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1 Introduction

Pair creation by an external field or by moving boundaries 
is a very interesting research field which has been explored 
since the birth of modern quantum field theory [1,2]. We 
focus on photon pair creation associated with variations of 
the dielectric constant in a dielectric medium. This topic 
has been a subject of active investigation, and in this re-
spect we can quote e.g. a series of papers by Schwinger 
concerning a possible relation between dynamical Casimir 
effect (DCE) and sonoluminescence [3–9]. In this paper, 
instead of starting, as Schwinger did, from the quanti-
zation of electrodynamics for a dielectric non dispersive 
medium, we refer to a less phenomenological situation in 
which dielectric properties are rooted into the interaction 
between electromagnetic field and a set of oscillators re-
producing sources for dispersive properties of the electro-
magnetic field in matter, as in the well-known Hopfield 
model developed by Hopfield [10–13]. We generalize the 
usual picture in the following sense: we work in a gen-eral 
framework for photon pair creation associated with a 
space-time dependent dielectric susceptibility, and in 
particular we focus our attention on perturbation theory. 
In [14] we have proposed a generalization of the so-called 
Hopfield model, fully Lorentz covariant, and allowing the 
introduction of a quite general class of spacetime depen-
dent perturbations reproducing a multitude of physically 
interesting situations. We point out that we are implicitly 
assuming that absorption, which plays a fundamental role 
in Kramers-Kronig relation, is negligible. This assumption 
amounts to a first-step approximation, which is reason-
able as far as field frequencies far from the resonances are
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considered, and as far as we focus on photon production 
induced by space-time dependent perturbations. See also 
the discussion in the following section.

In this paper we perform a first order perturbative 
analysis of the mentioned class, in order to investigate the 
induced photon pair production from vacuum. In partic-
ular, we will compute the S matrix element associated to 
the transition amplitude from the vacuum to a photon pair 
state. We will consider the case of a general dispersive but 
non dissipative linear medium, with an arbitrary number of 
resonances, and will determine the number of photons 
emitted, as well as the number of photon pairs produced by 
the presence of a time varying perturbation. Our 
theoretical picture appears to be applicable to several 
physically interesting situations where an intense laser 
pulse, shot into a nonlinear dielectric medium, generates a 
travelling dielectric perturbation thanks to the Kerr effect 
[15]. We point out that, in our model, nonlinearity is 
phenomenologically taken into account simply through its 
effect, i.e. the presence of a refractive index perturbation 
travelling in the medium. A perturbative phe-
nomenological approach is e.g. at the root of an interesting 
pair-creation phenomenon which displays a threshold for 
photon pair-creation depending on the velocity of the per-
turbation [16,17]. Our example refers just to this kind of 
travelling perturbation with constant velocity, which can 
be amenable of experimental set-up and verification, and 
represents an improvement of [16,17]. Beyond the afore-
mentioned phenomenology associated with the Kerr effect, 
we mention that also sonoluminescence could be taken into 
account in our framework (perturbation theory was ap-
plied in [18]). A further interesting situation, where pho-
ton pair production is induced by a pulse with orbital 
angular momentum, will be described elsewhere [19].



We also underline that the present picture, at least on 
the side of dielectric properties of the medium, provides a 
coherent foundation and generalization of the results 
presented in [18]. Indeed, a more fundamental setting for 
the theory is provided, and dispersive properties are auto-
matically taken into account. Moreover, the possibility to 
obtain in an easier way higher order contributions is also 
given. It is worth mentioning that in [20], a very general 
picture and interesting picture is provided, where inho-
mogeneities with generic spatio-temporal dependence are 
allowed, and the susceptibility is a tensor field depend-ing 
on space and time. Moreover, therein absorption is included 
by means of a bath of oscillators whose interac-tions with 
the electromagnetic field originate dissipative effects. Even 
if, in this respect, our model can be considered as a sub-
case, holding for negligible absorption and for perturbative 
inhomogeneities, of this general approach, we point out 
that we develop a formalism leaving room for covariance 
and quantization in a covariant gauge, which are not 
treated therein.

2 The Hopfield model

Quantization in a dispersive medium can be approached in 
different ways. A possibility is to perform a quanti-zation of 
the electromagnetic field by taking into account spacetime 
and frequency dependence of the dielectric con-stant and 
magnetic permeability. For purely dispersive effects, see 
e.g. [21,22]. Alternatively, one can start from a less
phenomenological picture, as in [10,11,20,23,24]. See also
the recent monograph [25] for a survey on meth-ods of
quantization both in a phenomenological frame-work and
in a microscopically grounded one. In partic-ular, in [14] we
have proposed a generalized relativistic covariant Hopfield
model for the electromagnetic field in a dielectric dispersive
medium in a framework in which one allows a space-time
dependent susceptibility, aimed to a phenomenological
description of a space-time varying dielectric perturbation
induced by a local time dependent variation of the
dielectric susceptibility. This is per sè an interesting
contribution to the microscopically-grounded works on the
subject, because covariance and constrained quantization
coexist and are coherently discussed. Covariance, as is
known, and is confirmed since the original work by 
Minkowski [26] and e.g. by  [27,28], is not simply a spec-
ulative exercise in the picture at hand, but allows to get the
correct behavior of physical quantities when chang-ing
from an inertial observer to another one. This e.g. is
relevant in the discussion of the analogue of the Hawking
effect (for the optical case, see e.g. [29–33]), where pass-ing
to the reference frame which is comoving with the
uniformly travelling perturbation is of basic relevance in
order to understand several theoretical questions1. Con-
strained quantization is as well an important topic for un-
derstanding the role of constraints on the quantization of

1 We shall discuss the Hawking effect in the framework of
the Hopfield model in a dedicated paper.

the model at hand (see e.g. [34,35]). Introducing absorp-
tion as in [20,23,24] would make quite trickier both the 
constrained quantization scheme and the effective compu-
tations. We mean to come back on this topic in future 
works.

In this paper, we follow a different strategy with re-
spect to [14], where no reduction of the first-class con-
straints to second-class ones occurs. As a consequence, the 
Lorentz-Landau gauge condition we fix (see below) is to be 
imposed by means of a Gupta-Bleuler condition on the 
physical states. Moreover, we use MKS unrationalized 
system.

In terms of the four-potential gauge field A and a sin-
gle polarization field P , it is described by the classical 
Hamiltonian density

H =
1
2

(
Πi

A

)2
+

1
4
FijF

ij + A0 (∂iΠA i)

+
1
c

(v0Pi − viP0)ΠA i − vk

v0
(∂kPμ)ΠPμ

− χ

2 (v0)2
ΠPμΠμ

P − ω2
0

2χ
PμPμ

+
1

2c4
(v0Pi − viP0)

2 , (1)

vμ is the four-velocity of the dielectric medium. The
polarization field must satisfy the following condition:

vμPμ = 0. (2)

The space of complexified fields (A, P ) is endowed with
the conserved scalar product

((Aμ, Pμ)|(Ãμ, P̃μ)) =
i

c

∫

Σt

[
F ∗0νÃν +

1
χ

vρ∂ρP
∗σP̃σv0

− 1
c
(P ∗0vρ − P ∗ρv0)Ãρ − F̃ 0νA∗

ν

− 1
χ

vρ∂ρP̃
σP ∗

σv0

+
1
c

(
P̃ 0vρ − P̃ ρv0

)
A∗

ρ

]
d3x.

(3)

This provides a natural structure for the procedure of 
quantization. Because of the presence of constraints this 
requires some carefulness, and the result is that, beyond 
the standard CCR for the A field, the correct CCR for the 
field P μ and its conjugate momentum Πμ is [14]:

[Pμ, Πν
P ] = i�

(
ημν − 1

vρvρ
vμvν

)
δ(3)(x − y). (4)

Accordingly to the classical constraint condition
∂μAμ = 0, one imposes the following condition on
the physical states:

∂μAμ (+)|Ψphys〉 = 0, (5)



Fig. 1. The two lowest dispersion branches for diamond.

The third one appears for  ω > 4 × 1016 rad/s.

where, with standard notation, we mean that the pos-
itive frequency (annihilator) part of the operator van-
ishes on the physical states |Ψphys〉. The further con-
straint vμP μ = 0 is not related to a gauge invariance and is 
automatically implemented [14].

We will now consider the perturbative quantization 
of this model, by considering as unperturbed the model 
with constant susceptibility coefficient χ(x, t) = χ0. The
perturbation will then be parameterized by the function 
δχ(x, t) = χ(x, t) − χ0.

3 Perturbative on-shell quantization
of the Hopfield model

We consider unperturbed the case of constant χ0 [10,11], 
which is exactly tractable. The exact solutions of the 
classical equations of motion in the lab frame, and in 
the Lorentz-Landau gauge, are generated by plane waves 
having only spatial components

A(x, t) = A0e
−iωt+ik·x, (6)

P(x, t) = −i
χ0ω

ω2
0 − ω2

1
c
A0e

−iωt+ik·x, (7)

where ω is related to k by the dispersion relation

c2k2 = ω2

[
1 +

χ0

ω2
0 − ω2

]
= ω2n2

p(ω), (8)

where np(ω) is the phase velocity refractive index. The
last relation selects two branches separated by the res-
onance frequency ±ω0, the first and the second disper-
sion branches. Figure 1 concerns a more general case
(cf. Sect. 3.1) of two resonances, as for diamond. We call
±ω− the modes in the first dispersion branch, and ±ω+

the solutions in the other branch. Thus, we have

ω2
± =

ω2
0 + χ0 + c2k2

2

± 1
2

√[
(|k|c + ω0)

2 + χ0

] [
(|k|c − ω0)

2 + χ0

]
. (9)

It is easy to show that indeed ω− < ω0 and ω+ > ω0. The
general solution for the A field can be written in the form

Aj (x, t) =
∫

dω

∫
d3k

(2π)3

[
f j (ω,k) e−iωt+ikx

× δ

(
k2 − ω2

c2

[
1 +

χ0

ω2
0 − ω2

])
+ c.c.

]
. (10)

We can now integrate explicitly in ω by employing the
properties of the δ function. This gives

Aj(x, t) =
∫

d3k
Φ−

k

[
aj
ke−iω−t+ik·x + aj∗

k eiω−t−ik·x
]

+
∫

d3k
Φ+

k

[
ãj
ke−iω+t+ik·x + ãj∗

k eiω+t−ik·x
]
,

(11)

where we have introduced the measure factor (coming
from the δ distribution)

Φ±
k =

2
c2

ω±(2π)3
[
1 +

χ0ω
2
0

(ω2
0 − ω2±)2

]

=
2
c2

ω±(2π)3ng(ω±)np(ω±), (12)

where ng(ω) is the group velocity refractive index. Note
that the field results to be naturally the sum of ω− modes
with amplitude ak and ω+ modes with amplitude ãk.

In the same way we can compute the polarization field
and the associated momenta:

P j (x, t) = − i

c

∫
d3k
Φ−

k

χ0ω−
ω2

0 − ω2−

[
aj
ke−iω−t+ik·x

− aj∗
k eiω−t−ik·x

]

− i

c

∫
d3k
Φ+

k

χ0ω+

ω2
0 − ω2

+

[
ãj
ke−iω+t+ik·x

− ãj∗
k eiω+t−ik·x

]
, (13)

Πj
A(x, t) =

i

c2

∫
d3k
Φ−

k

ω−
[
aj
ke−iω−t+ik·x − aj∗

k eiω−t−ik·x
]

+
i

c2

∫
d3k
Φ+

k

ω+

[
ãj
ke−iω+t+ik·x

− ãj∗
k eiω+t−ik·x

]
− 1

c
P i(x, t), (14)

Πj
P (x, t) =

1
c

∫
d3k
Φ−

k

ω2
−

ω2
0 − ω2−

[
aj
ke−iω−t+ik·x

+ aj∗
k eiω−t−ik·x

]
+

1
c

∫
d3k
Φ+

k

ω2
+

ω2
0 − ω2

+

×
[
ãj
ke−iω+t+ik·x + ãj∗

k eiω+t−ik·x
]
. (15)

In the Hamiltonian formulation, A,P,ΠA,ΠP are the
dynamical variables subject to a canonical symplectic



structure at fixed time, with non vanishing Poisson 
brackets

{Ai(x, t), Πj
A(x′, t)} = −δijδ3(x − x′), (16)

{P i(x, t), Πj
P (x′, t)} = −δijδ3(x − x′), (17)

so that the Hamilton equations

∂tA = −{H,A}, ∂tΠA = −{H,ΠA}, (18)

∂tP = −{H,P}, ∂tΠP = −{H,ΠP}, (19)

are equivalent to the original Lagrange equations. One can
proceed with quantization by promoting the dynamical
variables to operators and the Poisson brackets to com-
mutators defined by the correspondence principle. Equiv-
alently, we can use ai

k, ãi
k and their conjugates as new dy-

namical variables. We will use the same symbols for the
corresponding operators. Notice that, if we indicate with

U± =
(

ξe−iω±t+ik·x,−i
χ0ω±

c(ω2
0 − ω2±)

ξe−iω±t+ik·x
)

(20)

the standard plane wave, with ξ a three dimensional
polarization times a scalar amplitude, we find that

ξ∗ · ak = (U−, (A,P)) , (21)

ξ · a†
k =

(U∗
−, (A,P)

)
, (22)

ξ∗ · ãk = (U+, (A,P)) , (23)

ξ · ã†
k =

(U∗
+, (A,P)

)
, (24)

where we used the scalar product (3) in which the first
component of each four-vectors is zero. Moreover, the
oscillators satisfy the canonical brackets

[
ai
k, aj†

k′

]
=

(
δij − kikj

k2

)
Φ−

k δ3 (k − k′) , (25)

[
ãi
k, ãj†

k′

]
=

(
δij − kikj

k2

)
Φ+

k δ3(k − k′), (26)

[
ai
k, ãj

k′

]
= 0,

[
ai
k, ãj†

k′

]
= 0, (27)

[
ai†
k , ãj

k′

]
= 0,

[
ãi†
k , ãj†

k′

]
= 0. (28)

However, recalling that the oscillator fields are constrained
by the transversality condition, it is convenient to consider
unconstrained oscillating field operators aμk, ãμk, μ = 1, 2
and express the fields in terms of the constrained opera-
tors

∑
μ e∗−μkaμk,

∑
μ e∗+μkãμk, where e±μk, μ = 1, 2 form

two bases (one for each sign) of the polarization vectors
orthogonal to k, and satisfying the relations

∑

μ

ei
±μkej

±μk = δij − kikj

k2
, (29)

whereas the unconstrained operators satisfy

[
aμk, a†

νk′

]
= δμνΦ−

k δ3 (k − k′) , (30)

[
ãμk, ã†

νk′

]
= δμνΦ+

k δ3 (k − k′) , (31)

[aμk, ãνk′ ] = 0,
[
aμk, ã†

νk′

]
= 0, (32)

[
a†

μk, ãνk′
]

= 0,
[
ã†

μk, ã†
νk′

]
= 0. (33)

The unperturbed Hamiltonian operator is defined via the
normal ordered operator

H0 =:
∫

d3x
[
c2

2
Π2

A − 1
2
A · ΔA + cP ·ΠA

+
χ0

2
Π2

P +
1
2

(
ω2

0

χ0
− 1

)
P2

]
:, (34)

and expressed in terms of the oscillator operators takes
the form

H0 =
2∑

μ=1

∫
d3k
Φ−

k

a†
μkaμk �ω− +

2∑

μ=1

∫
d3k
Φ+

k

ã†
μkãμk �ω+.

(35)

This allows to interpret

d3k
Φ−

k

a†
μkaμk (36)

as the number operator for the polaritons in the first
branch, with energy �ω−, wave vector in k − k + d3k,
and polarization e−μk, and similar for the second branch.
It may be noted that the Lorentz-Landau gauge we im-
posed at the beginning of our calculations, due to the
equations of motion at the unperturbed level, still lead
us to A

(0)
0 = 0 (the upper index indicates the order in the

perturbative expansion), and then, at least at the unper-
turbed level, we find again standard transversality occur-
ring in the Coulomb gauge. As our inhomogeneous per-
turbation plays the role of source for the divergence of the
polarization field, we expect that such a transvesality is
broken at higher order, leaving us with the necessity of a
Gupta-Bleuler formalism.

3.1 Generalization to an arbitrary number
of resonance frequencies

Consider the case of N > 1 material harmonic oscilla-
tors coupled with the electromagnetic field. These can be



described by the Hamiltonian:

HN =
1
2

(
Πi

A

)2
+

1
4
FijF

ij + A0 (∂iΠA i)

+
N∑

k=1

[
1
c
(v0P(k)i−viP(k)0)ΠA i− vi

v0

(
∂iP

μ
(k)

)
ΠP(k)μ

− χ

2 (v0)2
ΠP(k)μΠμ

P(k)
−

ω2
(k)0

2χ
P(k)μPμ

(k)

+
1

2c4

(
v0P(k)i − viP(k)0

)2
]

. (37)

The quantum fields Pμ
(k) satisfy

[
Pμ

(k), ΠP ν
(l)

]
: = i�δ(k)(l)

(
ημν− vμvν

vρvρ

)
δ3(x−y), (38)

[
P μ

(k), P
ν
(l)

]
: = 0, (39)

[
ΠP μ

(k)
, ΠP ν

(l)

]
: = 0. (40)

In the case when χ(k) = χ0(k) are constant, the classi-
cal equation of motion can be solved exactly by using
the Fourier transform method. The solutions result to be
governed by the dispersion relation

c2k2 = ω2

[

1 +
N∑

l=1

χ0(l)

ω2
0(l) − ω2

]

= ω2n2
p(ω). (41)

It is easy to see that for any value of k2 this equation
admits N + 1 positive solutions ω2

αk, α = 0, 1, . . . , N
corresponding to N + 1 dispersion branches, satisfying
ω2

αk < ω2
0(α+1) < ω2

α+1k, α = 0, . . . , N − 1.
Again, we can introduce polarization vectors ei

αμk, μ =
1, 2, α = 0, 1, . . . , N satisfying

∑

μ

ei
αμkej

αμk = δij − kikj

k2
, (42)

so that the fields take the form

A(x, t) =
2∑

μ=1

N∑

α=0

∫
d3k
Φα

k

[
e∗αμkaμαke−iωαkt+ik·x

+ eαμka†
μαkeiωαkt−ik·x

]
, (43)

P(l)(x, t) = − i

c

2∑

μ=1

N∑

α=0

∫
d3k
Φα

k

χ0(l)ωαk

ω2
0(l) − ω2

αk

×
[
e∗αμkaμαke−iωαkt+ik·x

− eαμka†
μαkeiωαkt−ik·x

]
, (44)

where we have introduced the invariant measure factors

Φα
k =

2
c2

ωαk(2π)3
[

1 +
N∑

l=1

χ0(l)ω
2
0(l)

(ω2
0(l) − ω2

αk)2

]

=
2
c2

ωαk(2π)3ng(ωαk)np(ωαk). (45)

The oscillator field operators satisfy the canonical
commutators

[
aμαk, a†

νβk′

]
= δμνδαβΦα

kδ3 (k− k′) ,

[aμαk, aνβk′ ] =
[
a†

μαk, a†
νβk′

]
= 0. (46)

The unperturbed Hamiltonian is:

H0 =
2∑

μ=1

N∑

α=0

∫
d3k
Φα

k

a†
μαkaμαk �ωαk. (47)

This allows to interpret a†
μαkaμαk as a number density so

that

d3k
Φα

k

a†
μαkaμαk (48)

is the number operator for polaritons with energy �ωαk,
wave vector in k− k + dk, and polarization eαμk.

3.2 Photon emission induced by a perturbation

The simplest perturbation of the system can be obtained
by changing

χ0(l) → χ(l)(x, t) = χ0(l) + δχ(l)(x, t). (49)

Then, the Hamiltonian is perturbed by a term

δH =
N∑

l=1

∫ [
1
2
δχ(l)Π

2
P(l) +

1
2
ω2

0(l)

×
(

1
χ(l)

− 1
χ0(l)

)
P2

(l)

]
d3x, (50)

and using the expressions of the field P and its conjugate
momentum ΠP in terms of the oscillating modes

P(l) (x, t) = − i

c

2∑

μ=1

N∑

α=0

∫
d3k
Φα

k

χ0(l)ωαk

ω2
0(l) − ω2

αk

×
[
e∗αμkaμαke−iωαkt+ik·x

− eαμka†
μαkeiωαkt−ik·x

]
, (51)

ΠP(l) (x, t) =
1
c

N∑

α=0

∫
d3k
Φα

k

ω2
αk

ω2
0(l) − ω2

αk

×
[
e∗αμkaμαke−iωαkt+ik·x

+ eαμka†
μαkeiωαkt−ik·x

]
, (52)



A{α1ζk1 ;α2ξk2} = − i

2c2

2∑

μ=1

2∑

ν=1

2∑

ρ=1

N∑

l=1

N∑

α=0

N∑

β=0

∫
d3xdt

∫
d3k

Φα
k

∫
d3k′

Φβ
k′

{
ωαkωβk′(ωαkωβk′ + ω2

0(l))

(ω2
0(l) − ω2

αk)(ω2
0(l) − ω2

βk′)

× eit(ωαk+ωβk′ )−ix·(k+k′)δχ(l)(x, t)〈0|ζ∗
νaνα1k1ξ∗ρaρα2k2a†

μαka†
μβk′ |0〉

}

=
1

c2
ζξ

N∑

l=0

ωα1k1ωα2k2(ωα1k1ωα2k2 + ω2
0(l))

(ω2
0(l) − ω2

α1k1
)(ω2

0(l) − ω2
α2k2

)
δ̂χ(l)(ωα1k1 + ωα2k2 ,k1 + k2), (58)

we obtain:

δH (x, t) =
�

2c2

N∑

l=1

2∑

μ=1

{[
N∑

α=0

∫
d3k
Φα

k

ω2
αk

ω2
0(l) − ω2

αk

×
(
aμαke−iωαkt+ik·x + a†

μαkeiωαkt−ik·x
)

]

×
[

N∑

β=0

∫
d3k′

Φβ
k′

ω2
βk′

ω2
0(l)− ω2

βk′

(
aμβk′e−iωβk′ t+ik′·x

+ a†
μβk′e

iωβk′ t−ik′·x
)
]

δχ(x, t)

×
[

N∑

β=0

∫
d3k′

Φβ
k′

ω2
βk′

ω2
0(l)− ω2

βk′

(
aμβk′e−iωβk′ t+ik′·x

+ a†
μβk′e

iωβk′ t−ik′·x
)
]

δχ(x, t)

+ ω2
0(l)

(
1

χ0(l) + δχ(x, t)
− 1

χ0(l)

)

×
[

N∑

α=0

∫
d3k
Φα

k

χ0(l)ωαk

ω2
0(l) − ω2

αk

(
aμαke−iωαkt+ik·x

− a†
μαkeiωαkt−ik·x

)
]

×
[

N∑

β=0

∫
d3k′

Φβ
k′

χ0(l)ωβk′

ω2
0(l) − ω2

βk′

×
(
aμβk′e−iωβk′ t+ik′·x − a†

μβk′e
iωβk′ t−ik′·x

)
]}

.

(53)

Let us compute the probability amplitude for creating a
pair of polaritons, the first one in the branch α1, with
wave vector k1 and polarization ζk1 =

∑2
ν=1 ζνeα1νk1 ,

and the second one in the branch α2, with wave vector k2

and polarization ξk2 =
∑2

ρ=1 ξρeα2ρk2 . This corresponds
to the state

|α1ζk1; α2ξk2〉 =
2∑

ν=1

2∑

ρ=1

ζνξρa
†
να1k1

a†
ρα2k2

|0〉. (54)

This is given by:

A{α1ζk1;α2ξk2} = 〈α1ζk1; α2ξk2|S|0〉, (55)

where at first order the S-matrix is given by:

S � I − i

�

∫
d3xdtδH(x, t). (56)

At this order we can approximate

1
χ0(l) + δχ(x, t)

− 1
χ0(l)

� −δχ(x, t)
χ2

0(l)

, (57)

so that we get

see equation (58) above

where

δ̂χ(l)(ωαk,k) =
∫

d3xdt eiωαkt−ik·xδχ(l)(x, t). (59)

From this we can compute the number of polaritons gen-
erated with wave vector k in the solid angle dωk, in the
branch α, with polarization ζ. This is given by:

dNαζk = Pαζk
k2d|k|

Φα
k

dΩk, (60)

Pαζk : =
2∑

μ=1

N∑

β=0

∫
|A{αζk;βeβμk′k′}|2 d3k′

Φβ
k′

. (61)

A direct computation gives

Pαζk =
1
c4

N∑

β=0

N∑

l=1

N∑

s=1

∫
δ̂χ(l)(ωαk + ωβk′,k + k′)

× δ̂χ
∗
(s)(ωαk + ωβk′,k + k′)

×
ω2

αkω2
βk′(ωαkωβk′ + ω2

0(l))(ωαkωβk′ + ω2
0(s))

(ω2
0(l) − ω2

αk)(ω2
0(l) − ω2

βk′)(ω2
0(s) − ω2

αk)(ω2
0(s) − ω2

βk′)

×
[
1 − (k′ · ζk)2

k′2

]
d3k′

Φβ
k′

. (62)



If we are not interested in the polarization of the produced 
polaritons, we can sum over ζ:

Pαk =
1
c4

N∑

β=0

N∑

l=1

N∑

s=1

∫
δ̂χ(l)(ωαk + ωβk′ ,k + k′)

× δ̂χ
∗
(s)(ωαk + ωβk′ ,k + k′)

×
ω2

αkω2
βk′(ωαkωβk′ + ω2

0(l))(ωαkωβk′ + ω2
0(s))

(ω2
0(l) − ω2

αk)(ω2
0(l) − ω2

βk′)(ω2
0(s) − ω2

αk)(ω2
0(s) − ω2

βk′)

×
[
1 +

(k′ · k)2

k′2k′2

]
d3k′

Φβ
k′

. (63)

Finally, by using the dispersion relation, for the number
of polaritons with frequency ωαk ≤ ω ≤ ωαk + dω and
direction dΩk we get

dNαk = Pαk
ωαk

2c

np(ωαk)
(2π)3

dωdΩk. (64)

Notice that in (63) the measure factor avoids the poles
in the denominators of the fraction in the second line, so
that possible divergences depend only on the first line.
However, the denominators allow to individuate the main
contributors to the integral.

An alternative interesting expression is the one pre-
dicting the number of photon pairs emitted in the cones
dΩk, dΩk′ , with energies in the branches α and α′, dEα =
�dωα, dEα′ = �dωα′ :

dNαkζ;α′k′ζ′ =
ζζ′

c4

N∑

l=1

N∑

s=1

{

δ̂χ(l)(ωαk + ωα′k′ ,k + k′)

× δ̂χ
∗
(s)(ωαk + ωα′k′ ,k + k′)

×
ω2

αkω2
α′k′(ωαkωα′k′ +ω2

0(l))(ωαkωα′k′ + ω2
0(s))

(ω2
0(l)− ω2

αk)(ω2
0(l) −ω2

α′k′)(ω2
0(s) − ω2

αk)(ω2
0(s) − ω2

α′k′)

}

× ωαk

2c

np(ωαk)
(2π)3

ωα′k′

2c

np(ωα′k′)
(2π)3

dωαdΩkdωα′dΩk′ . (65)

3.3 Reduced formulas for N ≤ 3 resonances

The general formulas we have obtained are of non-
straightforward application for an arbitrary number N of
resonances. This is because the solutions ωαk of the dis-
persion relation (41) can be obtained only numerically,
being algebraic equations of order N + 1 in ω2. However,
in several applications one can physically put limits on
the number of relevant resonances in given experimental
situations, and, moreover, for N ≤ 3 one can employ the
Cardano formulas. The case N = 3 is indeed the interest-
ing one when the dielectric material is fused silica. In this
case the dispersion relation is described by the Sellmeier
relation

c2k2

ω2
= 1 +

a1λ
2

λ2 − l21
+

a2λ
2

λ2 − l22
+

a3λ
2

λ2 − l23
, (66)

with

a1 = 0.906404498, l1 = 98.7685322 μm, (67)
a2 = 0.473115591, l2 = 0.0129957170 μm, (68)
a3 = 0.631038719, l3 = 4.12809220× 10−3 μm. (69)

This corresponds to (41) with N = 3,

ω2
0(l) =

4π2c2

l2l
, χ0(l) = alω

2
0(l), l = 1, 2, 3. (70)

In physical situations, involved with photons whose fre-
quency is well below the lowest resonance pole of the dis-
persion relation, the relevant contributions are associated
only with the lowest branch of the dispersion relation.
Typically, this happens in diamond when the frequencies
of the photons involved in the physical situation at hand
are well below the lowest resonance pole. In this case, the
number of emitted pairs assumes the simpler form

dNαkζ;α′k′ζ′ =
ζζ ′

4(2πc)6
|δ̂χ(ωαk + ωα′k′ ,k + k′)|2

× ω2
αkω2

α′k′(ωαkωα′k′ + ω2
0)2

(ω2
0 − ω2

αk)2(ω2
0 − ω2

α′k′)2

× ωαkn(ωαk)ωα′k′n(ωα′k′)
× dωαdΩkdωα′dΩk′ , (71)

where now α, α′ assume the values ± and ω2± coincides
with (9).

4 Photon pair creation by a uniformly
travelling dielectric perturbation

As an example, let us consider the case of a refractive
index perturbation moving propagating along the z di-
rection with constant velocity v. The model we further
explore herein was introduced in [16], and it is based on
the idea that a travelling dielectric perturbation, which is
induced by an intense laser pulse which passes through a
dielectric medium, is able to generate photon pairs. The
original model involved a nondispersive medium, and a
phenomenological approach to the electromagnetic field
quantization. We improve that model, by showing that,
in a framework including automatically optical disper-
sion, rooted into microscopical characteristics of the mat-
ter fields, photon pair production is ensured. We choose to
simulate a perturbation of the refractive index by means
of a perturbation in the dielectric susceptibility χ, and in
particular we assume that it is of the form

δχ(t, ρ, z, φ) = δχ0e
− ρ2

2σ2
ρ e

− (z−z(t))2

2σ2
z , (72)

where z(t) is an arbitrary motion. This Gaussian form
can be easily justified in the nondispersive case, where
n0(n0 + 2δn) ∼ 1 + χ0 + δχ, i.e. 2n0δn ∼ δχ, where n0 is



the unperturbed (constant) refractive index. By means of 
the well-known Weber formula

∫ ∞

0

ρe
− ρ2

2σ2
ρ J0(ρkρ)dρ = σ2

ρe−
σ2

ρk2
ρ

2 (73)

it is easy to compute the Fourier transform of the
perturbation:

δ̂χ (ω, kρ, kz , kφ) = (2π)
3
2 δχ0σzσ

2
ρe−

σ2
zk2

z
2 −σ2

ρk2
ρ

2

×
∫

ΔT

ei(ωkt−kzz(t))dt, (74)

where the Δt ≡ [−T, T ] is the time duration of
the perturbation inside the Kerr dielectric matter.
The characterizing information is thus contained in the
term

fT (ωk) :=
∫ T

−T

ei(ωkt−kzz(t))dt. (75)

We now suppose that the perturbation is moving with
constant velocity v. In this case

fT (ωk) = 2
sin[(ωk − kzv)T ]

ωk − kzv
, (76)

so that, for large T

|fT (ωk)|2 � Tπδ(ωk − kzv), (77)

and the number of pairs for unit time emitted with
momenta k and k′ in the angles dΩk and dΩk′ , is:

dN

2T
=

ζζ′

16π2c6
(δχ0)2

ω2
αkω2

α′k′(ωαkωα′k′ + ω2
0)2

(ω2
0 − ω2

αk)2(ω2
0 − ω2

α′k′)2

× σ2
zσ4

ρe−σ2
z(kz+k′

z)2e−σ2
ρ(kρ+k′

ρ)2

× δ(ωαk + ωα′k′ − vkz − vk′
z)

× ωαknp(ωαk)ωα′k′np(ωα′k′)δωαdΩkδωα′dΩk′ .
(78)

This expression can be used to simplify the analysis and
confirm the results obtained in [17]. From (78) we can
also more readily get further information about the emit-
ted spectrum. For example, from the Gaussian terms we
see that a large pulse, with a large σρ, gives rise to con-
servation of the transversal components of the momentum
kρ + k′

ρ ≈ 0. However, the Dirac δ function does not allow
for conservation of the z component of the momentum
(unless ω = ω′ ≈ 0). Thus, to have a significant emis-
sion of photon one should produce a short pulse with a
small σz parameter. As pointed out in [16] and in [17],
the perturbative analysis indicates that the pairs produc-
tion occurs only if v > c/n(ω), i.e. only if the pertur-
bation of the refractive index is superluminal, and the
number of emitted particles increases with v. Further-
more, we observe that the argument of the delta func-
tion in equation (78) is the same as in [16] (cf. Eqs. (7)
and (10)) and in [17] (cf. Eqs. (26), (29) and (30)). We

recall here its interpretation and its interesting physical
meaning. The support of the delta distribution gives a
constraint on the state of the emitted particles in the
pair. In the non dispersive case, employing the relation
k = ω

c n0, we can rewrite the argument of the δ as
(kz − c

vn0
k) + (k′

z − c
vn0

k′) = 0. This equation indicates
that if kz/k > c/(vn0), the momentum of the second pho-
ton must satisfy k′

z/k′ < c/(vn0). Thus, we obtain a cone
structure for the distribution of the momenta of the emit-
ted particles in a pair: one photon is emitted inside the
Cerenkov cone, θ0 = arccos(cv/n0), and the other is emit-
ted outside the cone. Due to the dependence of the re-
fractive index on the frequency of the radiation, the dis-
persive case is more involved and in general one cannot
identify distinct cones of emission as in the non dispersive
case. The constraint given by the δ distribution now is
(kz − c

vn(ω)k) + (k′
z − c

vn(ω′)k
′) = 0. As before, this equa-

tion implies that whenever kz/k > c/[vn(ω)], the momen-
tum of the second photon must satisfy k′

z/k′ < c/[vn(ω′)].
From the two conditions we obtain for the angle of emis-
sion, θ < arccos{c/[vn(ω)]} and θ′ > arccos{c/[vn(ω′)]}.
Thus, if arccos{c/[vn(ω)]} > arccos{c/[vn(ω′)]}, the two
cones overlap; there is a gap between them if instead
arccos{c/[vn(ω)]} < arccos{c/[vn(ω′)]}. These considera-
tions show that in the first case there is a region in which
both photons can be emitted, instead in the second case
there is a region in which no photon can be emitted. The
presence of these two behaviors, depending on the frequen-
cies of the emitted particles, makes the dispersive case in-
teresting and substantially different from a non dispersive
model. Obviously, the non dispersive case can be seen as a
limit case of the dispersive one. Moreover, compared with
the approach adopted in [17], this one has the advantage
to be available at any perturbative order.

5 Case δχ(t)

We can also consider a perturbation which depends only
on time. This case can be of noticeable physical inter-
est, in view of the possibility to induce (locally) purely
time-dependent perturbations in optical systems. For
simplicity, we focus explicitly on the case of a diamond-
like dielectric. Extensions to more general cases are indeed
straightforward. First of all, we take into account that the
Fourier transform of the perturbation is non-trivial only
in t, of course. As a consequence, we get

δ̂χ(ω,k) = δ3(k)δ̂χ(ω). (79)

Then, in (71) we get that the square modulus of δ̂χ is

|δ̂χ (ωαk + ωα′k′) |2δ3 (k + k′) δ3(0) (80)

(δ3(0) is to be replaced by a volume factor, as usual).
As it is evident, pairs are produced back-to-back in this
situation. See below for a more general case, accounting
for finite-size effects.



Interesting examples of time dependence are the fol-
lowing (with η 
 1 constant): (i) a Gaussian dependence 
in time

δχ(t) = η exp(−at2), a > 0, (81)

so that

δ̂χ(ω) = η
π√
ω

exp
(
−ω2

4a

)
(82)

(it simulates a perturbation which is peaked around t ∼ 0
and is quite soon zero for t �∼ 0). (ii) Another interest-
ing perturbation profile is a step-like perturbation, which
allows to deal with the case of a rapidly rising perturba-
tion and to calculate the number of produced pairs in the
raising phase. For example, we can adopt the profile

δχ(t) = η(1 + tanh(at)), (83)

which provides

δ̂χ(ω) = η

[

i
π

a

1
sinh

(
πω
2a

) + 2πδ(ω)

]

. (84)

(iii) As a further interesting perturbation, we could
consider a periodic perturbation:

δχ(t) = η(1 + sin(at)), (85)

whose Fourier transform is:

η [2πδ(ω) + iπδ(ω − a) − iπδ(ω + a)] . (86)

It is evident that photon production, in this specific case,
happens only at resonances: ω = ±a. It is also interest-
ing to note that our picture can be easily generalized to
the case of a perturbation which has finite spatial sup-
port (instead of being extended to all the space). The
only difference consists in the fact that pair-emission is
not strictly confined to be back-to-back, due to finite-size
effects. Indeed, if we assume that the perturbation is:

δχ(t)γ(x), (87)

where γ has e.g. compact spatial support, we obtain a
Fourier transform γ̂(k) which is related to a pair-emission
non-strictly back-to-back, due to finite-size effects. Indeed,
in (71) the factor |γ̂(k + k′)|2 replaces δ3(k + k′)δ3(0)
appearing in (80).

6 Conclusions

We have explored, in a perturbative framework, a covari-
ant generalization of the Hopfield model aimed to mod-
elize, in a less phenomenological way, photon pair creation
phenomena associated with dielectric media with space-
time dependent dielectric constant. This dependence can
be realized in different ways, and we can refer both to
Kerr effect in nonlinear dielectric media, and to sonolu-
minescence. The advantage of the model, with respect to
the ones existing in literature, is that optical dispersion,

which necessarily plays a role in any physical settings, is
automatically taken into account, as well as covariance
of the results. In this sense, even if with the limitation
that only dielectric properties are taken into account by
the present model, our results generalize the ones in [18]
to the case of dispersive media. The general expressions
we have found can be applied to several situations where
dispersion becomes relevant.

Moreover, Lorentz covariance could be employed to re-
express all results in any inertial frame, as the comoving
one in the example we have provided. Further interesting
applications will be presented elsewhere [19].

We thank D. Faccio for discussions and for suggesting us the
picture of purely time dependent profiles of Section 5.
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