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Abstract: Resonance features of slender mechanical parts of Lorentz force MEMS magnetometers are
affected by the (weakly) coupled thermo-electro-magneto-mechanical multi-physics governing their
dynamics. We recently showed that reduced-order models for such parts can be written in the form of
the Duffing equation, whose nonlinear term stems from the mechanical constraint on the vibrations
and is affected by the driving voltage. As some device performance indices vary proportionally to
the amplitude of oscillations at resonance, an optimization of the operational conditions may lead
to extremely slender, imperfection-sensitive movable structures. In this work, we investigate the
effects of imperfections on the mechanical response of a single-axis magnetometer. At the microscopic
length-scale, imperfections are given in terms of uncertainties in the values of the over-etch depth and
of the Young’s modulus of the vibrating polycrystalline silicon film. Their effects on the nonlinear
structural dynamics are investigated through a Monte Carlo analysis, to show how the output of real
devices can be scattered around the reference response trend.

Keywords: MEMS; Lorentz force magnetometer; sensitivity to imperfections; Monte Carlo analysis;
numerical homogenization

1. Introduction

The rapid development of semiconductor technologies has enabled the mass production of
plenty of micro electrical-mechanical system (MEMS) devices [1–3], among which the magnetometers
considered in this study are relevant for compass applications. To design and predict the performance of
these micro-devices, accurate models are required to account for the interaction among various physical
fields, primarily the thermal, electric, magnetic, and mechanical ones. Numerical and analytical
methods have been recently proposed to understand the underlying working principles, and increase
the capability to match experimental evidences [4–7].

Standard approaches typically assume that the geometrical and physical properties of the device
are known in a deterministic sense. In reality, especially with a view towards the goal of progressively
reducing the device footprint, uncertainties look unavoidable and may become dominant due to a
variety of factors linked to the micro-fabrication process [8]. For polysilicon MEMS, in [9–14] the effects
of the crystalline morphology on the reliability of inertial devices subjected to impacts were studied.
At the scale of the full device, it turned out that marginal effects can be actually reported regarding
the failure mode, if any, as induced by micro-cracking of silicon. Looking instead more closely to the
details of crack initiation and final percolation throughout the structural parts, small deviations may
discriminate between failure and no-failure outcomes in different devices, which may differ only in
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terms of the film morphology in the failing region. Such result was validated against real experimental
data [10].

Focusing on the operational conditions of micro-devices, an on-chip test procedure was proposed
in [15,16]. To avoid accounting for the additional effects of residual stresses possibly induced by
micro-fabrication, the movable structure was purposely designed as statically determinate. By slightly
varying the geometry of the tested polysilicon samples and the actuation/sensing setup, the superposed
effects of the polycrystalline elastic and geometric properties on the structural stiffness and, therefore,
on the device response to actuation were assessed. Data reduction also provided a quantitative
measure of the stochastic variability of Young’s modulus of the polysilicon film, and of the over-etch
depth [17,18].

Along the same line and with the aim to extend the preliminary results reported in [19], we
deal here with the operational conditions of a single-axis (z-axis) Lorentz force MEMS magnetometer.
As anticipated, this type of magnetometer has been developed for low-power electronic compass
applications in handheld devices (see, e.g., [4,20–22]). For this purposes, the MEMS must be able to
sense the Earth’s magnetic field, which amounts at most to about 100 µT. Indeed, sensitivity is not
the only performance index to account for in the design, since power consumption is of paramount
importance for mobile applications. In this regard, a so-called balanced optimization scheme was
proposed in [6,7] to allow also for bandwidth and resolution of a capacitive, single-axis Lorentz force
magnetometer similar to that here considered, see also [23–25].

To model the dynamics of the magnetometer resonant structure, which consists of a slender beam
in a clamped-clamped configuration, the weak interaction among the thermal, electric, magnetic,
and mechanical fields must be accounted for. The electric and magnetic fields interact to provide
the Lorentz force inducing in-plane beam deformations, or vibrations in the case of a time-varying
electric field flowing longitudinally in the beam. The Joule effect leads to a temperature rise in the
beam that, being constrained at both ends, has a tendency to buckle if a critical threshold is attained.
Though this instability has to be avoided, like pull-in under operational conditions, its proximity can
be exploited to enhance the amplitude of oscillations, until a safe limit, and to simultaneously tune the
working frequency of the device. A simplified model of this multi-physics frame has been developed
by assuming a specific deformation mode for the beam, driven by its geometry and constraints.
The differential equation governing the motion of the beam finally results to be of a Duffing type,
where both the linear and nonlinear (cubic) stiffness terms embed the effects of the multi-physics,
showing softening effects linked to the thermal load and to the electrostatic forces due to sensing.
Uncertainties have been embedded by allowing for the scattered values of the Young’s modulus and
over-etch depth (see [15]) in a batch of statistically representative samples. To assess the effects of
those uncertainty sources on the overall performance of the device, a series of Monte Carlo simulations
has been run. Granted that the outcomes of this stochastic analysis cannot be automatically extended
to any geometry, it is shown that over-etch has a greater impact on the solution, since it affects all
the structural characteristics of the vibrating beam. In some cases, it may provide a geometry more
prone to buckling, thus approaching the upper bounds on performance indicators whenever they are
proportional to the compliance of the structure. Overall, if the compliance is maximized along with its
effects on the (capacitive) sensing, the repeatability from part to part can be adversely affected and
calibration becomes necessary to avoid drifts and biases [26,27]. Very recently, the proposal to embed
machine learning capabilities into real-world devices has emerged as a disrupting trend (see, e.g., [28]);
to train the neural network possibly driving a classifier, an approach can rely upon a simple stochastic
model, like the one here proposed. Therefore, handling geometrical and mechanical parameters at the
micro-scale in a statistical fashion looks necessary, as well as to develop a kind of embedded artificial
intelligence for next generation devices.

The remainder of the paper is organized as follows: In Section 2, the multi-physics governing
the problem is discussed in details and, moving from a weak form of energy conservation, the
reduced-order model is obtained. To feed the stochastic analyses with data relevant to the scattering in
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the effective Young’s modulus of the beam, a numerical homogenization procedure is discussed in
Section 3. The results of Monte Carlo simulations, preceded by a sensitivity analysis, are collected in
Section 4. Finally, Section 5 is aimed at highlighting the main achievements of the current work, and
foreseeing future developments to avoid the approximations introduced here to simplify the analysis.

2. A Reduced-Order Model of the Resonating Structure

Different geometries were proposed for the resonating structures of Lorentz force MEMS
magnetometers, each one specifically tailored for one-, two-, or three-axis compass applications
(see, e.g., [4,29]). In this work, we focus on the configuration depicted in Figure 1: the movable parts of
this MEMS are represented by a series of mechanically independent slender beams, connected to the
substrate at their end cross-sections. Each beam carries a couple of plates for sensing purposes; to
prevent as much as possible any global (rigid body-like) tilting mode due to asymmetric imperfections,
such plates are connected to the mid-span cross-section of the beam. The considered device is able to
sense a magnetic field aligned with the out-of-plane direction (z, according to the adopted reference
frame), by exploiting the in-plane motion of the beam and, therefore, of the sensing plates.
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Figure 1. (a) SEM picture of a movable structure of the resonant MEMS magnetometer [19], and (b)
scheme of the structure with the notation adopted.

The analysis to follow refers to a single beam, featuring length L and a rectangular cross-section
of area A = bh, h being the in-plane width and b the out-of-plane thickness. Due to the end constraints,
the beam vibrates in a clamped-clamped configuration.

In accordance with the micro-fabrication process, see e.g., [8], the beam is assumed to be made
of a polycrystalline silicon film with a columnar structure. For the present analysis the length L is
assumed to be large enough, in comparison with a characteristic size of the polycrystalline morphology,
to avoid considering local or higher-order effects on the dynamic properties of the beam. The beam is,
therefore, assumed to be homogeneous, and the elastic properties governing its in-plane vibrations can
be obtained through homogenization over a statistical volume element (SVE) of the polysilicon film;
additional details are provided in Section 3.

As the beam is constrained at both ends, softening induced by thermal effects and driving voltage
modifies the frequency at which the maximum amplitude of the vibrations is sensed. Out of the
operational conditions, by increasing, e.g., the current density flowing in the flexure (see below),
vibrations can be further amplified and buckling might get incepted; if the device is appropriately
designed to enforce a small amplitude of the oscillations, pull-in instability [30] could be instead
easily avoided. The elastic response of the beam is thus modeled accounting for second-order effects,
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see [31–33], so that the lateral deflection does affect the equilibrium state. Due to the beam slenderness,
as measured by the ratio L/h, energy conservation is enforced in weak form through:

L∫
0

δv′′ EIv′′ dx +

L∫
0

δv′ Pv′dx +

L∫
0

δv η
..
v dx−

L∫
0

δv { dx = 0 (1)

where the integrals respectively denote the first-order and second-order terms of the internal energy,
the kinetic energy and the work of external forces. In Equation (1), that must hold for any variation δv
of the beam deflection and of the relevant space and time derivatives, an Euler-Bernoulli kinematics
has been enforced, so that beam cross-sections are always assumed to maintain their planar geometry
and their orthogonality with the deflected longitudinal axis. Terms appearing in the conservation
law are: v(x, t), t being time, is the beam deflection; space derivatives v′ = ∂v/∂x and v′′ = ∂2v/∂x2

represent the rotation and the curvature of the beam axis; time derivative
..
v = ∂2v/∂t2 represents the

lateral acceleration; EI is the flexural rigidity of the beam, E being the effective in-plane polysilicon
Young’s modulus and I = 1

12 bh3 the moment of inertia of the beam cross-section; η = %A is the mass
per unit length, % being the mass density; P is the axial load, positive if tensile, caused by thermal
effects; and { is the magnitude of the lateral load per unit length, due to the external actions.

The energy conservation equation is solved by imposing that the beam deflection can be written as:

v(x, t) =
1
2

(
1− cos

(2πx
L

))
V(t) (2)

thereby assuming in the solution a multiplicative decomposition into space and time functions. The
resulting single degree of freedomV(t) represents the time evolution of the amplitude of oscillations
at the mid-span cross-section. The differential equation governing the time evolution ofV can then be
recast in the form of Duffing equation, as follows:

m
..
V+ d

.
V+ K1V+ K3V

3 = F (3)

where:
m = 3

8ηL + 2η∗L

d =
µLb3

8g3

K1 = 2π4

L3 EI − π2

3LαEA∆T − 2 ε0bL
g3 V2

K3 = π4

8L3 EA− 4 ε0bL
g5 V2

F = L
2 iB

(4)

Terms in Equation (4) respectively represent the effective mass, damping, linear, and cubic stiffness,
and external load (Lorentz force) ones, see also [34]. In these equations: η∗ is the mass per unit length
of the attached sensing plates, which might be different from η if beam and plates are designed to have
different in-plane widths; µ is the effective viscosity coefficient of the surrounding air; g is the gap
between the two surfaces of each parallel-plate capacitor; α is the coefficient of (longitudinal) thermal
expansion; i is the density of the current, flowing longitudinally in the beam; ∆T is the mid-span
temperature raise due to Joule effect; V is the driving voltage; ε0 is the permittivity of vacuum; and B is
the magnitude of the out-of-plane magnetic field to be sensed.

In this formulation, as proposed in [5], the mass term accounts for the contribution of the two
sensing plates too, as they move together with the beam and behave like rigid bodies to interact
with the massive stators at top and bottom sides, see Figure 1. The damping term is given by the
squeeze of the fluid at the sensing electrodes, see [3,35]. As for the stiffness terms K1 and K3, the
aforementioned softening effects are measured by the temperature raise caused by the Joule effect,
and by the electrostatic forces at the parallel plate capacitors. An increase of the current density i or
of the driving voltage V may, thus, increase the amplitude of oscillations, and also the sensitivity to
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imperfections in the response of the device. Instability phenomena, like mechanical buckling or pull-in,
must be avoided under operational conditions: in [5], a trade-off was automatically set in between
increasing the magnetometer performances and decreasing the risk of instabilities, by constraining the
resonance frequency of the movable structure within a standard range for this type of applications.

In the Duffing equation (Equation (3)), the term K3 quantifies the deviation from linearity in the
system dynamics. As it is affected by V2 (see Equation (4)), the relevant dependency on the driving
mechanism needs to be accurately assessed in the solution. We then assume that the forcing term
varies according to F = F cosωt, whereω is the corresponding frequency; the maximum amplitude
Vmax of the oscillations is then provided as the solution of the following equation [32]:(

F
K1

)2

=

(
2
(
1−

ω

ω1

)
Vmax +

3
4

K3

K1
V

3
max

)2

+

(
d

mω1
Vmax

)2

(5)

where ω1 =
√

K1/m is the natural frequency relevant to the linearized beam response.
The analytical solution of Equation (5) forω = ω1 was already discussed in [5]. The main point

to stress here is that such solution obviously depends on K1 and K3 which, in turn, depend on the
flexural and axial rigidities of the beam. Hence, uncertainties in the values of the polysilicon Young’s
modulus E and of the beam width h induce a scattering in the value ofVmax, that has to be properly
quantified at the design stage. For this purpose, in what follows, we provide a model to account for
the aforementioned uncertainties at the polycrystalline level. For what concerns the Young’s modulus
E of the micro-structured silicon film, results of stochastic homogenization are discussed in Section 3.
As the width h of the film depends on the over-etch depth induced by the micro-fabrication process
(see [15–17]) a discussion pertinent to this effect is provided in Section 4.

3. Effective Elastic Properties of the Polysilicon Film

In the formulation provided in Section 2, the elastic properties of the polysilicon film come
explicitly into play through the Young’s modulus E in the longitudinal direction x. Though not
accounted for here, the out-of-plane beam thickness b or, effectively, the ratio between this thickness
and the in-plane beam width h, may lead to plain strain conditions to hold in the micro-structured film;
the bending stiffness should be therefore appropriately modified, to account for the additional effect of
the Poisson’s ratio on the deformation field.

As the stochastic effects of the polycrystalline morphology on the elastic moduli of the film have
to be evaluated, we propose two different strategies to obtain quantitative estimations. A former one is
aimed at bilaterally bounding the asymptotic solution for samples of the film featuring a size growing
to infinity; this is obtained through an analytical homogenization procedure. A latter one is instead
aimed at assessing the morphology-induced scattering in the solution for the finite size beam geometry
under consideration, and is obtained via a Monte Carlo-driven, numerical homogenization procedure.
The two approaches were already adopted in [36] (see also [14]), and they are briefly discussed in what
follows to assure a self-consistent description of the whole method.

In both procedures, we account for the columnar micro-structure of the epitaxially grown
polycrystalline silicon film. To simplify the analysis, we assume that a texture is aligned with the
out-of-plane direction, namely is perpendicular to the substrate: therefore, homogenization is carried
out in the x − y plane only (see Figure 1) and two-dimensional digital representations of the film
morphology are adopted in the analysis. As detailed in several studies (see e.g., [8,9]) this assumption
looks appropriate for the considered micro-fabrication process, leading to a sub-vertical growth of all
the silicon grains.

3.1. Analytical, Deterministic Homogenization

As anticipated, bounds obtained with this approach are valid asymptotically, for a ratio between
the in-plane dimensions of the polysilicon sample and the characteristic grain size (or radius) sg tending
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to infinity. The procedure is therefore intended to provide bilateral bounds on the mean values of the
Young’s modulus of polysilicon, since bounds result to be too tight if the ratio between a characteristic
size of the beam, like its width h, and sg does not take large values.

Bounds on the elastic moduli are based on the Voigt and Reuss approaches, which assume that
either the strain or stress state is uniform throughout the polycrystalline sample [37]. Moving from the
Hill-Mandel macro-homogeneity condition, under the Voigt assumption of a uniform strain field, the
effective stiffness matrix is bounded by:

C =
1
Ω

∫
Ω

tT
ξcltξdΩ (6)

Under the Reuss assumption of a uniform stress field, the following bound on the effective
compliance matrix is instead obtained:

C−1 =
1
Ω

∫
Ω

tT
σc−1

l tσdΩ (7)

In these equations: Ω is (the measure of) the polysilicon sample volume that is, in the present
two-dimensional case, the in-plane area; cl is the in-plane single-crystalline silicon stiffness matrix in a
local reference frame aligned with the axes of elastic symmetry, which reads:

cl =


c1111

l c1122
l 0

c1122
l c1111

l 0
0 0 c1212

l

 (8)

where c1111
l = 165.7 GPa, c1122

l = 63.9 GPa and c1212
l = 79.6 GPa (see, e.g., [9]); tσ and tξ are the

orthogonal transformation matrices, that allow to respectively transform the stress and strain vectors
from the global reference frame of Figure 1 to the local one aligned with the aforementioned axes of
elastic symmetry. According to a standard notation, superscripts T and −1 respectively refer to the
transpose and to the inverse of the relevant matrices.

To compute the bounds, we assume that the in-plane lattice orientation of each grain is a fluctuating
field with a uniform statistical distribution. The integral over Ω in Equations (6) and (7) can, therefore,
be transformed into an integral over such random orientation. The resulting overall behavior of the
polysilicon film turns out to be in-plane isotropic, with bounds on the Young’s modulus E given by:
EV = 151.4 GPa, as furnished by the Voigt method; ER = 147.1 GPa, as furnished by the Reuss method.

The assumption of a uniform distribution for the lattice orientation was already proved to fail in
case of real film geometries, like those here considered, since the number of grains in the film sample is
not large enough [38]. Therefore, the study to follow is aimed at providing a stochastic description of
the scattering in the beam stiffness.

3.2. Numerical, Stochastic Homogenization

In the current work, the length-scale separation principle [39] adopted to define the properties
of a representative volume element of the polycrystalline film does not hold true, due to the small
values of the h/sg ratio. Because of the expected growth of the effects on the results of micro-structural
features of the polycrystalline morphology, an SVE is adopted to feed a Monte Carlo procedure aiming
to estimate the scattering in the Young’s modulus E of the film, see Figure 2. Perturbations on the SVE
geometry are provided in terms of topology of the grain boundary network, and in terms of in-plane
orientation of the symmetry axes of each silicon grain.

Each micro-structured sample is numerically generated using a (regularized) Voronoi tessellation,
see [9,14,36], wherein a target grain size sg is assumed. To bound the elastic response of each SVE,
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either uniform strain of uniform stress boundary conditions (BCs) are adopted. The mentioned BCs
are aimed to define the displacement or the traction field along the lateral boundary of the SVE, and
do not provide any additional constraint on the local stress and strain fields inside. The overall SVE
response is computed by defining the macroscopic stress Σ and strain Ξ vectors as the volume integrals
of the relevant microscopic, fluctuating fields, and by linking them linearly through Σ = CΞ, where C
is the same stiffness matrix considered before and in need of an estimation. To compute the entries
of C, a procedure was proposed in [36] on the basis of a set of finite element simulations, each one
featuring only one component of either Σ or Ξ different from zero, depending on the type of BCs
handled. Procedural details are omitted here, and interested readers can find them in [36].
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The cumulative distribution functions bounding E, as obtained with the two types of BCs and for
h = 2− 3 µm and sg = 0.5 µm, are shown in Figure 3 together with the relevant analytical lognormal
interpolations. The lognormal distribution, whose details in the cases under consideration are reported
in Table 1, has been selected in place of, e.g., a Gaussian or normal one, since it automatically satisfies
the thermodynamic constraint for which E must be positive. Accordingly, it is deterministically
set that unphysical, negative values of the Young’s modulus of the film cannot be sampled from
the distributions obtained. To provide a comparative assessment between the current bounds and
the former deterministic ones given in Section 3.1, the vertical lines in Figure 3 provide such latter
tight ones.
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An interesting feature of the results is that the mean values of the computed distributions are
very close to the average between the Reuss and Voigt bounds. What is instead majorly affected in the
solution is the scattering of the values around the mean, and the dependence of the standard deviation
Es on h/sg (see also [36]).

Table 1. Stochastic homogenization: effect of the SVE size on the mean Em and standard deviation Es

of the scattered in-plane polysilicon Young’s modulus.

SVE Size Uniform Stress BCs Uniform Strain BCs

Em (GPa) Es (GPa) Em (GPa) Es (GPa)

2 × 2 µm2 148.1 5.4 150.0 5.5
3 × 3 µm2 148.4 3.3 149.9 3.3

4. Monte Carlo Analysis: Sensitivity to Imperfections

Stochastic effects on the device sensitivity, which results to be proportional to the amplitudeVmax

of the oscillations of the resonant structure, are now assessed. These effects play a role in defining
confidence intervals for additional performance indices like, e.g., power consumption, bandwidth, and
resolution, see [5–7]. The focus of this study is anyway on micro-scale imperfections, as measured
by the scattering in the beam width h and in the effective Young’s modulus E of the polysilicon film
around the target values.

Micro-structural effects on the value of E have been already investigated in Section 3;
micro-fabrication effects on h are instead handled in terms of an over-etch depth o. By means
of purposely designed on-chip testing devices featuring very slender movable structures, we already
quantified the impact of o on the aforementioned scattering. In fact, o changes the in-plane film width,
whose value turns out to be h− 2o while h represents only a target size; accordingly, the cross-sectional
area A of the beam is affected linearly by o, whereas the moment of inertia I is affected cubically.
The over-etch depth also has primary indirect effects onVmax: the gap at the capacitors, if the depth o
is assumed to be isotropically distributed within the wafer plane, is given by g + 2o, where g again
represents only a target value. The temperature raise ∆T at mid-span, given by:

∆T =
ψi2L2

8KHA2 (9)



Actuators 2019, 8, 36 9 of 18

where, besides the variables already introduced in Section 2, ψ and KH respectively represent the
polysilicon resistivity and thermal conductivity, is affected as well due to its dependence on the
cross-sectional area A.

Before moving to the results of the Monte Carlo simulation, a sensitivity analysis is provided to
assess the dependence of the dynamic response of the beam on E and o. In this analysis, the values of
all the parameters have been set as gathered in Table 2, see also [5]. The value of the magnetic field
intensity, with the aim discussed in [29] of developing devices for compass applications, has been
assumed to be B = 50 µT.

Table 2. Values of the geometrical, physical, actuation, and sensing parameters adopted in the analysis.

Property Value

beam length L (µm) 575
beam width h (µm) 2− 3
beam thickness b (µm) 22
gap g (µm) 2
mass density % (kg/m3), [40] 2330
thermal expansion coefficient α (K−1), [40] 2.5 × 10−6

thermal conductivity KH (W/mK), [41] 25
resistivity ψ (Ωm), [41] 10−5

permittivity ε0 (F/m) 8.85 × 10−12

air viscosity µ (Ns/m2), [35] 5 × 10−8

actuation current i (mA) 1
bias voltage V (V) 2
magnetic field intensity B (µT), [4] 50

The impact of E and o on the response of the movable structure is shown in Figure 4, in terms of
Vmax for both the target values of the beam thickness considered in the stochastic homogenization
procedure of Section 3. In the plots, results are reported in a dimensionless form, to focus more on
the trends at varying parameter values, rather than on the amplitude itself; for both the considered
geometries, the amplitude of oscillations is therefore divided by a reference value V∗max linked to
E∗ = (ER + EV)/2 =149.25 GPa and o = 0. In the considered cases, this reference amplitude amounts
to: V∗max(h = 2 µm) =0.028 µm; V∗max(h = 3 µm) =0.016 µm. The effect of the increased beam
stiffness for h = 3 µm is clear in these values; keeping aside such difference between the reference
values, the dimensionless plots of Figure 4 allow to catch the trends in the system response. E affects
the linear stiffness K1 and, therefore, the natural frequency f1 = ω1/2π at whichVmax is computed;
the solution in terms of the oscillations amplitude accordingly turns out to be a weakly nonlinear
function of the beam elastic properties, as shown in Figure 4a. The impact of E on the solution is rather
small; in order to report a variation still below 10% around the reference one, the range of values of the
Young’s modulus has been extended to include all those possible for an ideal single-crystalline silicon
sample, that is 130 GPa ≤ E ≤ 169 GPa [40]. To better assess the smaller variability for a polycrystalline
aggregate, independently of the target value h of the film width, the analytical bounds ER and EV are
also displayed with the vertical blue dotted lines. A much larger effect is due to the depth o of the
over-etch: Figure 4b shows that a variation of up to about 50% aroundV∗max can be attained in the
range –0.15 µm ≤ o ≤ 0.15 µm, as selected for the considered micro-fabrication process. Terms m, d, K1

and K3 are all affected by o, and the solution thus shows the nonlinear dependence depicted in the
graph, where the vertical blue dotted line is reported just to identify the condition of null o leading to
the reference valueV∗max. In the adopted nondimensional format, the solution relevant to h = 2 µm,
though characterized by a smaller amplification for positive o values, shows a remarkable nonlinearity
induced by the Joule effect. This is reported also in Figure 5, where the mid-span temperature raise
∆T is plotted against the over-etch depth; once again, results are provided in a dimensionless form to
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better assess how close the actuation parameters i and V in Table 2 are to those leading to buckling.
For this configuration, the critical value ∆Tcr of the temperature raise is given by:

∆Tcr =
6π2I
αAL2 (10)

and, due to its dependence on I and A, it is affected by o as well. A reduction of the film width, given by
positive values of o, leads to an increase of ∆T and a simultaneous decrease of ∆Tcr, overall causing the
nonlinear variation of ∆T/∆Tcr shown in Figure 5 for both the target beam widths. The dependence is
obviously more pronounced for h = 2 µm, so that an increase of the excitation current i might induce
buckling by exceeding the threshold ∆T/∆Tcr = 1, especially in the stochastic environment to be
considered next.

Additional results of the parametric analysis are reported in Figure 6, in terms of the variation of
the fundamental resonance frequency f1 of the beam due to E and o. Results are obtained by dividing
the frequency f1 by the reference one f ∗1 linked to E∗ and o = 0, which amounts to: f ∗1(h = 2 µm) =

15.5 kHz; f ∗1(h = 3 µm) =28.9 kHz. Alike the results of Figure 4, the solution is slightly affected by E
and varies in a highly nonlinear manner due to o for h = 2 µm. In this case, the reduction of f1 for
values approaching o = 0.15 µm is another indicator of the frequency tuning provided by system
nonlinearities, with a larger reduction being an indicator of the proximity to buckling instability. This
condition has been purposely selected, to show next how all the nonlinear effects have a role in setting
the scattering ofVmax in a stochastic environment.
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Results of the Monte Carlo analysis are now discussed. As far as E is concerned, for each value of
h the lognormal distribution best fitting the results of the numerical homogenization of Section 3 has
been adopted; we recall that, depending on the type of BCs, relevant values of mean and standard
deviation are reported in Table 1. As for the over-etch, in accordance with former studies [15,16] its
distribution has been assumed to be Gaussian, centered around the reference condition o = 0; the



Actuators 2019, 8, 36 12 of 18

corresponding standard deviation has been set to os = 0.05 µm, so that the range −0.15 µm ≤ o ≤
0.15 µm inspected in the previous parametric analysis represents the 99.7% confidence interval.

The output of the stochastic analysis is shown in Figures 7 and 8 for h = 2 µm and h = 3 µm,
respectively, in terms of the nondimensional values ofVmax. In these graphs, each dot represents a
solution of the Monte Carlo simulation handling 10,000 samples. In the charts, the horizontal black
dashed lines stand for the limits of the aforementioned confidence interval; the outliers falling outside
such interval are clearly reported in the graphs versus E, while they are partially dropped in the graphs
versus o to avoid widening too much the displayed interval beyond the previously discussed limits.
The vertical blue dotted lines still represent the size-independent bounds ER and EV on the polysilicon
Young’s modulus, and the reference no-over-etch case. The orange lines are, as in Figure 4, the trends
provided by a varying E at o = 0, and by a varying o at E = E∗. They are depicted to catch the relative
importance of E and o on the scattering in the solution: while all the sampled outcome values lie close
to the trend given by o alone, they are much spread around the trend induced by E. This is a clear
qualitative measure of the higher importance of the role played by o, as compared to that of E.

To focus more on the quantitative analysis of the results, Figure 9 provides the cumulative
distribution functions ofVmax for the two film widths considered. The relevant values of mean and
standard deviation of Vmax, as affected by film width and type of BCs, are all collected in Table 3.
As shown also by the graphs, the effect of the type of BCs is marginal: the curves relevant to uniform
stress and uniform strain BCs can be hardly distinguished at the reported global scale. Once more, this
is a proof of the much smaller impact of E on the solution and, therefore, on the device performance, in
comparison to that of o.
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Table 3. Monte Carlo simulation: effect of the target in-plane film width h and of the type of BCs on the
values of meanVmax,m and standard deviationVmax,s of the scattered amplitude of oscillations.

Uniform Stress BCs Uniform Strain BCs

h (µm) Vmax,m (µm) Vmax,s (µm) Vmax,m (µm) Vmax,s (µm)

2 0.028 0.004 0.028 0.004
3 0.017 0.003 0.016 0.003

To quantify next the sensitivity of the magnetometer, we refer to the differential sensing scheme
provided by the two parallel plate capacitors depicted in Figure 1, see [4,7]. The magnitude ∆C of the
capacitance change due to the deformation of the beam, or flexure is given by:

∆C =
2ε0Lb

g2 ∆g (11)

where ∆g represents variation of the gap at the capacitors, or the amplitude of the lateral oscillations of
the beam. By driving the device at frequency f1, at whichVmax represents the said variation of the
gap, and by normalizing the results with respect to the intensity of the external magnetic field to sense,
the following measure of the mechanical sensitivity is arrived at:

φs =
∆C( f1)

B
=

2ε0Lb
g2
Vmax

B
(12)

In accordance with the model discussed in Section 2, in Equation (12) it has been assumed that
the gap at capacitors is homogeneously varied all over their surfaces. Hence, the plates attached to
the beam get displaced as rigid bodies and, due to the geometrical symmetry, tilting of the plates is
disregarded. Moreover, even though Figure 1 shows that the in-plane length of the stators is smaller
than the length L of the beam, the two measures have been assumed the same; results can be anyway
generalized since, according to Equation (12), φs is proportional to L.

For the two target values of the beam width h, reference values of φs turn out to be:
φ∗s(h = 2 µm) =31.35 pF/T; φ∗s(h = 3 µm) =18.47 pF/T. The scattering in the sensitivity provided
by the Monte Carlo analysis is shown in Figure 10, in terms of the cumulative distribution functions of
φs. In these graphs, the vertical blue dotted lines represent the above mentioned h-dependent reference
values of the sensitivity. Statistics are also collected in Table 4, in terms of the values of mean and
standard deviation of φs, depending on film width and type of BCs. The results testify that, due to the
nonlinearities in the definition of the sensitivity and in the system response to the magnetic field, and
to the scattering in the values ofVmax and g, the cumulative distribution functions of the output result
to be distorted in comparison with those relevant to the input parameters. Due to the compliance of the
beam in the h = 2 µm case, the curves relevant to the two types of BCs are not superposed, and can be
distinguished at the scale of graph. At any rate, the plot clearly shows that, also for this performance
index, the variation in the statistics linked to the BCs plays a marginal role, being largely superseded
by the scattering induced by the two main parameters E and o handled in the Monte Carlo analysis.

Table 4. Monte Carlo simulation: effect of the target in-plane film width h and of the type of BCs on the
values of mean φs,m and standard deviation φs,s of the scattered device sensitivity.

Uniform Stress BCs Uniform Strain BCs

h (µm) φs,m (pF/T) φs,s (pF/T) φs,m (pF/T) φs,s (pF/T)

2 30.89 1.90 30.67 1.93
3 18.36 1.38 18.28 1.38
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5. Conclusions

In this work, we have discussed a single degree of freedom reduced-order model for the dynamics
of the resonant structure of a single-axis Lorentz force MEMS magnetometer. By accounting for
the (weakly) coupled thermo-electro-magneto-mechanical multi-physics governing the vibrations of
the slender clamped-clamped resonant beam, its motion turned out to be described by the Duffing
equation, where nonlinearities are enhanced by the end constraints on the motion itself.

Since the Joule effect, caused by the current flowing along the longitudinal axis of the beam,
induces a temperature rise that may get close to values leading to buckling instability (while pull-in is
avoided due to the small amplitude of the vibrations of the flexure), the characteristics of the structural
vibrations turn out to be highly affected by micromechanical imperfection-like fluctuations of stiffness
and geometry of the moving polysilicon film.

A statistical analysis has been developed, in order to assess the sensitivity of the sensor response
to uncertainties in the values of the over-etch depth and of the morphology-driven overall Young’s
modulus of the polycrystalline silicon. A Monte Carlo investigation has been carried out, wherein
the over-etch depth has been sampled out of a micro-fabrication tailored normal distribution, and the
Young’s modulus has been sampled out of a size-dependent lognormal distribution obtained by best
fitting the outcomes of a stochastic homogenization on samples (or statistical volume elements) of the
polycrystalline film.

A sensitivity analysis has shown that the amplitude of oscillations of the resonant beam of this
Lorentz force MEMS magnetometer is marginally affected by the elasticity of polysilicon, while it
strongly depends on the over-etch depth. Similar results have been arrived at with the Monte Carlo
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simulations, which have highlighted that the scattering in the beam response and in the mechanical
sensitivity of the device basically follow the trend induced by the over-etch and, therefore, by its
geometry rather than by its elastic properties.

In the present analysis some simplifying assumptions have been introduced, in order to obtain
the handled single degree of freedom reduced-order model. First, as motivated in the end by the
far different effects of elastic and geometrical features on the vibrations amplitude, the statistical
distributions of Young’s modulus and over-etch depth have been assumed independent. This is clearly
an approximation, as it has been remarked here above that the lognormal function describing the
statistics of the polysilicon Young’s modulus is size-dependent and, therefore, etch-dependent. Second,
it has been assumed that the polysilicon Young’s modulus and the over-etch depth do not vary along
the beam axis, hence they are homogeneous in space. This is a further approximation since, in reality,
the morphology of the film stochastically varies from point to point, and the over-etch depth is not
uniform, even inside a single die. Third, the purposely developed reduced-order model has been based
on one deformation mode for the structure, so that internal resonances and additional higher-order
effects turned out to be all disregarded. Fourth, the values of the silicon parameters handled in the
analysis have been assumed constant, though they can depend on the concentration of dopants like
phosphorous and boron. All these effects are going to be taken into account in future developments of
the present work.
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