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1. Introduction

Face-based personal identification
a wide variety of applications; rec
s a crucial role in 
dvances in face-
ers, such as [1,2]. 
ossibility to work 

Moreover, all the recognition approaches are based on bio-
metric data and the effect of the uncertainty of these data 
on the recognition judgment is another open research field. 
In this work the knowledge of the uncertainty of the 3D 
facial features is managed to improve the recognition 
performances.
bject is 

social networks [3], the possibility to imple-ment the recognized by comparing some quantities, extracted from 

an image of an unknown subject to be classified, with the 
recognition on mobile devices [4], the application of 
recognition techniques in the cases of variable illumina-
tion conditions [5,6], the application in the cases of non-
collaborative person [7,8], in the case of spoofing [9] and in 
the case of partially occluded face images [10].
corresponding ones extracted from a preexisting database 
[11–18] and [19]. Afterwards, a maximum likelihood 
approach is generally adopted to classify and recognize the 
unknown subject. However, the quantities measured for 
the classification are affected by uncertainty, thus 
generating a risk in accepting the decision. This risk could 
be quantified and reduced by suitably taking into account 
the measurement uncertainty in the comparison stage [20–
22], or using fuzzy logic [23–26].
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Fig. 1. The proposed classification scheme.
In previous papers [27–29] the authors have proposed a 
novel approach to classification and recognition problems 
which takes into account the measurement uncertainty 
affecting input data in order to improve the overall reliabil-
ity of such kind of processes. The proposed method is based 
on a probabilistic approach for the evaluation of the 
confidence level of system outputs and the suitable use of 
this information for a performance improvement in terms 
of correct, wrong and abstention rate. In particu-lar, the 
output of a recognition process consists not only in the 
class which the subject belongs to, but in a list of pos-sible 
classes, each one characterized by a confidence level (CL), 
obtained considering also the actual measurement 
uncertainty evaluated on the processed representation. 
Then, the knowledge of such CLs can be exploited to weight 
the final decision also on the basis of the actual context in 
which the images are acquired. As an example, a 
circumstance in which several classes present similar 
values of CL should alert the user that the results are quite 
questionable while a situation in which a class presents a 
CL significantly higher than the other ones, should assure 
the user that such class can be really associated to the input 
subject.

As a case study, it has been applied to a 2D face classi-
fication algorithm based on Linear Discriminant Analysis. 
The results clearly showed the advantages of the procedure 
in terms of relevance and augmented information con-
tributing to the decision, as well as of reduced false deci-
sion rates. That leads to what can be considered the 
ultimate point in favor of the proposed method from a 
user’s perspective, which is the improved awareness in 
making a recognition decision.

In this paper, the proposed methodology is extended to 
manage the uncertainty in the face recognition based on 3D 
features. The 3D localization of the significant points of the 
face (generally also called repere-points or land-marks) 
[30] requires a prior image processing to extract the 
features in the 2D images [31–33]. In this work the 3D 
features are obtained triangulating the 2D landmarks 
detected on the two facial images by processing a pair of 
stereoscopic images through an Active Appearance 
Models (AAM) algorithm. The AAM is an algorithm devel-
oped by Cootes et al. [30] for matching a statistical model 
of object shape and appearance to a new image; it is used 
in this work to automatically detect a set of given feature 
points on the images of faces. The statistical models are 
built during a training phase by means of a set of images 
and the corresponding coordinates of the desired 
landmarks in each image. An introduction to AAM, as well 
as details on its application in this work, is provided 
in Section 3.1.

Recognition is performed by evaluating the weighted 
measurement discrepancies (hereinafter called Score) 
between 3D geometric masks obtained from stereoscopic 
images and the 3D masks included in a given database.

The application of the previously proposed approach to 
the classification using reduced features reconstructed in 
the 3D space gives rise to additional problems to be dealt 
with, mainly concerning: the uncertainty source (e.g. the 
uncertainty on the stereo camera position, the uncertainty 
of the calibration procedure), the propagation of the
uncertainty on the 3D extracted features (e.g. influence of
the training phase, the composition of the uncertainty on
both images), and on the Scores used in the comparison
phase.

Moreover, this approach could be useful to determine
the optimum values of some system parameters (such as
the camera position, the weight of each feature in the score
evaluation). The selection of such optimum values could
help for minimizing their uncertainty contribution.

In the following, after a brief description of the image
processing system used for the 3D features extraction,
the classification procedure is concisely recalled and the
application of the classification methodology to the
exploited face recognition algorithm is shown, also
highlighting the performance improvement with respect
to a basic approach.
2. The proposed classification cystem

The flow chart of the proposed classification scheme is 
sketched in Fig. 1.

– At first, the two 2D images of the unknown subject are
processed by the biometric algorithm (AAM and trian-
gulation) in order to estimate the 3D features that
describe it. Then, the Score of each subject of the data-
base is evaluated.

– The two images are processed further by the uncer-
tainty estimation algorithm that determines the uncer-
tainty on the obtainable scores.

– Finally, starting from all the evaluated scores and the
estimated uncertainty, the decision procedure provides
a classification list where all the subjects in which the
unknown can be recognized are reported together with
their Confidence Level, CL.



The architecture of the stereoscopic system is com-
posed of two AVT Pike F-145B (Sony 2/300 1388 � 1038 
pixel CCD progressive scan sensor) cameras, vertically 
aligned and placed in front of the person’s face and an 
angle of 45� between the cameras (see Fig. 2). The image 
acquisition system was equipped also with a third camera 
(Cam 0, visible in Fig. 2) that allows to acquire frontal 
images of the face, however in this work only the images 
acquired by cam 1 and cam 2 are used.

The cameras are equipped with 25 mm focal length 
lenses and connected to a computer via Firewire IEEE1394 
connection. The configured system allows having a field of 
view of approximately 300 � 400 mm, large enough to 
contain the subject’s face placed 1000 mm away from the 
system.

3. The biometric algorithm

3.1. The 3D features extraction

The facial images obtained by means of a couple of 
stereoscopic cameras are analyzed with the AAM-API soft-
ware to automatically detect the 2D coordinates of a set of 
landmarks. A 3D mask is obtained triangulating the two 2D 
masks (see Fig. 3). The 3D mask of a person to be identified 
is finally compared with each of the 3D masks included in a 
database and a Score is computed for each comparison, as 
detailed below.

The Active Appearance Model (AAM) technique used to 
automatically detect the facial features in the images, is an 
algorithm for feature extraction, developed by Cootes et al.
[30]. The AAM has been used in literature to extract 2D 
biometric features and several studies have implemented 
this algorithm in 2D face recognition [33–35].

The operation of Shape and Appearance models can be 
split in two phases: the first one allows to create a mor-
phable model, thanks to the analysis of training images, i.e. 
a sample of images where a set of facial features have been 
previously manually annotated. In the second phase, the 
software can automatically detect the position of the same 
set of facial features in face images that do not belong to 
the training set.
Fig. 2. The image acquisition system.
The manual annotation process of an image consists in 
tracing different landmarks that outline the most impor-
tant facial traits on various images. In particular, 58 land-
marks demarcating seven areas of the face have been 
used in this work: jaw, mouth, nose, eyes, and eyebrows, 
as shown in Fig. 3, where an example of 3D mask is also 
shown [29]. The choice of the 58 points is made according 
to the processing method carried out in previous studies 
[35].

Although the detailed description of the AAM algorithm 
is out of the scope of the present work, an outline of this 
algorithm is briefly provided here, while more detailed 
information can be found in [30] and [33].

As previously said, the AAM algorithm is based on the 
combined use of two different statistical models: the 
Shape Model and the Appearance Model.

As for the 2D Shape Model: the shape is defined as a 2D 
point set describing the shape of a target body. During the 
shape model creation, shapes traced on images of bodies 
belonging to the same family are submitted to the 
Procrustes Analysis in order to align these shapes to a 
common reference system and to make the application of 
the Principal Component Analysis (PCA) possible.

The PCA generates the shape variation basis /, defined
as:

/ ¼ ð/1j/2 . . . j/tÞ ð1Þ

that can represent any x shape of analyzed bodies starting
from a mean shape �x; vector b is a real number set that
models deformable shape parameters:

x ¼ �xþ /b ð2Þ

As for the Appearance Model, it is defined as the texture
of a portion of the target. The Appearance Model arranges
all pixel intensity variations of the images on the mean
shape. During the creation of this model, all the training
images are transformed into images of the same shape
and dimensions and the normalization of the texture is
performed to avoid lighting or luminosity changes in
pictures. Thereafter, appearance model is elaborated by
performing PCA on the training images. Similarly as the
shape model, the appearance model consists of the grey
level vector of the mean appearance �g, the variation basis
/g and a group of grey level parameters bg:

g ¼ �gþ /gbg ð3Þ

The cameras have been calibrated using the Zhang’s 
method [36]. The 3D coordinates of each facial feature 
have been estimated by means of optical triangulation 
relying on the facial features detected on the two 
stereoscopic images using the previously described AAM 
technique.

3.2. The database

A database was created with stereoscopic images of 117 
volunteers.

The control system allowed to automatically acquire 
sequences of images with a user-defined interval, set in 
this case to 5 s, with the aim of obtaining multiple images 
of the same person in the same nominal position but



Fig. 3. (a) The schematic of biometric algorithm and (b) stereoscopic images with the detected features and the obtained 3D mask.
allowing small changes of expression that naturally hap-
pen. In particular, the database contains 5 stereoscopic
image pairs for each volunteer. The first repetition was
used to train the AAM model, and the other four to verify
the repeatability.
Table 1
Average weights for each region of the face.

Area Weight

Jaw 0.23
Mouth 0.51
Nose 1.10
Eyes 1.87
Eyebrow 0.96
3.3. Score evaluation

The recognition judgment is based on a Score that basi-
cally represents the sum of squared discrepancy between
the 3D coordinates of the mask to be recognized and the
corresponding coordinates of each mask in the database.
Prior to that evaluation of point-to-point distances, a roto-
translation is computed in order for the coordinate frame
of one mask to be moved onto the coordinate frame of
the other mask with a rigid motion. The rototranslation
allows to compensate for differences in position and ori-
entation of the subject with respect to the stereoscopic
system in acquisitions, so that the Score obtained after
rototranslation does not depend on the position and ori-
entation of the face but depends on the mask shape only.
Since the reliability in the feature localization is not con-
stant for all the regions of the face, different weights are
assigned to the various points according to their estima-
tion repeatability.

Given a 3D mask to be recognized and the set of weights
Wk (k = 1, . . ., n, where n is the total number of points in the
mask), the score Si for each ith mask of the database is
computed as:

Si ¼
Pn

k¼1ðWk � ðVk;i � Vk;refÞ2Þ
n

ð4Þ

where: Vk;i are the coordinates of the kth point for the i-th
individual, Wk is the weight of the kth point of the mask.

In order to estimate weights for each one of the 58 land-
marks, the standard deviation between repeated measure-
ments of the face has been calculated analyzing 5 masks
obtained from repeated pictures of the same subject, for
all the 117 subjects in the database and the reciprocal of
the estimated standard deviation was used as a weight.
Since small rotations of the face may occur between
consecutive acquisitions, it is necessary to align one mask
to the other one before to calculate average position and
relative variance for each landmark. In this way, the vari-
ance of each point associated with each individual was
obtained.
In Table 1 the average weights, obtained averaging the 
weights of all the 117 people in the database, are shown. 
Note that the weights are not associated to each single 
landmark but to each region of the face. The results con-
firm what was intuitively suggested: there is more stability 
on the eyes; the mouth is subject to large modifications due 
to facial expression changes, while the outline of the jaw 
presents the highest variability.

It should be underlined that, in the image acquisition, 
the environmental conditions (in particular the lighting) 
are controlled in order to ensure that the images are 
acquired without appreciable shadows, light reflections or 
motion blur; moreover the facial images are acquired 
with the person in frontal position and with the best 
possible focusing. With this attention, we can ensure 
that the uncertainty due to environmental conditions 
and focusing can be neglected in image acquisition. As 
will be shown in the following of the paper, variability in 
image brightness, focusing and motion blur will be 
simulated numerically in order to explore the 
uncertainty due to those parameters in controlled 
conditions.

4. Uncertainty estimation

The uncertainty on the Score, uS, depends mainly on the 
uncertainty of the 2D coordinates of the face features that 
in their turns depend on the characteristics of the 
processed images. As evidenced in previous papers 
[28,29,38] the main influence quantities in face recognition 
problems can be related to luminance, defocus and motion 
blur. In order to quantify this uncertainty according to the 
ISO-GUM [37], a simple model was used to associate each 
quantity of influence to uS. Denoting with ui the contribute 
due to the ith quantity of influence on the Score 
uncertainty, we have posed:

ui ¼ f iðDiÞ ð5Þ



Fig. 4. Analysis of uS versus the level of luminance.
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where Di is the value of the ith quantity of influence.
All of the quantities of influence are considered uncor-

related with the other ones, then the combined uncertainty
on the score is evaluated as:

uS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
u2

i

r
: ð6Þ

where N is the number of the considered quantities of 
influence.

A statistical approach [30] was followed in order to 
estimate an uncertainty model using couples of artificial 
images generated by manipulating the reference images 
(i.e. the ones contained in the training database) in order to 
achieve new images characterized by the desired values of 
the quantities of influence. In particular, for each consid-
ered condition, the procedure is the following:

– for each subject of the database, each considered
quantity of influence and each considered level of the
quantity of influence, 2 new images have been gener-
ated by applying suitable digital filtering on the refer-
ence images in a controlled simulation environment;

– on the so modified images, the 3D features are evalu-
ated applying the AAM algorithm and the triangulation;

– the Score with respect to the recorded data of the sub-
ject itself is estimated;

– finally on the Score obtained for all the subjects a sta-
tistical analysis is made, and the uncertainty is
estimated.
ðuSÞi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2

SÞi
3
þ ðr2

SÞi

s
ð7Þ

where (lS)i and (rS)i are respectively the mean and the 
sample standard deviation of the measured Scores due to 
the ith influence quantity.

Moreover, for each analyzed condition, the study of uS 

has been made also considering the effect of the ith quan-
tity of influence when affecting only one image at time.
4.1. Luminosity

The grey level of the original images, considered with 
the optimal luminosity, were modified of ±5, ±10, ±15,±20, 
±30, ±50 (codes for an 8 bit representation), with respect to 
the reference image. Tests were made changing either the 
two images or only one. In Fig. 4 the corresponding results 
are reported. As you can see the uncertainty is almost 
constant for each kind of luminosity variation, 
consequently a constant value can be considered for 
modification of both image uS can be posed equal to 0.08. 
Furthermore, a little lower uncer-tainty is observed if only 
one image is characterized by a not optimally luminosity, 
and it does not depend on which camera is considered (see 
Fig. 4). Since the diminution is not significant the 
previously value can be consid-ered still valid.
4.2. Defocus

Following the same procedure used for the evaluation of 
the luminosity influence, the effects of the lens defocus 
were analyzed. Also in this case, since the configuration of 
the two cameras can be different, test were made 
considering three different conditions: both images, only 
camera one, only camera two out of focus, and with 
different level of defocus (see Fig. 5). The modified images 
are obtained by filtering the image with a Gaussian linear 
kernel filter characterized by a standard deviation of 3–20 
pixels with respect to the reference image (image size 1388 
� 1038px).

Fig. 6 shows the obtained results. As expected, when 
both images are out of focus the uncertainty is greater than 
when only one is out of focus. Moreover, the results are 
almost the same whatever the altered image. It is possible 
to use two models, one for both the images out of focus and 
the other one when only one image is out of focus. In both 
cases, a second order polynomial model well fits the 
observed data.

4.3. Motion blur

Generally, the motion blur is due to the movement 
between the subject and the camera. In the case of a fixed 
stereo rig, it is due to the subject movement and conse-
quently it is present in both images. Two different kinds of 
motion blur are analyzed, one that simulates a motion 
between the subject and the camera pair along a vertical 
direction (Fig. 7a) and another that reproduces the motion 
along the horizontal direction (Fig. 7b).

The modified images are obtained by filtering the image 
with a directional filter characterized by a kernel length of 
6–110 pixels with respect to the reference image (image 
size 1388 � 1038px). The filter is implemented as a con-
volution with a square kernel with a size proportional to 
the simulated speed effect of the motion. Concerning the 
values of the elements of the kernel, the closer to a straight 
segment oriented along the direction of motion, the higher 
their value. Fig. 8 reports the observed uncertainty and 
their simplified models for both type of simulated motion 
blur.
5. Decision procedure

    In Fig. 9, a diagram of the main steps forming the deci-
sion procedure is reported: (i) at first, the probability, Pj,



Fig. 5. Examples of filtering for achieving the defocused images due to the lens: (a) Dfocus = 0 (reference image), (b) Dfocus = 10, and (c) Dfocus = 27.

Fig. 6. Analysis of uS versus the level of defocus due to the lens.
that an input subject is the jth subject of the database is
evaluated; then, (ii) on the basis of the obtained probabili-
ties a classification list is created with a selection of the
probable subjects; finally, (iii) the confidence level for each
subject (class) in the list is evaluated. In particular:

(i) Pj represents the probability that the unknown sub-
ject is the jth subject of the database (i.e. the jth
class). Considering the score as a random variable,
Fig. 7. Example of filtering which produces the defocused images due to
the motion blur: (a) vertical (h = 10� and Dmotion = 20) and (b) horizontal
(h = 100� and Dmotion = 20).
Pj represents the probability that the Score of the 
jth class is equal to zero given a measured value Sj. 
This probability is evaluated by the score probability 
density function, p(s), with the following relation-
ship (see Fig. 10):
Pj ¼ PðSj ¼ 0jSjÞ ¼
1 if Sj 6 thR1

Sj
pðs� thÞds if Sj > th

(

With this position we consider that each measured
value of Sj less than two times the uncertainty (th = 2 uS) 
can be considered equal to zero, and consequently its 
probability is equal to 1. The choice of a coverage factor 
equal to 2 is made for taking into account the residual 
imperfections of the simple model considered for estimat-
ing uS (see Section 4). Of course, other coverage factors 
could be adopted, but the general proposed procedure still 
remains valid.

This function is applied to all the considered classes of 
the database, evaluating the probability of each one of 
them.

The Scores of the correct class for each subject of the 
database, evaluated in Section 4, are used in order to define 
p(s). For each value of the influence quantities a Chi-square 
test is made for comparing the observed distribution with 
expected ones (Exponential, Beta, and Normal dis-
tributions are considered). The exponential distribution
Fig. 8. Analysis of uS versus the level of defocus due to the motion blur.



Fig. 9. Simplified block diagram of the decision procedure.

Fig. 10. Example of function for each Pj evaluation.
showed the best fit with the observed scores, for all of the
uncertainty cases and for all of the values.

(ii) Starting from the so calculated probabilities, the
classification list is composed of all the classes
which show a probability greater than a second
threshold, TH. Generally, the value of TH affects
the sensitivity and the selectivity of the method:
high values of TH increase the selectivity but make
worse the sensitivity and vice-versa. Therefore, a
suitable tradeoff has to be considered. To this aim,
a general approach for defining TH involves the
analysis of the TP (correct classes with a probability
greater than TH) and false positive FP (wrong classes
with a probability greater than TH) versus TH, look-
ing for identifying the value of TH that meet the
requirements of the specific application.

(iii) The probabilities of all the classes included in the
classification list are used in evaluating a normaliza-
tion factor, K, defined as follows:

X

K ¼

j

Pj for all j with Pj > TH: ð9Þ
Then, the confidence level (CL) of each class belonging
to the list is evaluated as the probability Pj divided by K:

CLj ¼
Pj

K
ð10Þ
Fig. 11. Average margin versus uS.
6. Experimental results

In order to verify the performance of the proposed clas-
sification method, it is compared with a basic approach, for
which a minimum value of Score is found in order to dis-
criminate a subject belonging or not belonging the data-
base. In Fig. 11 the observed average margins (for a 
particular sample is the difference between the score of the 
correct class and the lowest score of the other classes) are 
reported versus uS. As you can see, as the uncertainty on 
images increases the margin decreases, and for high values 
of uncertainty, the margin approaches zero, thus making 
difficult the definition of a suitable discriminating 
threshold. In the following, the attained results are 
reported in comparison with a basic approach in order to 
evidence the obtainable improvement. As for the basic 
approach, a threshold on the score is also introduced so 
that the classification is accepted only if the minimum 
score (i.e. the score of the winning class) is lower than such 
threshold. The presence of such a threshold is needed in 
practical applications for containing the false acceptance 
rate in the case of input subject not belonging to the train-
ing database (in absence of such a threshold a subject not 
belonging to the database would be wrong classified and 
confused with a subject belonging to the training database 
even if it will exhibit an high value of score).

The threshold has been posed equal to the value of the 
observed lowest margin when uS = 0,  (TH = 0.25).

The comparison is made on new sets of images obtained 
by modifying the original images as presented in Section 4 
but using parameters different from the previous used. The 
obtained dataset is composed by 117 � 45 couples of 
images (9 different intensities of motion blur, 24 levels of 
defocus, 12 luminosity values either on both or on single 
image). The distribution of the obtained uncertainty is 
reported in Fig. 12 where the relative frequency histogram 
of the estimated uS on the whole dataset is shown; this dis-
tribution reproduce well cover all the expected working 
conditions (both for range and frequencies).



Fig. 12. Histogram of the estimated uS.

Fig. 13. Performance comparison versus the uncertainty on the Scores
between basic and proposed approaches: (a) percentage of Correct
Classifications and (b) percentage of False Rejections.
As for TH, a suitable experimental campaign carried out
on the whole database has been performed for identifying
the best tradeoff between sensitivity and selectivity. In a
more detail, the trends of the true acceptance rate, TAR
(TP/all positive) and of the false acceptance rate, FAR (FP/
all negative) versus TH, together with the Receiver
Operating Characteristic (ROC) curve, have been analyzed.
In our application the sensitivity (i.e. the TAR parameter)
has to be preserved since the statistical post processing
reduces the false positives. As a consequence a TH equal
to 0.35 was chosen which provides a TAR greater than
0.99 and a FAR lower than 0.15.

For the proposed procedure we define the following fig-
ures of merit:

– Correct classification: either if the Classification list
includes only the right class with CL = 1 or if the
Classification list has more subjects where the right
class has the highest value.

– False reject: If the subject is in the training database but
the Classification list is empty.

– Wrong classification: either if the Classification has more
subjects without the right class or if the right class has
not the highest value of CL.

Vice versa, as for the basic approach, three cases are
possible:

– Correct classification: if the right class has the minimum
Score and it is less than the threshold (0.25).
Table 2
Main results of the proposed approach. (The figures of merit are expressed as per

uS < 0.06 0.06 6 uS

< 0.07
0.07 6 uS

< 0.08

Classification list with one class
and CL = 1

100 100 99

Classification list with more
subjects where the right class
has the highest value

0 0 0

Abstention 0 0 1

‘‘Wrong classification’’:
Classification list with more
subjects without the right
class or where the right class
has not the highest value

0 0 0
– False Reject: if no class has a Score less than the 
threshold.

– Wrong classification: if a wrong class has the minimum 

Score and it is less than the threshold (0.25).

In Fig. 13 and in Tables 2 and 3 the comparison between 
the two approaches is reported.
centage).

0.08 6 uS

< 0.09
0.09 6 uS

< 0.10
0.10 6 uS

< 0.12
0.12 6 uS

< 0.15
uS P
0.15

Whole
dataset

95 75 53 40 10 86

5 22 37 32 46 7

0 3 9 26 42 6

0 0 1 2 2 1



Table 3
Main results of the basic approach (The figures of merit are expressed as percentage).

uS < 0.06 0.06 6 uS

< 0.07
0.07 6 uS

< 0.08
0.08 6 uS

< 0.09
0.09 6 uS

< 0.10
0.10 6 uS

< 0.12
0.12 6 uS

< 0.15
uS P 0.15 Whole dataset

Right classification 100 100 100 94 79 73 21 10 84
Abstention 0 0 0 6 21 26 77 87 15
Wrong

classification
0 0 0 0 0 1 2 3 1
The obtained results prove that the proposed procedure 
allows a right classification (i.e. the right class tops the 
classification list with the highest CL) also in presence of 
high uncertainty: it is able to recover almost always the 
false rejections thanks to the information on the uncer-
tainty. In detail, it reaches a correct classification in more 
than 97% of the cases, in presence of uncertainty up to 0.1, 
whilst with the basic approach, even in presence of an 
uncertainty equal to 0.01 the percentage becomes less than 
80%, and it becomes less than 25% in presence of a very high 
uncertainty on the measurements. As for the wrong 
classification percentage, for both approaches, it is low and 
slightly increases with very high uncertainty.

Considering the whole dataset (see the last column of 
Tables 2 and 3), the performance improvement due to the 
proposed decision procedure is clear: we recognize the 
subject in the 93% of cases, obtaining abstention [39] only 
in the 6% of cases whilst the basic approach provides 84% 
and 15% of right classification percentage and false 
rejection percentage, respectively.

7. Concluding remarks

This paper has introduced and discussed a suitable
approach to improve the classification performance of face
recognition systems based on 3D features when operating
in presence of measurement uncertainties.

In particular, the knowledge of measurement uncer-
tainties involved in the measurement process and its prop-
agation down to the classification stage is exploited to
estimate a confidence level of the output results. In more
detail, the output of the classification system is thought
of as being composed of a list of the most probable classes
in order to be associated to the input object each one
characterized by a suitable confidence level. Then, such
information is adopted to improve the reliability of the
output results in terms of correct, wrong decision and
rejection percentage.

The study has been conducted by considering both a
popular algorithm based on 3D features (the AAM) and
main causes of uncertainty generally affecting the perfor-
mance of face recognition algorithms.

The achieved results prove that the proposed method
allows the overall performance to be significantly
improved with respect to a basic classification scheme, in
terms of Correct classification and False Rejection percent-
age. More in details, the proposed method allows reaching
a Correct classification percentage greater than 90% also if
high values of uncertainty are involved.

We believe that the proposed approach can be usefully
extended to be used within many other application areas
such as text recognition, speech identification, and biome-
try based on face, fingerprint, and iris analysis.
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