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Introduction

The analysis of deformations and geometric changes of 
vari-ous kinds of objects is relevant to many fields of 
geosciences and engineering. Measurement is a main task in 
this process, which can be afforded by using several 
techniques and sensors. It is out of the scope of this paper to 
give an exhaustive review on this topic, spanning from the 
investigation of crustal deformations in geodynamics to 
microscopic observations in nanomaterial science. 
Moreover, several different platforms are used, including 
close-range sensors, unmanned aerial vehicles (or UAVs), 
manned aircrafts, and satellites. For this reason, we limit 
the topic on applications where ground-based cameras are 
used for capturing images of objects at a distance ranging 
from few decimeters to about 500 m.

Generally speaking, the use of imagery as data source 
for measurement can feature several important advantages: 
the storage of a huge quantity of information, the simpler 
understanding and interpretation with respect to laser point 
clouds or single point observations, the possibility of off-
line measurements, and the non-contact with the object.
   Close-range photogrammetry (CRP), which is the science 
dealing with the measurement and 3D reconstruction from
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images for non-topographic applications (see Luhmann et al. 
2013), became relevant to deformation measurement (DM) 
and image metrology with the advent of the so-called 
analytical techniques. Although CRP was still based on ana-
logue film photos, the photogrammetric reconstruction relied 
on the acquisition of numerical values of point coordinates 
thanks to mono- and analytical stereo-comparators. The pre-
cise comparison of precise point coordinates measured on 
photos taken at different times (or “epochs”) started to be a 
consolidated option. High-quality analogue “metric” and 
“semi-metric” cameras were specifically designed for CRP, to 
be widely used up to the end of the 1990s, when they were 
completely overwhelmed by digital sensors. On the other 
side, the availability of corresponding image point 
coordinates gave impulse to a new formulation of the 
mathematical background of the photogrammetry, including 
the bundle block adjustment method as the main approach for 
photogrammetric (or aerial) triangulation (Triggs et al. 2000), 
the calibration of close-range cameras (Brown 1971), and the 
design theory of terres-trial photogrammetric networks 
(Fraser 1996), a term which refers to the organization of 
camera stations for image acqui-sition. In the era of analytical 
close-range photogrammetry, the precise measurement (up to 
10−6, see Fraser 1992) of  signalized points was achieved.

The second important step in the development of DM 
applications of CRP consists in the success of digital cameras, 
which progressively took over analogue film cameras since 
the beginning of the 1990s. The diffusion of digital imagery 
simplified the data acquisition step and made image process-
ing cheaper: computers and screens replaced comparators. 
Moreover, the main advantage of digital photogrammetry 
relies on the development of automatic techniques for camera 
calibration (Fraser 2013), image orientation (Remondino 
et al. 2012), and 3D surface reconstruction (Grün 2012). 
Along with the diffusion of digital cameras, image 
processing and computer vision communities have made a 
great contribution to CRP, see Hartley and Zissermann (2006) 
and Szelisky (2010). Today photogrammetry, image process-
ing, and computer vision may largely benefit from one 
another.

When dealing with the state-of-the-art CRP, the first aspect 
to be considered is related to cameras, which are used for the 
acquisition of optical images. The selection of one specific 
sensor mainly depends on the sensor format and resolution, 
the sensor type (CCD, CMOS, Foveon), and the stability over 
time (Luhmann et al. 2013). This topic has been recently 
discussed in Scaioni et al. (2014a).

Every digital camera has to be calibrated to reconstruct the 
internal geometry (inner orientation—IO) and to model lens 
distortions, see Luhmann et al. (2013) and Fraser (2013). This 
task, which is today well assessed and consolidated in CRP, 
allows the application of standard digital cameras for metric 
purposes. Calibration may be accomplished by the user

beforehand or just after image acquisition. A set of 
calibration parameters may have a limited temporal 
validity. Thus, a periodic repetition of the calibration 
should be considered, for example, at monthly intervals or 
after any events that could influence the calibration setup 
(e.g., long trips, the use in harsh environment, etc.).

Depending on the geometry and the size of the target 
object, a variable number of images have to be repeatedly 
captured at any observation epochs. Image exterior 
orienta-tion (EO) refers to the reconstruction of the 
position and attitude of any camera poses with respect to a 
ground refer-ence system (GRS) where the object has to 
be rendered (Luhmann et al. 2013). This operation can be 
easily afforded using fully automatic approaches that are 
now implemented into low-cost software packages 
(e.g., iWitness Pro®, PhotoModeler®, PhotoScan®, and 
others), see Remondino et al. (2012). In the case higher 
precision or reliability is required, some coded targets 
(see “Applications based on coded targets”) can be 
installed on the object to assist auto-matic EO process, but 
also markerless approaches are today fully operational.

Image-based deformation measurement (IBDM) tech-
niques may be organized into three main categories:

1. Measurement of 2D or 3D displacements of specific
points on the surface of an object by installing coded
targets, see “Applications based on coded targets”;

2. Surface-point tracking (SPT) in 2D or 3D: these
methods can also track points on the object surface,
but here a much denser field of tracked points may
be obtained thanks to image matching algorithms, see
“Surface-point tracking”;

3. Comparison of 3D surfaces reconstructed from at
least two images gathered in correspondence of any
observa-tion epochs. Surfaces are reconstructed by
using dense image matching techniques, see “Surface
comparison.” 
Although applications in category (1) are used for high-

precision metrology where pointwise measurements are need-
ed, categories (2) and (3) are more focused on providing 
observations over full areas (area-based deformation 
measurement—ABDM). Such techniques are important for 
studying those processes where single points are not 
enough to completely describe the phenomenon under 
investigation, or the point signalization is difficult or even 
impossible (e.g., with very small objects). Moreover, where 
pointwise measure-ments are planned to monitor specific 
points in well-defined locations (by using photogrammetry or 
geodetic techniques), ABDM may give an overview on the 
remainder portions of the object surface. Such techniques do 
not only comprehend image-based approaches but also 
entail 3D scanning (Vosselman and Maas 2010), 3D 
imaging sensors (Remondino and Stoppa 2013), and 
ground-based synthetic



aperture radar (or GBSAR) sensors, see Monserrat et al.
(2014).

The use of efficient visualization techniques is quite 
im-portant for the presentation of results of any IBDM 
process. Indeed, when synthetic properties or displacements 
of a few control points have to be displayed, traditional 2D 
plots (see, e.g., Fig. 7) may give an exhaustive outlook on 
what happened during the observation period. On the 
other hand, when ABDM is operated, the displacement 
field requires the use of more efficient and illustrative 
static and dynamic visuali-zation tools. In the static 
category, the visualization through vector displacement 
graphics overlapped to a picture of the object (see Figs. 2 
and 5) and displacement maps (see Figs. 9 and 10) are quite 
effective tools. The dynamic category com-prehends 
animations and videos that may offer an immediate idea of 
the process development (Mortenson 1985; Hoffmann 1989).

This paper gives an overview of the different 
approaches for IBDM organized in the categories exposed 
above (“IBDM methodologies”). “Review of IBDM 
applications” reports some examples coming from the 
experience of the authors. Eventually, “Conclusions” draws 
some conclusions.

IBDM methodologies

Applications based on coded targets

This section will briefly review the applications based on 
coded targets, being this a standard and consolidated approach 
which is also widely covered in books (see, e.g., Luhmann 
et al. 2013). On the other hand, some aspects may also hold for 
applications in “Surface-point tracking” and “Surface com-
parison.” For this reason, they are recalled here.

Generally, a project should start with the definition of 
points to track over time. In correspondence of each point, 
a target is fixed to remain stable during the whole period 
of observation. A target is usually made up of a dark symbol 
on a light background (or vice versa), which can help 
automatic recognition and measurement in the images (see 
Fig. 1). Also color targets are commonly adopted. The 
target may also include a “coded” symbol (coded target) 
that is used for labeling (see Fig. 1), e.g., to link 
corresponding targets in different images. Alternatively, 
point labeling can be done manually.

The EO scheme depends on the camera setup. If cameras are 
fixed (like in lab experiments), the EO can be established 
beforehand. In the case the sensors are repositioned at each 
epoch, some targets need to be set up in stable positions to fix 
the GRS. This solution is suggested to assess the stability also 
in the case the sensors are fixed. In Scaioni et al. (2014a) study, 
the use of some targets as ground control points (GCPs) is 
discussed. Three-dimensional coordinates of GCPs need to be 
determined independently, for example, by means of geodetic 
techniques. They allow one to completely set up the spatial 
datum of each photogrammetric network and to compare other 
control points by subtracting their absolute coordinates mea-
sured at different epochs. However, in many cases, only relative 
variations are needed, which do not call for the setup of a full 
3D datum. As is shown in the examples at “Multi-station 
applications”, in such cases only the scale has to be fixed, 
requiring the knowledge of the distance between two targets.

The reconstruction process is purely based on the automat-
ic recognition and measurement of targets’ coordinates. 
Consequently, the precision of final 3D points also depends 
on the precision of target measurement, which is strictly 
related to the size of targets. When the size of circular target 
in the image is large, the effect of eccentricity has to be 
corrected as discussed in Otepka and Fraser (2004) and 
Luhmann (2014).

Several camera configurations may  be adopted. They can 
be grouped according to the following classification: (a) sin-
gle-camera and (b) stereo-camera systems (despite of the 
name, this configuration is not aimed to obtain stereoscopic 
vision and cameras may be convergent to improve precision 
along depth, see Fraser (1996)) and (c) multi-station networks. 
Fixed cameras are commonly used in configurations (a) and 
(b), while (c) is generally implemented by setting up the same 
camera at different stations for capturing single shots. 
However, when the required data acquisition rate is too high 
to allow the repositioning of the same camera, a fixed multi-
camera system has to be established, see the example at 
“Multi-station applications.” Systems made up of three or four 
cameras are quite popular in such applications.

The selection of the camera configuration mainly depends 
upon four factors:

1. Type of displacements to measure (2D or 3D);
2. Size of the object to analyze;
3. Required measurement rate; and
4. Data redundancy: given that one or two images may

suffice for reconstruction in 2D and 3D cases,
respective-ly, if the number of images increases, it will
benefit the global redundancy of the photogrammetric
network (see Fraser et al. 1996). 

Single-camera systems are mainly adopted for tracking
point displacements during laboratory experiments, forFig. 1 Examples of different types of coded targets



example, loading tests, see Barazzetti et al. (2010; 2011) and 
Maas and Hampel (2006). In some cases, if the texture of the 
surface is uniform, markerless surface-point tracking (SPT) 
methods described in “Surface-point tracking” cannot be 
adopted. In such cases, a set of targets has to be deployed to 
assist the reconstruction of the displacement field. 
Alternatively, artificial patterns can be painted or projected, 
see the example at “ABM point-tracking applications.” 
Generally, such systems do not allow for 3D reconstruction, 
as illustrated in the following sections. On the other hand, 
when special six degree-of-freedom (6DoF) targets are used, 
also 3D reconstruction from single-camera systems becomes 
possible, see Luhmann (2009). An important key-point of 
single camera systems when measuring high-dynamic pro-
cesses is the absence of sensor synchronization problems, as 
discussed in the end of this subsection.

A stereo-camera system is needed in those cases when 
displacements to measure happen in a 3D space. Generally, 
this configuration is adopted with a pair of fixed cameras, 
which is the minimal configuration for 3D reconstruction. 
Cameras  always need to be calibrated when  used in such class 
of applications. The geometric model for sensor orientation 
and object reconstruction can be easily found in the CRP 
literature.

Generally, the multi-station approach is necessary when a 
larger surface has to be covered or when a higher precision 
and controllability with respect to the ones provided by the 
stereo-camera approach have to be achieved.

The geometric model adopted here is based on the collin-
earity equations, which establish the relationship between the 
image and object coordinates of an observed point Pi (in 
vectors xi=[xi yi]T and Xi=[Xi Yi Zi]

T, respectively), IO param-
eters (principal distance c and principal point coordinates x0
and y0), and EO of the camera station j (i.e., rotation matrix 
Rj=[r1j r2j r3j]

T and perspective center vector X0j=[X0j Y0j 
Z0j]

T):

xi ¼ x0 j þ △x−c
r1 j Xi−X0 j

� �

r3 j Xi−X0 j

� �

yi ¼ y0 j þ △y−c
r2 j Xi−X0 j

� �

r3 j Xi−X0 j

� �
ð1Þ

TermsΔx andΔy contain the additional parameters (APs)
to correct lens distortion. APs have been evaluated during
camera calibration. Also the IO parameters are usually known
from calibration and introduced as constants in Eq. (1). As an
alternative, the terms Δx and Δy may be set up to 0 if the
images have been resampled to output distortion-free images.
This option is quite comfortable because it allows the user to
completely get rid of lens distortions during successive pho-
togrammetric processing steps. Unfortunately, any resampling

of the images may result in low-pass filtering. If a very 
high precision is needed, the alternative is to apply APs 
to any image coordinates to compensate for lens distortion.

Image coordinates of point Pi are usually measured on 
the images, while Rj, X0j, and the object coordinates of Pi 
are unknowns to be estimated in a least squares fashion. A 
system of Eq. (1) is set up to solve for the EO parameters 
and object point coordinates. A global rank deficiency 
always exists, which can be fixed by adding some GCPs 
or using inner constraints, see Granshaw (1980).

When a point can be seen in two images only, as in stereo-
camera systems, it gives rise to four Eq. (1). The number 
of observation equations related to the same point may 
increase when multiple images are used, resulting in a 
higher local redundancy and then in a better controllability 
of the obser-vations, see Grün (1980).

Precision (σXYZ) of point coordinates in object space can 
be estimated as proposed in Fraser (1996):

σXYZ ¼ qSσimffiffiffi
n

p ð2Þ

where n is the number of images used for the 
determination of the point, q accounts for the geometric 
configuration of the images and may range between 0.4 and 
2, S is the average image scale, and σim is the measurement 
precision of image coordinates. The relative attitude between 
the images may influence the precision through factor q in 
Eq. (2): as is clearly shown in Fraser (1996), the use of 
convergent images results in a better spatial intersection of 
corresponding rays which may provide a small and isotropic 
error ellipses for the recon-structed points.

Today color (RGB) cameras are widely used, with the 
exception of some metrological applications where 
industrial mono-chromatic cameras are implemented in 
permanent data acquisition systems. In target-based 
applications, colors are not strictly needed to detect targets, 
unless when special color markers are used (see Fig. 1). If 
black/white targets are used, target detection may require 
converting three-channel RGB images into mono-
chromatic images. Generally, this task is operated by using 
weighted combinations of different single colors, but this 
solution may turn out in a sub-pixel bias when CCD or 
CMOS sensors are employed. Indeed, the distribution of 
pixels sensitive to red and blue wavelengths is usually not 
symmetric in the Bayer scheme that is adopted in most 
cam-eras (see, e.g., Luhmann et al. 2013). For this reason, 
the use of the green channel is expected to provide 
unbiased results due to the symmetric distribution of pixels 
sensitive to this color.

An important issue to consider when using more than one 
camera to gather images of a fast developing process is related 
to sensor synchronization. Indeed, a time misalignment may



lead to use images taken at different times, resulting in errors 
in the determination of 3D coordinates. Different solutions 
may be applied if synchronization bias has significant impact, 
as reported in the literature, see Spencer and Shah (2004) and 
Raguse and Heipke (2009).

Surface-point tracking

In applications for surface-point tracking (SPT), the attention 
is focused not only on specific signalized targets but also on 
the measurement of a dense field of natural features that can be 
automatically recognized on the surface of the object. Since 
the early 1980s (see for instance Peters and Ranson 1982), the 
application of image matching techniques (or digital image 
correlation, see Goshtasby 2005 and Grün 2012) to strain 
analysis in material testing has become more and more pop-
ular due to the high accuracy that may be achieved, coupled 
with the full-field description of the material behavior hardly 
obtainable with other non-contact methods.

If the texture is well contrasted, a dense field of observed 
points may be detected. In most applications, a single-
camera sequence is analyzed (see, e.g., Roncella et al. 2004; 
Fedele et al. 2014). A fixed station is commonly used, and 
this turns out in the fact that all the images are already 
aligned and point displacements are tracked in the same 
reference frame. On the other hand, if the camera cannot be 
kept in fixed position, images need preliminary co-
registration (see, e.g., Barazzetti and Scaioni 2009). In the 
case of flat objects, the homography model can be exploited 
to derive coordinates in object space. In the case of non-flat 
surfaces, image matching may only give a qualitative output 
(see the example at “Feature-point tracking applications”) but 
not any metric information. When two (or more) cameras 
are contemporarily used, corresponding points have also to 
be found across images taken from different stations. This 
task is generally more complex because the perspective 
and radiometric deformations between synchro-nous 
images have to be taken into consideration.

Several image matching techniques have been developed 
in the last three decades. Owing to such large number of 
different implementations, it is quite hard to identify a

completely satisfactory taxonomy of the different 
algorithms, even if very good overviews can be found in 
the literature (see, e.g., Scharstein et al. 2002 and Baker et 
al. 2011). Two categories of matching techniques are 
commonly used: area-based matching (ABM) and feature-
based matching (FBM).

Area-based matching algorithms evaluate the similarity 
on the basis of image intensity values in the nearby of 
two approximate corresponding locations on the images. 
Multi-photo matching techniques may also work with more 
than two images at the same time. The process starts from 
a set of “seed” points selected on the first image whose 
corresponding positions are predicted on the others. ABM 
algorithms have a pull-in range capability that allows 
looking for the homologous position also if this is a few 
pixels far from the predicted location, depending on the 
specific method.

Feature-based matching algorithms rely on the 
independent extraction of two sets of features in the 
images by using interest operators, see Jazayeri and 
Fraser (2010). Depending on the adopted operator (see 
Table 1), the chance to find several homologous points may 
be large even if the images differ because of radiometric 
and geometric deformations. Matching is based on a 
similarity criterion that also considers a window around 
the interest points but without any pull-in range capability.

The selection of the matching method depends on the prop-
erties of the target object and on the velocity of the image 
content change. If a slow process is investigated with quite 
regular changes between consecutive images, ABM has to be 
preferred (see more details at “Area-based matching for SPT”). 
If sudden changes may happen, FBM is probably better. Also 
FBM has to be used when more than one image sequence is 
used because in such case, the corresponding points have to be 
recognized in synchronous and asynchronous images. 
Applications including FBM will be addressed as feature-point 
tracking (FPT) and discussed at “Feature-point tracking.”

For general aspects of the photogrammetric process 
related to sensor orientation and calibration, the same 
concepts illus-trated in “Applications based on coded targets” 
still hold. Very often some targets are installed in the scene 
to help image orientation.

Table 1 Principal interest operators adopted in FPT

Operator Paper Invariance Repeatabilitya Descriptor

Foerstner Rotation, brightness, and contrast +++ No

Harris Rotation, brightness, and contrast +++ No

SUSAN Rotation, brightness, and contrast ++ No

SIFT Scale, rotation, brightness, and contrast ++ Yes

SURF Scale, rotation, brightness, and contrast ++ Yes

FAST

Förstner and Gülch (1987) 
Harris and Stephens (1988) 
Smith and Brady (1997) Lowe 
(2004)

Bay et al. (2008)
Rosten and Drummond (2006) Scale, rotation, brightness, and contrast ++ Yes

a Repeatability is classified as in Tuytelaars and Mikolajczyk (2008), except for FAST



Area-based matching for SPT

In the sequence of images to analyze, one is selected as 
reference (“master”). Usually such master is the first one 
or the central one in the sequence. A grid is set up to locate 
the points to be tracked using ABM. The grid step depends 
on the spatial resolution of the desired displacement field. 
In the hypothesis that images are co-registered, every node 
of such grid is used as the starting point for matching in 
the next image. Matching of any single points is carried out 
independently, even though a filtering stage may occur later 
to check the consistency of detected displacements of 
adjacent points. ABM works on the basis of a template 
extracted around each point on the master. The search is 
carried out inside a search window extracted around the 
predicted point in the second image (“slave”). Different 
matching algorithms can be adopted, but mainly they can 
be assimilated into the following categories.

Convolution- or correlation-based methods define the 
dis-placement field as the collection of shifts that yields the 
best fit to a particular function or yields the optimal value for a 
partic-ular cost function (e.g., Normalized Cross-
Correlation—NCC), see Rosenfeld and Kak (1976). The 
search window theoretically may span over the whole slave 
image. In reality, the size and the location of the search 
window are limited to avoid risk of mismatching in the case 
of repetitive patterns. Many of these techniques (e.g., 
NCC), not considering the perspective deformation of the 
slave with respect to the master image, may find 
corresponding points only if the local defor-mation inside 
each window is limited to shifts, while rotation should be 
smaller than about 5° and scale variation lower than 10 %. 
NCC may also compensate for a linear radiometric 
transformation between both images. Precision of these tech-
niques may reach sub-pixel level by applying interpolation of 
correlation values of the pixels in the nearby of the best 
solution.

When other deformations than shifts are significant, 
locally adaptive methods such as the Least Squares 
Matching (LSM) technique can be successfully applied, see 
Grün (1985). These methods assume that the image (and in 
some circumstances also the time) domain is continuous or 
at least differentiable and look for the parameters of a 
geometric transformation which minimize a cost function 
including similarity of pixel intensity values and possibly 
some geometric constraints related to the EO, see Maas 
(1996). Generally, an affine transformation is implemented 
in the cost function, but also higher-order geometric 
transformation can be used if highly localized deformation 
can be foreseen, see Bethmann and Luhmann (2010) and 
Roncella et al. (2012). Estimate of linear radiometric 
transformation can be included into the LSM model, or 
the preliminary image equalization can be applied, see 
Forlani et al. (1996). Sub-pixel precision can be directly 
reached. A template is extracted around each

seed points on the master, and the homologous is searched 
around the predicted position on the slave. In this case, the 
pull-in range is smaller than with convolution-based tech-
niques, in the order of 1/3 the template size, which usually 
spans between 15–30 pixels.

Feature-point tracking

In FPT, the search for the homologous points is carried out 
after extracting a set of features that can be easily distin-
guished from their neighborhood in any images. Unlike 
ABM which looks for homologous points around a predicted 
position on the slave image and then tries to refine it, FBM 
implemented in FPT simply finds correspondencies in the sets 
of the extracted features. Generally, the matching stage is 
applied by exploiting some “descriptors” that are directly 
worked out by the feature extraction algorithms, see Table 1. 
Alternatively, other algorithms may extract interesting points 
and then the matching stage has to be carried out by using an 
independent measure (usually linear correlation). A thorough 
taxonomy of different algorithms/techniques can be found in 
Mikolajczyk and Schmid (2005), Mikolajczyk et al. (2005), 
and Apollonio et al. (2014).

The major advantage of FPT is the greater robustness with 
respect to ABM methods. This means a larger chance to detect 
corresponding points in images with different scaling, rota-
tion, and lighting. Consequently, such robustness may be 
useful to cope with abrupt changes in the scene (see the 
example at “Feature-point tracking applications”). Another 
important property of a few operators (see Table 1) is 
repeatability, which refers to the chance to track the same 
points in a long image sequence.

The typical workflow of FPT is as follows:

1. Image enhancement (optional) by using equalization
fil-ters in the case of data sets with poor texture, for
example, by Wallis filter (Wallis 1976);

2. Feature extraction: interesting features are
independently extracted on both images;

3. Feature-based matching (FBM): each interest point on
the master image is compared to any points on the
slave. In many applications, some criteria are applied to
reduce the searching space and to mitigate the risk of
false matching outcomes. In addition, robust outlier
rejection methods are usually implemented to get rid of
large measurement errors that may occur due to
repetitive patterns on the object surface or other
motivations, see Barazzetti et al.(2010). 

More than one criterion may be also cascaded.
The FPT along with more than two images is done by

starting from the set of corresponding points found on the
initial two images of the sequence (no. 1 and no. 2). Then,



image no. 2 is considered as the new master and image no. 3 
becomes the new slave. The FPT proceeds in this way up to 
the last image of the sequence.

If a stereo-sequence is considered, points have also to 
be matched across the images to support the computation of 
3D coordinates. Different strategies may be implemented to 
this purpose, which however are based on the scheme 
described above. Especially with convergent images, the 
invariance of the interest operator as well as of the 
corresponding descriptor with respect to perspective 
changes is mandatory to allow good feature repeatability 
and high level of accuracy. In more recent years, many 
authors documented that basically all the “SIFT-like” point 
descriptors (see, e.g., Verhagen et al. 2014) may achieve 
very high level of efficiency, repeatability, and accuracy 
even with wide baselines and convergent views.

Surface comparison

The use of dense matching algorithms (Haala 
2013; Remondino et al. 2014) allows computing a point 
cloud to describe the surface of an object. Consequently, 
two point clouds of the same object gathered at different 
times may be compared to detect changes and 
deformations. These may entail (a) rigid-body 
transformation, (b) loss or accumulation of material, and (c) 
shape changes.

After camera calibration and image orientation that are 
accomplished as in the previous cases, dense image 
matching techniques are applied to provide a set of n point 
clouds (S1, S2,…, Sn) describing the surface of the object at 
any observa-tion epochs, see “Dense image matching.” In 
a subsequent stage, point clouds are compared 
among them, see “Techniques for comparing point 
clouds.”

Dense image matching

The aim of dense image matching is to provide a high number 
of corresponding points in at least two images, which 
may well approximate the object’s surface after spatial 
intersection. Criteria to use two or more images (stereo or 
multi-station networks) are the same as described for other 
categories of applications. Here the starting point is the EO 
of the images, whose quality is a crucial aspect for dense 
matching success. An exhaustive description of several 
existing algorithms is out of the scope of this paper. 
Readers are addressed to Scharstein and Szeliski (2002), 
Seitz et al. (2006), Grün (2012), and Remondino et al. 
(2014). However, we would like to give an outlook on 
the basic assumptions to which almost all techniques may 
refer. The presence of repeated patterns, lack of contrast in 
the images, variation in illuminations, perspective 
deformations, noise, and also moving objects may 
significantly affect the results of the matching process. 
Consequently, image matching strategies that only rely on 
the similarity between pixel intensity like the ones

used for SPT may not be sufficient to cope effectively 
with these problems. On the other hand, FBM algorithms 
are not generally suitable for dense matching due to the 
scarce point density. Technical solutions to deal with the 
abovementioned problems rely on hierarchical processing, 
geometric con-straints, and multi-photo matching 
techniques.

Since Hirschmüller (2005; 2008), Semi-Global 
Matching (SGM) has largely developed because, thanks to 
the minimi-zation of a pixelwise cost function, it may 
better reconstruct fine details and preserve sharp object 
boundaries, see Dall’Asta and Roncella (2014). In the 
latest applications, the use of multiple views has been 
included in SGM to exploit the higher redundancy and the 
larger information available from more images, see 
Bethmann and Luhmann (2014).

A last note should be highlighted on the precision of 
dense matching algorithms. It is difficult to establish some 
reliable and general reference values due to the extreme 
variability of operating conditions and image quality on one 
side and to the lack of exhaustive validation work (Grün 
2012) on the other. A safe value of 1–2-pixel precision in 
image space could be assumed, although some algorithms 
may reach in good condition sub-pixel results.

Some attempts have been accomplished to compare 
differ-ent methods, but results obtained so far cannot 
cover all existing techniques and possible object and 
network configurations, see Seitz et al. (2006), Remondino 
et al. (2014), and Toschi et al. (2014).

Techniques for comparing point clouds

Point clouds are usually compared in a pairwise manner. 
Either a sequential analysis of consecutive pairs of point
clouds (S1 and S2, S2 and S3…, Sn−1 and Sn) which lead to 
work out the cumulative deformations or the analysis of any
point clouds Si with respect to a reference point cloud Sr 
may be followed.

Unfortunately, the reconstructed point clouds are not 
made up of corresponding points because the surface texture 
could change in images captured at different epochs, and 3D 
points computed by image matching may differ. Thus, a 
direct, “pointwise” comparison is not possible, see 
Scaioni et al.(2013a). Commonly one method out of the 
following four categories can be used.

1. For each point of Si, the closest point in Sr is selected first.
Then, the distance between both points is evaluated to
obtain the local displacement vector;

2. The reference point cloud Sr is interpolated to derive a
continuous digital surface model (DSM). Then, for each
point in Si, the minimum distance with respect to the DSM
of Sr is computed and assumed as local displacement
vector;



3. Both Si and Sr are interpolated and corresponding points
are established at the nodes of a regular grid (or Digital
Elevation Model—DEM). Then, displacements are eval-
uated along the orthogonal direction to the reference grid
after computation of the so called ΔDEM, which is the
difference between DEMs derived at both epochs; and

4. Both Si and Sr are interpolated to derive two DSMs. Then,
changes are evaluated by computing the volume com-
prised between such DSMs.

The selection of one model depends on many condi-
tions and it is difficult to find a ubiquitous solution. 
Factors that should be considered are expected or prev-
alent direction of displacements, presence of noise, point 
density, surface regularity, sharp break-lines, gaps or 
holes in the data sets, structure of points (2.5D or 
3D), magnitude of displacements, and loss/accumulation 
of material between observation epochs.

A key pre-requisite in the comparison of point clouds is 
their precise alignment, because misalignment errors may 
strongly affect the final result of ABDM. The typical solution 
for a correct registration is to establish a stable GRS or to use 
fixed camera stations during the whole data acquisition. The 
use of surface comparison can be also carried out by using 
data from laser scanners (see, e.g., Scaioni et al. 2013a) or 
other 3D imaging system, see Lichti et al. (2012).

Review of IBDM applications

In this section, selected examples of the application of 
the methods for IBDM which have been previously 
described in “IBDM methodologies” are reported. Such 
examples will give an outlook on the potential capabil-
ity of IBDM techniques, rather being an exhaustive 
review of the existing applications. Table 2 resumes 
the properties of different cameras adopted in the 
experiments.

Table 2 Technical properties of all cameras adopted in the applications described in this paper

Camera Type of camera Sensor Lens Sensor size (mm/pixels) Pixel size (μm)

Nikon D70 SLR CCD Sigma 20 mm 23.6×15.8 mm/3008×2000 pix 7.8

Nikon D80 SLR CCD Sigma 20 mm 23.6×15.8 mm/3872×2592 pix 6.1

Nikon D200 SLR CCD Nikkor 35 mm 23.6×15.8 mm/2896×1944 pix 8.1

Nikon D700 SLR CMOS Nikkor 90 mm 36×24 mm/4256×2832 pix 8.4

Basler Pilot piA1600-35gm Industrial CCD Basler 8 mm 11.9×9.7 mm/1608×1308 pix 7.4

Canon EOS 5D Mark II SLR CMOS 50 mm 35.8×23.9 mm/5616×3744 pix 6.4

In the application described here, the maximum resolution of Nikon D200 (3872×2592 pix) was not exploited, as described at “Feature-point 
tracking applications”

Fig. 2 Measurement of target 2D displacements during a loading test of 
a reinforced concrete beam (modified from Barazzetti and Scaioni 
2010)

Applications with coded targets

Single-camera applications

In Figure 2, a typical application based on a single camera 
is reported. It concerns the measurement of deformations 
in a reinforced concrete beam during loading test, see 
Barazzetti and Scaioni (2010; 2011). A low-cost digital 
camera was placed at about 130 cm in front of the beam 
and kept fixed during the experiment. A set of more than 
210 circular targets were fixed on the surface, although only 
the ones in the central part have been tracked along 33 images 
(variable time interval between 30 s and 2 min). Target size 
in the images was about 10–11 pixels. Initial positions of 
targets were found using LSM and a synthetic template as 
reference. Target positions in the following images of the 
sequence were also found by using LSM, but this time by 
using the window extracted around the target in image i to 
detect the corresponding target in image i+1.



The regular pattern of targets and the small displacements
between consecutive epochs (max displacement was 81 mm)
made quite trivial to assign the same label to corresponding
targets. No codes were needed.

It is interesting to notice somehow, under the assumption of
completely stable camera, this application could be afforded in
the image space. In the end, target coordinates were trans-
formed in the object space using the same homography pa-
rameters for any images. This transformation could be com-
puted in the initial image by measuring coordinates of four
targets. As image distortion varies in a smooth way in the
image and applies the same way to the whole sequence, if
displacements between consecutive images are small (a few
pixels), its correctionmay be avoided. The estimated precision
of this method depended only on target measurement because
other effects did not contribute to relative differences.
Generally, a reference value of standard LSM precision may
reach up to 1/20-pixel size, although this result has been
improved in ideal conditions and with optimized algorithms,
see Birgisson et al. (2009). In many applications, worse results
may be found as well, depending on the quality of images. We
retain that a value about 1/10 pixel is more realistic. In this
case, such assumption led to an average precision of σx,y=
0.3mm for the image coordinates. Consequently, the precision

of each relative 2D displacement vector was σΔs=
ffiffiffi
2

p
σx,y=

0.4 mm. Such theoretical results were compared against read-
ings of linear variable differential transformers (LVDTs—see
Nyce 2004) located in four different locations. Such analysis,
though limited to few points, demonstrated that no significant
departures were obtained from both measurement techniques.

Stereo-camera system applications

In the example in Fig. 3 (see Barazzetti and Scaioni 2011 for
the details), a small specimen of compacted sand was used to

see the effect of a down-scaled foundation model under 
non-centered loading. This resulted in a 3D rotation of the 
model, which could not be evaluated using traditional linear 
displace-ment or inclination sensors. Moreover, the limited 
size of the specimen resulted in several problems with the 
installation of contact sensors. Thus, two cameras Nikon D70 
were placed at a distance of about 55 cm from the object using 
a baseline (i.e., the distance between both cameras) of 50 cm. 
A set of targets were placed on the different parts of the trial 
device, in order to detect also any relative displacements in 
the whole structure. Also 3D rotations between consecutive 
epochs were detected by using the 3D reconstructed 
coordinates of all targets on the small foundation.

In this application, no coded targets were used because 
of the small specimen size. Targets were automatically 
measured in any images of the stereo-sequence by LSM. 
Labeling was done manually in the first image pair. Then, 
because of the small displacements between consecutive 
images, labeling of targets was automatically done by 
exploiting the proximity of image coordinates with respect 
to previous scenes. The low speed of the experiment did 
not result in any problems with camera synchronization.

Results showed a theoretical accuracy of ±0.02 mm 
in the measurement of target displacements, whose av-
erage size in the images was 0.6 pixels. This result is 
consistent with the theoretical accuracy obtainable with 
the hypothesis of images in the “normal” configuration, 
see Luhmann et al. (2013).

Multi-station applications

Two examples are reported for multi-station applica-
tions. In the first one (see Scaioni et al. 2014b), the 
aim was to measure deformations of tunnel cross-sec-
tions. For this purpose, a set of targets was fixed on the 
vault thanks to special supports (see Fig. 4). Then, at 
each epoch, a block of four images was captured using 
a Nikon D700 camera. This technique had the drawback 
of requiring the independent measurement of a distance 
between two targets close to the pavement for setting 
the scale at any observation epochs. A graduated wire 
was adopted to this aim. Other components of the 3D 
datum were not constrained, because only relative inter-
distances between couples of targets were needed.

Three-dimensional coordinates of targets measured 
during the first observation epoch (t0) were assumed as 
reference. Because targets were positioned to 
approximately lie in a vertical plane, the equation of this 
plane was estimated and coordinates of any targets 
projected onto this reference surface. This allowed 
splitting the deformation analysis in two parts: “off-plane” 
displacements, which could be evaluated at each epoch as 
residuals with respect to the interpolating plane, and “in-
plane” displacements. An affine transformation could

Fig. 3 Specimen of compacted sand under loading of a foundationmodel
(modified from Barazzetti and Scaioni 2011)



be used to transform the coordinates of targets at the generic
epoch ti into the reference system of epoch t0. Coefficients of
the affine transformation were estimated by considering any
pairs of corresponding targets at both epochs. A robust L1-
norm estimate allowed reducing the influence of individual
target displacements or measurement errors.

Once all parameters ajk of the affine transformation have
been estimated, in-plane displacements of each target could be
analyzed.

Experiments with simulated target displacements demon-
strated the chance to achieve a theoretical accuracy of
±0.5 mm. After comparison with high-precision geodetic
observations, the accuracy of the real photogrammetric mea-
surements was evaluated to be consistent with the theoretical
one and resulted in about 0.2-pixel.

The second example reports about an application for mea-
suring deformation on the surface of an ancient masonry wall
during in situ loading test in the basement of Istituto
Lombardo (Milan, Italy—see Barazzetti and Scaioni 2011).
The experiment setup is shown in Fig. 5. Four cameras Nikon
D80 were placed in front of the area where an artificial
compression was induced using bolted steel plates. Multi-
station photogrammetry was necessary because of the high
precision required, especially for detecting possible off-plane
deformations with respect to the wall surface. The standard
procedure for measuring deformations during such tests is to
install a set of LVDTs, which may provide information only
on a limited number of locations. Moreover, LVDTs cannot
observe off-plane displacements.

Cameras had been independently calibrated before the
experiment. Shooting was synchronized among different cam-
eras and with the control unit of the loading device and
LVDTs. Also in this case, the slow deformation speed did
not entail any problems related to sensor synchronization. EO
parameters of all camera stations were computed before the
loading test started. Some coded targets (see Fig. 5 on the
right) were positioned to this purpose. The EOwas assumed to
be unchanged at any epochs, in the hypothesis that no move-
ments occurred to camera stations. Some non-coded targets
were glued on the central area of the specimen to track the
displacements.

Fig. 4 Example of a multi-station IBDM system adopted for monitoring
deformation in tunnel cross-sections. On the top, the target setup is
shown. On the bottom, the photogrammetric network scheme is shown

Fig. 5 Multi-station camera
system (on the left) adopted for
measuring deformation (on the
right) during a loading test of an
ancient masonry wall (Istituto
Lombardo, Milan, Italy)



Theoretical accuracies of ±0.008 and ±0.013 mm were 
found for in-plane and off-plane displacements, 
respectively. These values are comparable with the pixel 
resolution re-projected onto the wall, i.e., 0.1-pixel. The 
improvement obtained is also due to the robust configuration 
of the network including convergent images.

Applications based on SPT

ABM point-tracking applications

A SPT analysis to evaluate the cracking response of a 
polymer-modified asphalt binder is presented. The 
cracking behavior of the mastics was investigated using a 
modified Direct Tension Test (Niu et al. 2014) 
developed at the University of Parma, Italy. In 
particular, the analysis was focused on a very small 10-
mm-wide dog bone specimen (see Fig. 6), and the results
were used to calibrate and validate a finite element method
(FEM) numerical model.

For image acquisition, a Basler Pilot piA1600-35gm cam-
era equipped with 8-mm lens was used. Due to the very small 
region of interest (ROI) depicted in Fig. 6, it was rather 
impossible to apply coded target on the surface of the speci-
men. At the same time, a very detailed (i.e., with many 
measurement locations) description of the strain field was 
required to correctly validate the numerical model. The 
ABM approach was then considered the best solution. A grid 
with 0.2-mm steps was established to fix the initial positions 
of LSM. To improve the contrast of the material texture and to

achieve the highest level of accuracy in SPT, a talcum 
spray treatment was applied to all the specimens.

The test is usually very fast to avoid unwanted viscous 
behavior of the mastic. The speed of the loading frame is set 
to induce cracking initiation in approx. 1–2 s. For this 
reason, only the central part of the camera sensor was used to 
acquire images (ROI of 1608×500 pixels) achieving a 
standard frame rate of 80 frame per second (fps).

In Fig. 7, the comparison of the results with 
the numerical model simulation is presented for one of 
the mastics. Axes report stress and relative strain along x 
and y directions, respectively. The FEM model 
assumes an elastic behavior for the material and thus 
can be com-pared only for the first part of the test. 
The reported example shows a maximum departure 
between the mea-sured (in blue, labeled “strain”) and 
simulated (in red, labeled “sim-strain”) values of 0.8 
% with an overall standard deviation (for the linear 
part) of 0.4 %. The analysis of the graph can clearly 
identify the precise moment of crack initiation and of 
the material resistance failure, as well as the elastic 
response of the crack edges.

Feature-point tracking applications

As an example of this category, the analysis of two image 
sequences gathered by means of Nikon D200 cameras is 
shown. The object is represented by a landslide simulation 
facility during experiments established at Tongji University, 
Shanghai (P.R. China), see Scaioni et al. (2013b). FPT is used 
to highlight the region where the sliding process started in 
order to predict a forthcoming collapse on the basis of number 
and velocity of tracked points. Since the physical phenome-
non is not continuous, FPT is restarted by considering all 
interest points found in every image of the sequence and 
matched with the following one.

Fig. 6 One of the polymer-modified dog bone specimen used in 
the ABM-SPT analysis described at “ABM point-tracking applications”

Fig. 7 Stress-strain diagram of experimental (in blue) and theoretical 
(in red) results in the experiment described at “ABM point-
tracking applications”



This solution has allowed either tracking those points 
that were continuously moving in more images as well as 
detect-ing sudden and discontinuous displacements. FBM 
has been implemented by using SURF, which may provide 
slightly less interest points than SIFT, but with a smaller 
computational cost. This choice has been motivated by the 
need of designing a prototype system to deal with real-time 
monitoring of full-scale landslides, see Feng et al. (2012).

Some results of FPT are displayed in Fig. 8. As can be 
seen, the surface of the down-scaled slope is not flat and FPT 
cannot provide metric results. On the other hand, the 
availability of the sequence gathered by a second camera 
forming a stereo-camera system may also provide 3D 
coordinates of points. In that case, points should be also 
match across any synchronous image pairs.

The aim of this experiment was to detect precursory 
events of small and large slope collapses. The three 
columns of Fig. 8 show the images just before (in the 
upper row) and after (in the lower row) three failures. 
The time elapsed between two consecutive images was 30 
s. As it can be seen in the figure, feature points (in green)
were tracked in the sequence just before a col-lapse,
then they were lost. The analysis of number (reported
in the first row), extension, and velocity of tracked
points could be used to infer potential collapses.

Theoretical evaluation of point precision in object 
space provided superior limit values of approx. ±1 mm in 
the plane parallel to the sensor and approx. ±5 mm along 
depth (see Scaioni et al. 2014a). The speed of deformations 
did not entail significant effects due to camera 
synchronization errors. Since the aim here was chiefly to 
obtain qualitative information on the tracked point 
distribution, validation measurements were not available.

Applications based on surface comparison

A permanent stereo-camera system

A quite innovative application of DSM comparison in IBDM 
is described in Roncella et al. (2014) where the displacements 
of a landslide in the Italian Alps are evaluated through the use 
of a fixed photogrammetric stereo-camera system. Two fixed 
remote stations on the opposite flank of the valley, approx. 
500 m from the slope, periodically record (usually one frame 
per hour) images of the landslide area and send them to a 
central processing unit that, through automated dense 
matching algorithms, produce the DSM of the entire slope. 
A couple of 21-megapixel Canon EOS 5D Mark II cameras 
equipped with 50-mm lens are used. Geometrically 
constrained LSM is implemented to find corresponding 
points: in addition to the evaluation of similarity between 
intensity values, also the epipolar constrain is exploited. Due 
to landslide visibility limitation, the baseline between the two 
camera stations is quite small (approx. 100 m) if compared 
with the distance from the object. Consequently, the precision 
of 3D coordinates of object points is unsatisfactory for short 
monitoring periods: in the farther part of the slope, precision 
up to 10 cm in depth direction should be expected, and the 
system cannot be used, for instance, as an alert device to 
highlight sudden landslide accelerations. Nonetheless, thanks 
to its very low cost, the system can be used for minor (and less 
dangerous) landslide monitoring over a long period, giving 
important pre-alerting information.

The lesson learnt from this experience chiefly consists in 
the great attention to be paid in the system design, since both 
imaging geometry and illumination might change during the 
monitoring period that could also span over several years. At
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Fig. 8 FPT of an image sequence capturing a scaled-down landslide simulation experiment



at least 500 m far from the object), noisy results should 
be expected.

Repeated multi-station networks

The second example concerned the evaluation of large 
debris movement in the Tartano Valley (Italian Alps). 
The land erosion in this valley could cause the sediment 
transport of debris into the Tartano Creek (see Fig. 10). The 
slope under investigation was 240-m long and 130-m 
wide. A geodetic network was established to set up a 
stable GRS to compare measurements at three different 
epochs. A set of GCPs was placed on the slope and their 
positions measured with a theodolite. At each epoch, a 
photogrammetric network made up of 13 images was 
acquired by using a Nikon D700 camera equipped with a 90-
mm lens (see Table 1). This camera was independently 
calibrated before data acquisition campaigns.

The EO parameters of each block of images were comput-
ed by using the automatic procedure ATiPE, see 
Barazzetti et al. (2010). This outputs a dense set of tie points 
(see Fig. 10) to be used together with GCPs in the bundle 
adjustment. In the dense matching stage, the availability of 
multiple images was exploited to apply the MGCM (Grün 
and Baltsavias 1988) algorithm described in Previtali et 
al. (2011) and called MGCM+. Such implementation 
incorporates techniques to increase the pull-in-range 
capability and to select the best images to be used for 
the reconstruction of the different regions of the slope. In 
a first stage, a DSM with a relative point distance of 15 
cm×15 cm was computed. In a second stage, the first DSM 
was used as input surface to be refined up to a point density 
of about 2 cm×2 cm.

After the computation of three point clouds describing the 
ground slope surface at different epochs, a triangulated irregular 
network (TIN) was derived from each of them. Then, the 
comparison was carried out by computing volumes between 
pairs of TIN surfaces. An example of this is reported in the right 
part of Fig. 10. Considering an estimated precision of about 15 
cm, the deformation map does not show a significant mod-
ification of the valley topography due, for example, to severe 
surface erosion. On the other hand, several small areas showing 
a negative change in the range from −15 to −25 cm were 
visible, which confirmed the active erosion process. Focusing 
on some details, some small movements could be observed as 
well, as proved by the presence of close regions with opposite 
changes. Unfortunately, the lack of benchmarking data (e.g., 
from laser scanning) did not allow any validation.

Conclusions

In this paper, an overview on the state-of-the-art image-based 
deformation measurement (IBDM) has been given along with

Fig. 9 Results obtained using the stereo-camera system for 
landslide monitoring

the same time, as deeply described in Roncella et al. 
(2014), the system must be capable of very good stability 
along time to avoid the detection of false displacements. For 
this purpose, an automatic software procedure for checking 
IO and EO is implemented: whenever a significant variation 
is encountered, a correction is applied.

In Fig. 9, some results produced by the system are 
shown. In the top figure, one of the reconstructed DSMs is 
reported, showing the landslide body in the middle and 
some vegetated areas around. On the bottom, the 
displacement map after an observation period of 2 months is 
shown. The presence of vegetation may result in false 
ground displacement due to growth during different sea-
sons of the year. To exclude vegetation, first a fixed 
mask is applied to get rid of lateral regions which are 
permanently covered by trees. Secondly, the remainder 
part is analyzed using spatial filtering techniques to detect 
bushes and other small groups of trees.

Comparison with other monitoring systems (in 
particular GBSAR, which may provide high-precision 
observations, see Roncella et al. 2014) shows that the 
averaged difference between tracked displacements of 
points in the same areas was 35 mm with a standard 
deviation of 118 mm.

In addition, such empirical accuracy of the stereo-camera 
system is in good agreement with the theoretical prediction, 
even if, with this particular imaging geometry (the cameras are



some examples of applications in “Review of IBDM 
applications.”

Different methodologies have been organized into 
three main categories (see “IBDM methodologies”). The 
first cate-gory entails the applications based on signalized 
coded tar-gets, which allow the definition of specific points 
to be pre-cisely measured and tracked over time 
(“Applications based on coded targets”). This approach 
demonstrated to be able to provide precise observations in 
highly automatic fashion, but it can output only a limited 
number of tracked points (depend-ing on how many targets 
are placed). Measurements can be carried out in 2D or 3D, 
depending on the camera set up.

Surface-point tracking (SPT) based on image matching 
techniques can be used in order to enlarge the number of 
points (“Surface-point tracking”). Here two subclasses 
have been distinguished, depending on the typology of 
matching algorithm adopted. In the first subclass, area-
based matching is used for tracking continuous and 
regular displacements without sudden changes. In the 
second subclass (feature-point tracking), feature-based 
matching offers a major robustness to

find corresponding points also when the displacement field 
is less regular. The approaches in this category are mostly 
ap-plied for 2D in-plane measurement or for the 
qualitative evaluation of deformations in the case of non-
flat objects. However, SPT is expected to give valuable 
results also when working with two or more convergent 
images.

In the third category (“Surface comparison”), the attention 
is switched on full 3D deformation. Deformation 
measure-ment is carried out through the reconstruction of 
the object’s surface at any observation epochs by using 
dense matching techniques. Such surfaces are then 
compared to detect rigid and non-rigid deformations, as 
well as loss/accumulation of material. This method has to 
be followed when changes may happen in a large number 
of locations in the area under monitoring, like in the case 
of ground and rock slopes. It can be classified as a real 
area-based deformation measurement technique, while 
methods in other categories basically rely on points. The 
advantage of using the image-based approach mainly 
consists in the lower cost and in the major transportability 
and adaptability of cameras with respect to 3D
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Fig. 10 Results obtained in the 
multi-epoch comparison of DSMs 
derived using MGCM+ algorithm 
in Tartano Valley, Italy (modified 
from Previtali et al. 2014)



scanning sensors. However, the integration of different sen-
sors and methods seems an important strategy to be largely
exploited in the future.

This research has been partially presented at 2nd Joint
International Symposium on Deformation Monitoring in
Nottingham (UK), 9–10 September 2013, and co-sponsored
by FIG, IAG, and ISPRS.

Acknowledgment This research was partially funded by the National 
High-Tech R&D Program of China (No. 2012AA121302), the National 
Basic Research Program of China (No. 2013CB733204), the National 
Science Foundation of China (No. 41171327), the Specialized Research 
Fund  for  the  Doctoral  Program  of  Higher  Education  (No.  
20120072120057), and the Italian Ministry of University and Research 
within the project FIRB2010 (No. RBFR10NM3Z). Many acknowledge-
ments also go to all colleagues and students involved in the organizations 
of the experiments reported in “Review of IBDM applications.” Among 
others, we would like to thank Prof. L. Binda, Prof. A. Giussani, Dr. Fabio 
Roncoroni (Politecnico di Milano, Italy), Prof. R. Castellanza  
(University of Milan Bicocca), Prof. G. Forlani (University of 
Parma, Italy), Dr. H. Wu, Dr. P. Lu, Prof. R. Li, Prof. X. Tong, 
and Prof. W. Wang (Tongji University, P.R. China).

References

Apollonio FI, Ballabeni A, Gaiani M, Remondino F (2014) Evaluation of
feature-based methods for automated network orientation. Int Arch 
Photogramm Remote Sens Spat Inf Sci 40(5):47–54

Baker S, Scharstein D, Lewis JP, Roth S, Black MJ, Szeliski R (2011) A
database and evaluation methodology for optical flow. Int J Comput
Vis 92(1):1–31

Barazzetti L, ScaioniM (2009) Crackmeasurement: development, testing
and applications of an automatic image-based algorithm. ISPRS J
Photogramm Remote Sens 64(3):285–296

Barazzetti L, Scaioni M (2010) Development and implementation of
image-based algorithms for measurement of deformations in mate-
rial testing. Sensors 10(8):7469–7495

Barazzetti L, Scaioni M (2011) Photogrammetric tools for deformation
measurements. In: ‘Proc. XX Congr. Associazione Italiana di 
Meccanica Teorica e Applicata’ (AIMETA), Bologna, Italy, 12–15 
Sept. 2011, 10 pages (e-doc online at http://
www.lamc.ing.unibo.it/aimeta2011)

Barazzetti L, Remondino F, Scaioni M (2010) Orientation and 3Dmodel-
ling from markerless terrestrial images: combining accuracy with
automation. Photogramm Rec 25(132):356–381

Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust
features (SURF). Comp Vision Image Underst 110(3):346–359

Bethmann F, Luhmann T (2010) Least-squares matching with advanced
geometric transformation models. Int Arch Photogramm Remote
Sens Spat Inf Sci 38(5):86–91

Bethmann F, Luhmann T (2014) Object-based multi-image semi-global
matching—concept and first results. Int Arch Photogramm Remote
Sens Spat Inf Sci 10(5):93–100

Birgisson B, Montepara A, Romeo E, Roncella R, Roque R, Tebaldi G
(2009) An optical strain measurement system for asphalt mixtures.
Mater Struct 42:427–441

Brown DC (1971) Close-range camera calibration. Photogramm Eng 37:
855–866

Dall’Asta E, Roncella R (2014) A comparison of semiglobal and local
dense matching algorithms for surface reconstruction. Int Arch
Photogramm Remote Sens Spat Inf Sci 40(5):187–194

Fedele R, Scaioni M, Barazzetti L, Rosati G, Biolzi L, Condoleo P (2014)
Delamination tests on CFRP-reinforced masonry pillars: optical
monitoring and mechanical modelling. Cem Concr Compos 45:
243–254

Feng T, Liu X, Scaioni M, Lin X, Li R (2012) Real-time landslide
monitoring using close-range stereo image sequences analysis. In:
Proc. ‘2012 Int. Conf. on Systems and Informatics (ICSAI 2012),’
Yantai, P.R. China, 19–21 May 2012, pp. 249–253

Forlani G, Giussani A, Scaioni M, Vassena G (1996) Target detection and
epipolar geometry for image orientation in close-range photogram-
metry. Int Arch Photogramm Remote Sens Spat Inf Sci 31(B5/V):
518–523

Förstner W, Gülch E (1987). A fast operator for detection and precise
location of distinct points, corners and centres of circular features. In
Proc. ‘ISPRS Intercommission Conf. on Fast Processing of
Photogrammetric Data’, Interlaken, Switzerland, June 1987, pp.
281–305

Fraser CS (1992) Photogrammetric measurement to One part in a million.
Photogramm Eng Remote Sens 58(3):305–310

Fraser CS (1996) Network design. In: Atkinson KB (ed) Close range
photogrammetry and machine vision. Whittles, Dunbeath,
Caithness, Scotland, pp 256–281

Fraser CS (2013) Automatic camera calibration in close range photo-
grammetry. Photogramm Eng Remote Sens 79:381–388

Fraser CS, Woods A, Brizzi D (1996) Hyper redundancy for accuracy
enhancement in automated close range photogrammetry.
Photogramm Rec 20:205–217

Goshtasby A (2005) 2-D and 3-D image registration. JohnWiley & Sons,
Hoboken, NJ, U.S.A., pp. 258

Granshaw SI (1980) Bundle adjustment methods in engineering photo-
grammetry. Photogramm Rec 10:181–207

Grün A (1980) Precision and reliability aspects in close range photo-
grammetry. Int Arch Photogramm Remote Sens 23(B11):378–391

Grün A (1985) Adaptative least squares correlation: a powerful image
matching technique. S Afr J Photogramm Remote Sens Cartogr 14:
175–187

Grün A (2012) Development and status of image matching in photo-
grammetry. Photogramm Rec 27:36–57

Grün A, Baltsavias EP (1988) Geometrically constrained multiphoto
matching. Photogramm Eng Remote Sens 54(5):633–641

Haala N (2013) The landscape of dense image matching algorithms. In D
Fritsch (Ed.), ‘Proc. Photogrammetric Week 2013,’ Stuttgart, pp.
271–284

Harris C, Stephens M (1988) A combined corner and edge detector. In:
Proc. ‘Alvey Vision Conf.,’ Vol. 15, 6 pages

Hartley R, Zissermann A (2006) Multiple view geometry in computer
vision. Cambridge University Press

Hirschmüller H (2005) Accurate and efficient stereo processing by semi-
global matching and mutual information. In: Proc. IEEE Int. Conf.
on ‘Computer Vision and Pattern Recognition’ (CVPR2005), San
Diego June 20–26 2005, 8 pages

Hirschmüller H (2008) Stereo processing by semiglobal matching and
mutual information. IEEE T Patterns Anal 30(2):328–341

Hoffmann CM (1989) Geometric and solid modeling: an introduction.
Morgan Kaufmann Publishers Inc., San Francisco

Jazayeri I, Fraser CS (2010) Interest operators for feature-based matching
in close range photogrammetry. Photogramm Rec 25(129):24–41

Lichti DD, Jamtsho S, El-Halawany SI, Lahamy H, Chow J, Chan TO,
El-Badry M (2012) Structural deflection measurement with a range
camera. J Surv Eng-ASCE 138(2):66–76

Lowe DG (2004) Distinctive image features from scale-invariant
keypoints. Int J Comp Vis 60(2):91–110

Luhmann T (2009) Precision potential of photogrammetric 6DOF pose
estimation with a single camera. ISPRS J PhotogrammRemote Sens
64(3):275–284

http://www.lamc.ing.unibo.it/aimeta2011
http://www.lamc.ing.unibo.it/aimeta2011


Luhmann T (2014) Eccentricity in images of circular and spherical targets
and its impact on spatial intersection. Accepted for publication on
Photogramm Rec

Luhmann T, Robson S, Kyle S, Boehm J (2013) Close range photogram-
metry: 3D imaging techniques. Walter De Gruyter Inc, Germany, p
702

Maas HG (1996) Automatic DEM generation by multi-image feature
based matching. Int Arch PhotogrammRemote Sens 31(3):484–489

Maas HG, Hampel U (2006) Photogrammetric techniques in civil engi-
neering material testing and structure monitoring. Photogramm Eng
Remote Sens 72(1):39–45

Mikolajczyk K, Schmid C (2005) A performance evaluation of local
descriptors. IEEE T Patterns Anal 27(10):1615–1630

Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J,
Schaffalitzky F, Kadir T, Van Gool L (2005) A comparison of affine
region detectors. Int J Comp Vis 65(1–2):43–72

Monserrat O, Crosetto M, Luzi G (2014) A review of ground-based SAR
interferometry for deformation measurement. ISPRS J Photogramm
Remote Sens 93(1):40–48

Mortenson ME (1985) Geometric modeling. John Wiley & Sons, New
York

Niu T, RoqueR, LoppGA (2014) Development of a binder fracture test to
determine fracture energy properties. Road Materials and Pavement
Design 15(sup1):219–238

Nyce DS (2004) Linear position sensors: theory and application. John
Wiley & Sons, New York, p 170

Otepka JO, Fraser CS (2004) Accuracy enhancement of vision metrology
through automatic target plane determination. Int Arch Photogramm
Remote Sens Spat Inf Sci 35(B5):873–879

Peters WH, RansonWF (1982) Digital imaging techniques in experimen-
tal stress analysis. Opt Eng 21(3):427–431

Previtali M, Barazzetti L, Scaioni M, Tian Y (2011) An automatic multi-
image procedure for accurate 3D object reconstruction. In: Proc. ‘4th
Int. Congress on Image and Signal Processing (CISP) 2011,’
Shanghai, 15–17 Oct. 2011, Vol. 3, pp. 1400–1404

Previtali M, Barazzetti L, Scaioni M (2014) Accurate 3D surface mea-
surement of mountain slopes through a fully automated imaged-
based technique. Earth Sci Inform 7(2):109–122

Raguse K, Heipke C (2009) Synchronization of image sequences—a
photogrammetric method. Photogramm Eng Remote Sens 75(4):
535–546

Remondino F, Del Pizzo S, Kersten TP, Troisi S (2012) Low-cost and
open-source solutions for automated image orientation—a critical
overview. Springer, Heidelberg, pp 40–54

Remondino F, Spera MG, Nocerino E, Menna F, Nez F (2014) State of
the art in high density image matching. Photogramm Rec 29(146):
144–166

Remondino F, Stoppa D (2013) TOF Range-Imaging Cameras. Springer,
Berlin Heidelberg

Roncella R, Scaioni M, Forlani G (2004) Application of digital photo-
grammetry in geotechnics. Int Arch Photogramm Remote Sens Spat
Inf Sci 35(B5):93–98

Roncella R, Romeo E, Barazzetti L, Gianinetto M, Scaioni M (2012)
Comparative analysis of digital image correlation techniques for in-
plane displacement measurements. In: Proc. 5th Int. Congress on
‘Image and Signal Processing (CISP2012),’ Chongqing, P.R. China,
16–18 Oct. 2012, pp. 721–726

Roncella R, Forlani G, Fornari M, Diotri F (2014) Landslide monitoring
by fixed-base terrestrial stereo-photogrammetry. ISPRS Ann
Photogramm Remote Sens Spat Inf Sci 2(5):297–304

Rosenfeld A, Kak AC (1976) Digital picture processing (Vol. 1) Elsevier
Rosten E, Drummond T (2006) Machine learning for high-speed corner

detection. In: Proc. ‘European Conf. on Computer Vision’ (ECCV
’06) Graz, Austria, 7–13 May 2006, pp. 430–443

Scaioni M, Roncella R, Alba MI (2013a) Change detection and deforma-
tion analysis in point clouds: application to rock face monitoring.
Photogramm Eng Remote Sens 79(5):441–456

Scaioni M, Lu P, ChenW, Qiao G,Wu H, Feng T, Tong X,WangW, Li R
(2013b) Analysis of spatial sensor network observations during
landslide simulation experiments. Eur J Environ Civil Eng 17(9):
802–825

Scaioni M, Feng T, Barazzetti L, Previtali M, Lu P, Giao G, Wu H, Chen
W, Tong X, Wang W, Li R (2014a) Some applications of 2D and 3D 
photogrammetry during laboratory experiments for hydrogeological 
risk assessment. Geomatics, Natural Hazards and Risk, 24 pages 
(online at doi:10.1080/19475705.2014.885090)

Scaioni M, Barazzetti L, Giussani A, Previtali M, Roncoroni F, Alba MI
(2014b) Photogrammetric techniques for monitoring tunnel defor-
mation. Earth Sci Inf 7(2):83–95

Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense
twoframe stereo correspondence algorithms. Int J C Vis 47(1–3):7–42

Seitz SM, Curless B, Diebel J, Scharstein D, Szeliski R (2006) A
comparison and evaluation of multi-view stereo reconstruction al-
gorithms. In: Proc. IEEE Int. Conf. on ‘Computer Vision and Pattern
Recognition’ (CVPR 2006), New York, 17–22 June 2006, Vol. 1,
pp. 519–526

Smith SM, Brady JM (1997) SUSAN—a new approach to low level
image processing. Int J Comp Vis 23(1):45–78

Spencer L, Shah M (2004) Temporal synchronization from camera mo-
tion. In Proc. 6th Asian Conf. on ‘Computer Vision,’ Jeju Island,
Korea, 27–30 January 2004, Vol. 1, pp. 515–520

Szelisky R (2010) Computer vision: algorithms and applications.
Springer, Berlin, p 833

Toschi I, Capra A, De Luca L, Beraldin JA, Cournoyer L (2014) On the
evaluation of photogrammetric methods for dense 3D surface re-
construction in a metrological context. ISPRS Ann Photogramm
Remote Sens Spat Inf Sci 2(5):371–378

Triggs B, McLauchlan P, Hartley R, Fitzgibbon A (2000) Bundle adjust-
ment—a modern synthesis. In: ‘Vision Algorithms ’99’, LNCS No.
1883, Berlin, pp. 298–372

Tuytelaars T, Mikolajczyk K (2008) Local invariant feature detectors: a
survey. Found Trends Comput Graph Vis 3(3):177–280

Verhagen B, Timofte R, Van Gool L (2014) Scale-invariant line descrip-
tors for wide baseline matching. In: Proc. IEEE Winter Conference
on ‘Applications of Computer Vision,’Colorado Springs, CO, USA,
24–26 March 2014, pp. 493–500

Vosselman G, Maas HG (2010) Airborne and terrestrial laser scanning.
Whittles, Dunbeath, Caithness, Scotland

Wallis R (1976) An approach to the space variant restoration and en-
hancement of images. In Proc. Symp. on ‘Current Mathematical
Problems in Image Science’, Naval Postgraduate School, Monterey
CA USA, pp. 329–340

http://dx.doi.org/10.1080/19475705.2014.885090

	Image-based deformation measurement
	Abstract
	Introduction
	IBDM methodologies
	Applications based on coded targets
	Surface-point tracking
	Area-based matching for SPT
	Feature-point tracking

	Surface comparison
	Dense image matching
	Techniques for comparing point clouds


	Review of IBDM applications
	Applications with coded targets
	Single-camera applications
	Stereo-camera system applications
	Multi-station applications

	Applications based on SPT
	ABM point-tracking applications
	Feature-point tracking applications

	Applications based on surface comparison
	A permanent stereo-camera system
	Repeated multi-station networks


	Conclusions
	References




