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Nomenclature

Throughout this paper, the notations Rn and Rn×m denote, 
respectively, the n-dimensional Euclidean space and the set 
of all n × m real matrices. Superscript T denotes matrix 
transposition and I and 0 are the identity matrix and the 
zero matrix with compatible dimensions, respectively. The 
symbol ⊗ denotes Kronecker product of two matrices. The 
notation P > 0 means that P is real symmetric and positive 
definite and the symbol ∗ denotes the transpose elements 
in the symmetric positions, diag{· · · }  represents a block 
diagonal matrix and the operator sym(A) represents A + AT.

1 Introduction

In recent years, there has been an increasing interest in wind 
energy. According to The World Wind Energy Association, 
the worldwide wind energy reached a capacity of 254 000 
MW in June 2012 [1]. Although the majority of the installed 
capacity is on land, many offshore parks have been built in 
recent years. Most of these parks have turbines that are either 
fixed to the soil or they stand on monopoles or other struc-
tures. Some of the major offshore wind farms in Europe are
located in the United Kingdom (UK) and Denmark (DK), to
name a few; Greater Gabbard (UK), Whalney (UK), Sher-
ingham Shoal (UK), Horns Rev (DK) and Rødsand (DK).
The turbines in these farms are installed in shallow waters,
typical depths ranging from 10 to 30 m [2]. For many coun-
tries such as Spain, United States, Japan, Korea and Norway
it would be beneficial to also be able to install wind turbines
in deeper waters, in depths up to several hundred metres. The
existing offshore fixed-bottom wind turbines are not suited
for such deep water. Hywind [3] is one example of a float-
ing wind turbine solution. This turbine was installed back in
2009 and is still in operation. It is located in the north sea,
right off the Norwegian west coast. This paper deals with a
model that is based on Hywind, a sketch of the turbine can
be seen in Fig. 1.

In order to keep wind turbines stable and in operation
for a long as possible, it is important to control them in a
suitable way. The region of operation for a typical wind
turbine is often divided into four regions; see Fig. 2. In
region I (v < vcut−in), the wind speed is lower than the cut-
in wind speed and no power can be produced. In region
II (vcut−in < v < vrated), the blade pitch is usually kept con-
stant, while the generator torque is the controlling variable.
In this region, the main objective is to maximise the power
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ig. 1 Sketch of Hywind turbine [4]
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ig. 2 Region of operation for a typical wind turbine

utput. In region III (vrated < v < vcut−out), the main concern 
s to keep the rated power and speed simultaneously. This 
s achieved by means of pitching the blades into or out of 
he wind, depending on the wind situation. In region IV 
v > vcut−out), the wind speed is too high, and the turbine is 
hut down. This paper is focused on the above-rated wind 
peed scenario, that is, region III.

Advanced control techniques are often solved by formu-
ating the problem in terms of linear matrix inequalities 
LMIs) [5]. By formulating the problem in such a way, 
ives an opportunity to impose a special zero-non-zero 
tructure on the LMI variables. This comes in very handy 
hen dealing with constrained information systems. Lin-

ar parameter-varying (LPV) systems can also be handled 
ithin the LMI framework. Recently, linear controllers have 
een extensively used for power regulation through the con-
rol of blade pitch angle in wind turbine systems. However, 
he performance of these linear controllers is limited by 
he highly non-linear characteristics of the wind turbine. 
dvanced control is one research area where such improve-
ent can be achieved. On the other hand, over the last three 

ecades, considerable attention has been paid to robustness
analysis and control of linear systems affected by structured
real parameters, so-called LPV systems. An LPV system can
be viewed as a non-linear system that is linearised along a
trajectory determined by the parameter vector. Hence, the
parameter vector of an LPV system corresponds to the oper-
ating points of the non-linear system. In the LPV framework,
it is assumed that the parameter vector is measurable or
non-measurable. In the latter case, the parameter vector can
be estimated. In many industrial applications, such as flight
control and process control, the operating point can indeed
be determined from measurement, making the LPV approach
viable. Interesting works where LPV control is used in rela-
tion to wind turbines can be found in references such as
[6–8]. A nice collection of LPV related papers can be found
in [9], in addition to [10–12]. Previous related works from
the authors which are dealing with wind turbine control can
be found in [13, 14].

State-feedback is widely used in control applications, but
in practice full state measurements are rarely possible. A
more practical approach is output-feedback. However, the
output gain matrix is not computed as easy as in the state-
feedback case, where a simple change of variables converts
a non-convex problem into a convex problem. In the output-
feedback case, the gain matrix is not directly isolated from
the other LMI variables. In [15–17], the authors propose an
explicit solution for the gain matrix and in [18] the authors
develop a more effective and efficient method for computa-
tional feasibility issues of static output-feedback controller
gains. With the method found in [18], it is possible to impose
zero-non-zero constraints on the LMI variables. Other meth-
ods to make the system more tolerant to failures have been
investigated in [19–21].

This paper is dealing with an offshore floating turbine,
now the control design becomes even more important. The
wrong control design could easily force the turbine to be shut
down. Nowadays, modern wind turbines are getting bigger
and bigger and are often located in harsh environments, such
as offshore conditions. This leads to larger loads and there
is always the possibility of sensor failure. Since immediate
maintenance for these turbines are not possible, a way to
keep them in operation according to prescribed performance
measures would be beneficial. This paper tries to include
four concrete issues in the controller design. (1) Limit oscil-
lations in drivetrain and platform. (2) Keep generator speed
at its rated value. (3) Limit influence on the control loop in
case of sensor failure. (4) The controller is designed within
the LPV framework. In this relation an individual pitch with
constrained gain control scheme is suggested. The ability to
impose special structure on the gain matrix come in handy
if for example; there are some sensors in the feedback loop
that are especially prone to failure. In this way, one can
isolate the faulty measurement to only impact one of the
pitch actuators, instead of all three. A diagonal structure for
the gain matrix will be used, in this way, none of the pitch
actuator signals will directly interfere with each other. In
conventional control, in the worst case, the turbine might
have to shut down because a sensor is malfunctioning. With
the control proposed in this paper, the turbine can continue
operating properly in the event of a failure. Even though, the
failure should be fixed as soon as possible. The main contri-
bution of this paper is to design an LPV controller under a
constrained gain matrix for a floating wind turbine system.

This paper is organised as follows. In Section 2, an LPV
model of the wind turbine system is proposed. The con-
troller design is discussed in detail in Section 3, where it will
be shown how it is possible to obtain a diagonal structure



for the gain matrix. In Section 4, the simulation results are 
presented. Conclusions and suggestions for future work are 
described in Section 5.

2 Model description

The model used in this paper is obtained from the software 
fatigue, aerodynamic, structural and turbulence (FAST) [22], 
which is a fully non-linear wind turbine simulation software. 
The OC3-Hywind model is a 5 MW offshore floating turbine 
[23], its main specifications are listed in Table 1. The turbine 
model is an up scaled version of Statoils 2.3 MW Hywind 
Demonstration turbine.

The non-linear model obtained from FAST, is linearised 
around several operating conditions. All conditions are 
above-rated wind speed, which indicates that the controller 
objectives are the same for each point. The objectives should 
be achieved by means of individual pitching of the blades. 
The non-linear model consists of 24 degrees of freedom 
(DOFs). This is all the available DOFs in FAST, if one 
desires, it is easy to switch the different DOFs on and off. To 
be able to do this is convenient if just a simple model is nec-
essary, which is needed for the linearised model. The DOFs 
for the linear model are selected while keeping the controller 
objectives in mind, these include; platform pitch, generator 
and rotor dynamics. Pitch actuators will be added later in 
Section 2. As a consequence, three additional DOFs will be 
added to the linear model. In total, there are nine DOFs with 
18 states, two for each DOF (position and velocity). With 
the linear model, most of the dynamics that are relevant for 
the controller objectives should be reflected. There are three 
measured signals in the feedback loop; generator speed, rotor 
speed and platform pitch angle. By using these three signals 
in the feedback loop, the three blade pitch angles can be 
calculated. A set of nine linearisation points, ranging from 
14 to 22 m/s, are obtained. The linearised models obtained 
from FAST are on the following standard state-space form

ẋ = Aix + Biu, i = 1, . . . , 9

y = Cx (1)

where the state-space matrices Ai, Bi and C are of dimen-
sions Rn×n, Rn×m and Rq×n, respectively, where n, m and q
are 6, 3 and 3, respectively. From system (1) it is seen that Ai

and Bi vary, depending on the operating point, that is, wind
speed. While the C matrix is constant since it only handles
the measurements. The system can now be formulated on a
generalised form in (2).

ẋ = Aix + Biu + Bwω, i = 1, . . . , 9

z = Czx + Dzu

y = Cx (2)

Table 1 Main specifications of NREL’s OC3 turbine

Rated power 5 MW

Rated wind speed 11.6 m/s
Rated rotor speed 12.1 RPM
Rotor radius 63 m
Hub hight 90 m
where the additional term Bw describes how the distur-
bance enters the system, Cz and Dz handle the performance
measures, that is, the controller objectives.

So far, one state-space system for each operating point is
obtained. In order to utilise the suggested control technique a
continuous model of the set of state-space systems is needed.
To achieve this, least mean square method is used to obtain a
polynomial of the first order. The method fits a polynomial
to the data in the matrices and calculates the polynomial
coefficients that gives the least square error between the
suggested polynomial and the data points. A continuous
affine model is thus obtained. The two parameter-dependent
matrices are defined in the following affine way

A (σ ) = Aa + σAb (3)

B (σ ) = Ba + σBb (4)

where the scalar parameter σ satisfies σ ≤ σ(t) ≤ σ and
ρ ≤ σ̇ (t) ≤ ρ, that is, σ ∈ [σ σ ] and ρ ∈ [ρ ρ].

From (3) it is seen that the state-space system is now
parameter-dependent on σ , which is the wind speed. The
wind speed will later in the paper be estimated for this
purpose.

As FAST does not include any pitch actuators, these are
added to the parameter-dependent state-space system. One
pitch actuator system is considered for each blade. As seen
in the combined system (5), all the parameter dependency
is limited to the A matrix.

˙̃x = Ã(σ )x̃ + B̃u + B̃wω

z̃ = C̃zx̃ + Dzu (5)

ỹ = C̃x̃ (6)

where the new augmented state x̃ = [xT
p xT]T has the follow-

ing corresponding state-space matrices:

Ã(σ ) =
[

I3 ⊗ Ap 0
Ba ⊗ Cp Aa

]
︸ ︷︷ ︸

Ãa

+ σ

[
0 0

Bb ⊗ Cp Ab

]
︸ ︷︷ ︸

Ãb

(7)

B̃ =
[

I3 ⊗ Bp

0

]
(8)

C̃ = [
0 C

]
(9)

where Ap, Bp and Cp are the blade pitch actuator state-
space matrices (see the appendix for matrix values), B̃w is
defined in Section 4, Ãa and Ãb are the new augmented matri-
ces of (3). The updated dimensions are now n = 12 and
m = q = 3.

3 Control synthesis

This section mainly deals with the controller design process
and briefly discusses the extended Kalman filter (EKF). The
main objective is to design an output-feedback LPV con-
troller which is able to handle structure constraints on the
output-feedback gain matrix. The LPV controller depends on
the wind speed parameter, which is estimated by the EKF.
Fig. 3 shows a block diagram, the block diagram describes
the basics of the closed-loop system. In the first feedback
loop, three values (y1) are used to estimate the effective
wind speed (σ ). In the second feedback loop, three sensor



Fig. 3 Block diagram of closed-loop system

values (y2) are used to calculate the three blade pitch angles
(β). These output values correspond to (5). As discussed in
Section 2, this means the feedback gain is a 3 × 3 matrix.
This section considers calculation of an output-feedback gain
matrix with a diagonal structure. In this way, not all the
available information will be used to calculate each of the
blade pitch angles and none of the three control signals will
directly interfere with each other. That is, should a failure
happen to for instance sensor one, then this will not directly
influence control signal two or three.

3.1 Extented Kalman filter

It is possible to estimate the effective wind speed based on
measurements of rotor speed, blade pitch angle and genera-
tor torque. The effective wind speed represents the average
wind field over the rotor disc, that is, what is experienced
by the blades. An EKF is used based on a simple model of
the drivetrain and a turbulence model, the output from the
EKF is the effective wind speed. For the actual development
of the filter, readers are referred to [24].

The drivetrain and wind model of the wind turbine is
modelled as first-order systems with no losses.

Jeq�̇DT = Ta − Tg (10)

v̇t = −πvm

2L
+ n1 (11)

v̇m = n2 (12)

σ = v = vm + vt (13)

where Jeq = Jr + n2
gJg , Tg = Teng , vt is turbulence, vm is the

mean wind speed and L is the turbulence length scale param-
eter. The wind model is driven by Gaussian white noise,
entering the model by n1 and n2. This model is non-linear
because of the non-linear relationship between wind speed
and aerodynamic torque. In order to estimate the states, the
time update uses information about the model dynamics and
the model uncertainties.

x̂−
k = Aekf x̂k−1 + Bekf uk−1 (14)

P−
k = Aekf Pk−1AT

ekf + Q (15)
where matrices (Aekf , Bekf , Cekf ) are state-space matrices of a
linearised version of (10)–(11), Q is the incremental process
noise covariance and Pk is the state estimate error covari-
ance. The measurement update uses information about the
model outputs and measurement noise.

Kk = P−
k CT

ekf (Cekf P−
k CT

ekf + R) (16)

x̂k = x̂−
k + Kk(zk − Cekf x̂−

k ) (17)

Pk = (I − KkCekf )P
−
k (18)

where R is measurement noise covariance, Kk is the Kalman
gain and zk is the measurements.

3.2 Controller design

For obtaining the results of H∞ controller synthesis, the wind
speed parameter in (5) needs to be estimated according to
subsection A.

Definition 1: The H∞ performance measure of system (5)
is defined as J∞ = ∫∞

0 (zTz − γ 2ωTω)dt, where the positive
scalar γ is given.

As described in [5], the H∞ constraint J∞ < 0 for the
linear time-invariant (LTI) system (5) with state-feedback is
formulated as follows(

sym(ÃX + B̃Y ) + γ −2B̃wB̃w
T

(CzX + DzY )T

∗ −I

)
< 0

(19)

X > 0
(20)

Remark 1: The number of variables to be determined in
LMIs (19)–(20) are: n × (1 + n)/2 + m × n + 1.

In the state-feedback case, the gain matrix is calcu-
lated from K = YX −1. In the output-feedback case, the gain
matrix factors as the product K̃ = KC̃, where C̃ is given
from (9). In order to obtain the output-feedback gain, a solu-
tion to (19)–(20) needs to be found such that the product
YX −1 factors as

KC̃ = YX −1 (21)

In a recent work by [18], a procedure that handles this prob-
lem in a very systematic way is developed. Another benefit
with this approach is that it is possible to impose struc-
tural constraints on the gain matrix. The following change
of variables are suggested

X = QXQQT + RXRRT (22)

Y = YRRT (23)

where XQ(σ ) and XR(σ ) are R(n−q)×(n−q) and R(q×q) sym-
metric matrices, respectively, and YR(σ ) is a R(m×q) matrix.
The Q matrix is the nullspace of C, and R can be calculated
from the following expression

R = C̃T
(

C̃C̃T
)−1 + QL (24)

where L is an arbitrary matrix with dimensions R(n−q)×q. One
of the main contributions in this paper is to force the Lya-
punov matrices to be parameter-dependent. The Lyapunov



matrices (25) are now portioned in the same affine way as 
the matrices A(σ ) and B(σ ) in (3).

XQ(σ ) = XQ0 + σXQ1

XR(σ ) = XR0 + σXR1

YR(σ ) = YR0 + σYR1 (25)

By changing ν = γ −2 in the LMIs (19)–(20), the problem
becomes convex and by maximising ν it is possible to find
the Lyapunov matrices in (25). In order to obtain the diago-
nal structure for the output-feedback gain the LMI variables
XR(σ ) and YR(σ ) also have to have a diagonal structure.
Choosing the Lyapunov matrices as described, the output-
feedback gain can be calculated from K(σ ) = YR(σ )X −1

R (σ ).
The interested reader can read the proofs in [18]. In order to
guarantee the controller stability and performance within the
bounds of the scheduling parameter, some additional LMIs
are required. The system is depending on one parameter and
as indicated earlier this parameter has an upper and a lower
bound, both on the parameter itself and on the derivative.
One LMI is needed to check each vertex, that is, this gives
an addition of 2i LMIs, where i is the number of vertices.
As a consequence of the parameter dependency, at the upper
right position in the H∞ constraint (19), the expression is
quadratic in σ . By imposing the definiteness of the terms
involving σ 2, that is

sym(ÃbQXQ1QT) + sym(ÃbRXR1RT) ≥ 0 (26)

the quadratic function of σ is convex.
The total set of LMIs needed to solve the LPV constrained

static output-feedback problem is represented in (27)–(30)
where i is the number of vertices. The derivative term of
the Lyapunov function is found to be

∂X

∂σ
= QXQ1QT + RXR1RT (31)

From the optimisation the matrices XQ0, XQ1, XR0, XR1, YR0

and YR1 are obtained. At each time step during the simula-
tion, a new value for Ã(σ ), XR(σ ) and YR(σ ) are calculated.
The controller gain matrix K(σ ) is calculated from the
expression K(σ ) = YR(σ )X −1

R (σ ). In this way, the output-
feedback controller will change depending on σ .

Remark 2: The number of variables to be determined in
LMIs (27)–(30) are: (n − q) × (1 + (n − q)) + 2q + 2m +
1. It is noted that when the structure constraints are imposed
on the control problem, the number of variables are actually
lower than in the standard static feedback case (Remark 1).
4 Simulation results

In this section, the different simulation results will be dis-
cussed and presented. The controllers are tested on the fully
non-linear system, where all the available DOFs are enabled.
The input to the system is a turbulent wind profile with
an average wind speed of 18 m/s with a turbulence inten-
sity of 6% with corresponding waves. The wind profile is
obtained from Turbsim [25], and is emulating a one year
extreme wind speed condition. In the simulation example the
plots concerning the two controllers designed in this paper
experiences a fault after 500 s. This is not the case for the
baseline controller, where no fault occurs. The gain sched-
uled PI controller is not designed to handle such an event.
The fault causes sensor three to stop working, that is, blade
three has stopped moving see Fig. 8. The system is made
in such a way that the actuator which controls blade num-
ber three keeps its last value prior the fault. In this way,
the value does not drop to zero. Time series of 1000 s are
obtained, but the first 400 s are removed because of tran-
sient behaviour. Each of the figures show simulations done
with three different controllers. The blue curve shows sim-
ulation done with the constant constrained gain controller.
The red curve is for the LPV constrained gain controller and
the green curve is FASTs baseline controller. The baseline
controller is intended as a reference plot and comes with the
FAST package.

Fig. 4 shows the estimated states (x̂k ) and the Kalman
gain values (Kk ). The plot also includes the simulated rotor
speed (green) to compare with the estimated value (blue).
As seen from the plot, the agreement is quite good.

As mentioned in Section 2, the controller objectives are to
mitigate oscillations on critical parts of the system, to damp
any movement which potentially can make the system unsta-
ble, such as platform pitch movement, and keep the overall
system stable. These objectives are given as the performance
measure z, as in (2) with the following matrices

B̃w = [112×1] (32)

C̃z =
⎡
⎣ C̃1 − C̃2/ng

C̃3

10 0 10 0 10 0 01×6

⎤
⎦ (33)

Dz = diag{103, 103, 103} (34)

B̃w is the disturbance matrix, and indicates which state that
are disturbed. By giving the matrix only ones, the idea is
to simulate a situation which is tougher than reality. C̃i

indicates the ith row vector of the output matrix. The first
row of C̃z handles the drivetrain oscillation, by subtract-
ing the generator speed (C̃2) divided by the gearing ratio
(
sym(Ã(σi)X (σi)) + sym(B̃(σi)Y (σi) + νB̃wB̃T

w ± ρp
∂X

∂σ
(CzX (σi) + DzY (σi))

T

∗ −I

)
< 0, i = p = 1, 2 (27)

sym(ÃbQXQ1QT) + sym(ÃbRXR1RT) ≥ 0 ≥ 0 (28)(
XQ0 0
0 XQ1

)
> 0 (29)(

XR0 0
0 XR1

)
> 0 (30)



Fig. 4 Selected EKF parameters
ng from the rotor speed (C̃1). The second and third row
handle platform pitch – and blade pitch movement, respec-
tively. Suitable results were found with a diagonal structure
for the Dz matrix. The same performance measure is used
for both the blue and the red curve. The outcome from the
LMI calculations are listed in the appendix, that is, the Lya-
punov matrices used online to calculate the LPV constrained
controller and the constant constrained controller. In order
to check the drivetrain oscillations, the standard deviation
for the speed difference between rotor speed and generator

Table 2 Normalised values for drivetrain oscillations

Baseline Constant controller LPV controller

1 0.98 0.96
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                                             [Time]

Fig. 5 Time series of platform pitch angle
speed is calculated. The values are normalised. That is, the
reference value is the baseline result, which is given value
1. For the remaining two controllers, a value below 1 indi-
cates better and vice versa. Multiply by 100 to obtain the
percentage.

From the Table 2 it is seen that the two controllers
designed in this paper does damp the drivetrain oscillations
slightly better than the baseline controller.

A time series plot of the generator speed with different
controllers is presented in Fig. 6. It is seen that the con-
stant constrained gain controller (dashed line) is slightly
better than FASTs gain scheduled PI controller (dotted line).
But the controller that gives the better responds is the LPV
constrained gain controller (solid line). Several observations
indicate this. First, it is operating more closely to the rated
condition for the generator. Second, the power output does
not fluctuate as much as the two others (Fig. 7). See also
the mean and standard deviation plots in Figs. 9 and 10.
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Fig. 6 Time series of generator speed
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Fig. 7 Time series of generated power
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Fig. 8 Time series of blade pitch angles

With these performance measures and with the fault present 
in the system, is was not possible to dampen the platform 
pitch movement (Fig. 5) more than indicated in these plots.

After 700 s the platform is starting to gain a bit more 
amplitude in the pitch direction, but it does not become 
unstable. Control simulations of 2000 s are done to check 
this. The major consequence for introducing a failure to 
the closed-loop system is the non-symmetrical loading on 
the tower. This is especially prominent in the yaw direc-
tion, where the standard deviations are considerably larger 
than the values for the baseline controller (no fault occurs 
with baseline), while the mean values are lower. See the 
histogram in Figs. 9 and 10. The blade pitch movement for 
the LPV controller is shown in Fig. 8. It is seen that the three 
blades are more or less following each other until the fault 
occurs. At time equals 500 s the third blade pitch actuator 
stops moving. This is emulating a sensor failure. As the plot 
shows, only one pitch actuator is influenced by the fault.
Fig. 9 Normalised standard deviations for selected time series

Fig. 10 Normalised mean values for selected time series

From the histogram in Fig. 9, it is seen that the LPV con-
troller has a lower standard deviation for generator speed
and for generator power. The large yaw moment value is
because of the fault which is introduced in the system. The
constant controller also causes the system to experience a
large standard deviation in the yaw moment, because of the
fault. However, it has a better performance for the gener-
ator speed. The corresponding mean values can be seen in
Fig. 10.



5 Conclusion and future work

The purpose of this paper was to design an output-feedback
LPV controller for an offshore wind turbine with con-
strained information. The scheduling parameter for the LPV
controller is the effective wind speed. Based on available
measurement an EKF is used to estimate the effective wind
speed. The wind turbine model is obtained from the soft-
ware FAST and all simulations are done in Matlab/Simulink.
A wind turbine is a highly non-linear mechanism, and in
order to use the controller design techniques proposed in
this paper, a linearised model is needed. To linearise the
model at only one operating point is a bit optimistic, there-
fore an LPV control approach is suggested. LPV control is
a step in between linear control and non-linear control. The
design is done on the basis of linear techniques and when
it is implemented, the benefits from non-linear control are
utilised. That is, it will perform and maintain stability in the
whole operation region. With this method, LPV controller
with constrained gain is constructed. Constrained gain means
a special zero-non-zero pattern can be imposed on the gain
matrix. In this paper, a controller gain with a diagonal struc-
ture is designed. From the simulation results it is seen that
closed-loop system do behave according to the controller
objectives and it maintains stability when a fault occurs to
one of the sensors in the feedback loop.

Regarding the constrained gain matrix, this paper has
focused on a diagonal structure. It is completely up to the
designer to choose the zero-non-zero pattern for the gain
matrix. In other cases different patterns than diagonal may
be appropriate.
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8 Appendix

Blade pitch actuator model

ẋp = Apxp + Bpu

y = Cpxp

where

Ap =
[−2ωnζ −ω2

n
1 0

]
, Bp =

[
1
0

]
, Cp = [

0 ω2
n

]
The natural frequency is ωn = 0.88 and the damping ratio
is ζ = 0.9. There is a total of three of these pitch actuators
models in the turbine model, one for each blade.

Constant constrained gain: Kconstant = diag{0.0315, 0.0008,
0.00017}

Lyapunov matrices used online to calculate the LPV
constrained gain

Yr0 = diag{0.0006, − 0.3788, 0.0005} × 10−3

Yr1 = diag{0.0008, 1.2192, − 0.0002} × 10−2

Xr0 = diag{1.9527 × 10−4, 13.9305, 0.0012}
Xr! = diag{7.7424 × 10−8, 0.0231, 1.5532 × 10−6}




