechanical compaction and the
domain is still rectangular



Fig. 16 Kerogen concentration at t = 0 My, t = 20 My, t = 40 My, t = 60 My, and t = 80 My. Kerogen vanishes before half simulation

6 Numerical results: the case of mineral
precipitation and dissolution

In this section, we simulate the dynamics of dissolution
and precipitation of a mineral species in a sedimentary
layer. At the beginning of the simulation the domain is
a 200 m × 120 m rectangle, at the depth d0 = 2000 m.
We have used a triangular mesh 50 × 30 and a time
step Δt = 1012 s ≈ 30 ky to simulate a time span
of T = 60 My.

A constant sedimentation velocity ∂d
∂t

= 100 m/My is
imposed. The temperature is a given field that corresponds
to a surface temperature of 20 ◦C and a geothermal gradient
∂T
∂z

equal to 3.5 ◦C per hundred meters. The main physical
parameters are reported in Table 2.

In Fig. 6, the boundary conditions are summarized. 
Concerning pressure, we have set an hydrostatic Dirichlet 
condition at the top of the domain and at the bottom. No-
flux conditions are imposed on the lateral edges, since the 
domain is considered as a part of a longer thin layer of

Fig. 17 Plot of porosity versus z at t = 0 My, t = 20 My, t = 40 My, t = 60 My, and  t = 80 My, taken on the vertical line that halves the domain. 
The dashed line shows porosity when we have no kerogen, while the solid line shows porosity when the initial concentration of kerogen is that of 
Fig. 13



Fig. 18 The oil saturation at t = 0 My, t = 20 My, t = 40 My, t = 60 My, and t = 80 My

rock, lying along the x-direction. Finally, we set a Dirichlet
condition for the bulk pressure at the top, due to the over-
burden, and we assume that the bottom of the domain moves
downwards with a given, and in our case uniform, velocity.

The boundary conditions for both overload and pres-
sure are time-dependent due to the progressive burial of the
domain, during the 60 My of simulation.

The rock is initially filled with water with no mineral
dissolved (γ = 0). The initial condition for pressure is
the hydrostatic pressure and the initial conditions for stress
and porosity are computed with some fixed point iterations
of the stationary problem. The initial distribution of the

precipitated mineral in the rock is sketched in Fig. 7. 
Finally, U0

w = 0 and φ−1 = φ0. Notice that, as pointed out in 
Section 3, we need two initial conditions for porosity.

Since the initial concentration of mineral in water is zero, 
the precipitated mineral in rock starts to dis-solve, as shown 
in Fig. 8. The water flow transports the dissolved mineral 
upwards, where, since we have set γ ≥ γeq as a boundary 
condition, it precipitates again in the rock and reducing 
considerably the porosity, as shown in Figs. 9 and 10. 
Notice, also, that porosity is higher where the precipitate 
concentration was non-zero at the initial time,

Fig. 19 Plot of the overpressure versus z at t = 0 My, t = 20 My, t = 40 My, t = 60 My, and t = 80 My, taken on the vertical line that halves the
domain



since the dissolving mineral leaves some void spaces. In Fig. 
9, we can observe that the dissolved mineral flows out of the 
domain transported by water. In Fig. 11, the overpressure is 
shown, which, after a transitory, gets back in the end of the 
simulation close to the initial, almost negligible, value.

7 Numerical results: the case of kerogen

In this section, we simulate the dynamics of oil generation 
and expulsion in a portion of source rock. At the beginning 
of the simulation the domain is a 200 m × 120 m rectangle, 
at the depth d0 = 2000 m. We have used a triangular mesh 
50 × 30 and a time step Δt = 1012 s ≈ 0.03 My to simulate 
a time span of T = 80 My.

A sedimentation velocity ∂d
∂t

= 50 m/My is imposed. The
temperature, necessary to trigger the chemical reaction of
kerogen degradation, is, as in the previous section, a given
field that corresponds to a surface temperature of 20 ◦C
and a geothermal gradient ∂T

∂z
equal to 3.5 ◦C per hundred

meters. The main physical parameters of the simulation are
reported in Table 3.

In Fig. 12, the boundary conditions are summarized.
Concerning pressure, we have set the same conditions as
in Section 6, except for the bottom of the domain, where
an hydrostatic gradient Neumann condition was set. More-
over, if we assume that the velocity of the oil phase outside
the source rock is much higher than that inside the domain,
coherently with the higher permeabilities expected there,
we can assume that only water is present at the top and
bottom boundaries. Notice that the boundary conditions
for saturation on the side boundary are redundant, since
U · n = 0 there and g · n = 0 in our case. Finally, the
boundary condition for the bulk pressure at the top and
that on the bottom of the domain are the same discussed
in Section 6.

The sedimentation of the layers above the domain dur-
ing the 80 My of simulation leads to a progressive burial of
the domain, which causes the boundary conditions for both
overload and pressure to change.

We point out that having at disposal a full scale study of
the basin would allow us to choose more realistic pressure
boundary conditions at the bottom.

The rock is initially filled with water and the oil satu-
ration is So

0 = 0. The initial condition for pressure is the 
hydrostatic pressure and the initial conditions for stress and 
porosity are computed with some fixed point iterations of 
the stationary problem. The distribution of the kerogen in 
the source rock is sketched in Fig. 13. Finally, U0 = 0. 
Notice that, as pointed out in Section 4, we need two initial 
conditions for porosity, thus we take φ−1 = φ0.

In Fig. 15, we can clearly observe the progressive com-
paction of the physical domain, which is greater in the

regions where the initial kerogen concentration was on aver-
age higher. In Fig. 14, we represent the fixed domain Ω̂ , 
which is computed at the beginning of the simulation. The 
occurrence of compaction can also be observed in Fig. 17, 
as φ decreases significantly from the beginning to the end of 
the simulation in the whole domain.

During the simulation, the burial of the domain caused 
by sedimentation makes the temperature increase until—
after about 20 My—kerogen breakdown occurs. In Fig. 16, 
we can observe the consumption of kerogen, which totally 
vanishes before 40 My.

In Fig. 17, we compare the porosity obtained consid-
ering hydrocarbons generation (shown in the solid line) 
with the porosity obtained with the same data but neglect-
ing kerogen consumption (shown in the dashed line). We 
can observe that in the region where kerogen was initially 
located, the porosity is higher than in the surroundings. 
Also, in the regions where no kerogen was initially present, 
the porosities in the two cases coincide. We can clearly see 
how the breakdown of kerogen causes an extra porosity, 
which will then be subject to compaction until, in the end, 
the differences due to the different kerogen concentrations 
are less noticeable. However, it can be observed in Fig. 14 
that the thickness of the layer in the fixed configuration is 
slightly smaller in the center of the domain, where C0 was 
larger.

At the same time, as kerogen is consumed, oil satura-
tion increases, as shown in Fig. 18, until enough oil is 
present to be able to move in the source rock. In Fig. 19, 
the overpressure is shown which is small and decreases with 
time.

8 Conclusions

We have developed a mathematical model, as well as a 
numerical discretization strategy, that aims at providing 
a general framework for the study of geochemical com-
paction. Indeed, it is formulated to take into account chem-
ical reactions that can reduce the porosity, as in the case 
of the deposition of minerals, or increase the porosity, for 
instance because of the dissolution of solid grains. These 
effects are always coupled with the mechanical compaction 
resulting from the balance between overload and pore pres-
sure. Since the model is formulated for the two-phase flow 
case, and the single phase flow can be obtained as a particu-
lar case, it is also suitable for the simulation of the particular 
diagenetic processes of oil generation due to the conversion 
of solid organic matter. From the numerical point of view, 
we propose an iterative splitting strategy for the solution of 
the coupled problem of fluid flow, mechanical compaction, 
and chemical reactions. Although fully coupled approaches 
are more robust, they result in very large and ill conditioned



schemes. Moreover, in the view of realistic simulations,
one could easily use pre-existing tools for each of the sub-
problems in an iteratively coupled framework. We assessed
the performances of this strategy in terms of convergence
(number of fixed point iterations) and mass conservation.
The results show that the discretization of the mass balance
equation plays a critical role: indeed, a naive discretization
where the time derivative of the porosity acts as a source
terms leads to stability problems, while a discretization that
highlights the parabolic nature of the Darcy problem in a
compressible medium is stable but not mass conservative.
We propose a discretization strategy based on the lineariza-
tion of the parabolic problem where mass conservation can
be fulfilled up to a desired tolerance defined by the user, in a
compromise between accuracy and computing time. Despite
the simplifying assumptions, the proposed test cases give
qualitatively correct results. Future developments of this
work may include more realistic reaction schemes as well as
more realistic geometries with strong heterogeneities, such
as fractures, in the domain.
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