
Consistent look-up table interpolation method for real-gas flow
simulations
1. Introduction

The accurate modeling of thermody
properties of fluids exhibiting non-negligible real-gas behavior is detailed Computational Fluid Dynamic (CFD) calculation
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namic and transport

available [24,20,12,14,4,3,6], but their use through thermodynamic 
libraries [7] is computational expensive in case of numerical stud-
ies, when a set of governing equations is iteratively solved, e.g., 
s [10], 

crucial in many technical applications; in energy-conversion sys-
tems fluids are often employed far from ideal gas conditions, and

dynamic plant simulations [18].
As an alternative, Look-up Tables (LuT) can be adopted to repre-
the availability of proper thermodynamic models is a necessary
prerequisite for the accurate estimate of both component and
whole-system performance. The prediction of real-gas thermody-
namic properties can be achieved by determining analytical
expressions for the fundamental relation or, more commonly, by
resorting to Equations of State (EoS) and their derivatives. Several
formulations of the EoS and of transport properties correlations are
sent the thermo-physical behavior of the fluid. The LuT concept is 
fairly simple; in the thermodynamic region of interest, a grid of 
nodal points (storing all thermodynamic and transport properties) 
is preliminary built and the properties at any other point are com-
puted using fast interpolation methods, with a dramatic reduction 
in computational time [11,13,2,22]. However, standard LuT 
approaches do not automatically satisfy thermodynamic consis-
tency, as it is guaranteed by the use of analytical EoS. Referring to a 
pure substance or to a mixture of given composition, thermody-
namic consistency implies that, given a triple of thermodynamic
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properties, e.g. P; T; q, if T ¼ gðP;qÞ and P ¼ f ðT;qÞ, then
P � f ðgðP;qÞ;qÞ. Generally, most of the LuT approaches substitute
the functions f ; g with their approximate counterparts ~f ; ~g and this
finally leads to PXf ðgðP;qÞ;qÞ. The consistency error
� ¼ P � ~f ð~gðP;qÞ;qÞ can be minimized by increasing the accuracy
of the LuT, improving either the number of mesh nodes or the order
of the interpolation scheme. This can be usually done at the expense
of a greater computational cost. On the other hand, consistency
errors may induce significant non-smooth perturbations over CFD
code iterations, which may even prevent the solver to converge.

This paper presents a novel interpolation method for property 
calculation of real gases using LuT. At first, the values of specific 
internal energy e, expressed in terms of specific entropy s and spe-
cific volume v, are calculated for each node of the grid by exploiting
the accurate EoS implemented in the software FluidProp [7]. Then, 
the nodal values are utilized to construct, once assigned a certain 
functional dependency, a fundamental relation in the energy form

e ¼ eðv; sÞ, one for each cell of the thermodynamic domain. More 
specifically, the set of closure coefficients pertaining to a single 
fundamental relation is determined by interpolation on the closest 
grid data, according to the order of the function. Lastly, the algo-
rithm provides the thermodynamic properties by conveniently 
combining the derivatives of the fundamental relation. The method 
results to be compactly supported, i.e. it has local nature, it can be 
retained semi-analytical, and primarily guarantees that any 
thermodynamic property of any internal point is consistently cal-
culated. Nevertheless, to avoid failures during property calculation, 
the functional form chosen for e needs to exhibit a sufficient 
regularity (derivatives up to second order are usual for process or 
fluid-dynamic calculations) and must fulfill the thermodynamic 
stability within the cell.

A similar approach is adopted for obtaining the transport prop-
erties. Two different functional forms are prescribed for the 
dynamic viscosity l and for the thermal conductivity k; coherently 
with the thermodynamic table, also the transport properties are 
expressed as functions of the specific volume and of the specific
entropy l ¼ lðv; sÞ; k ¼ kðv; sÞ. Correspondingly, the set of coeffi-
cients of the two interpolating functions is resolved at any cell on 
the basis of the transport properties stored inside the grid points. 
Since such values are computed (starting from two independent 
thermodynamic properties) by resorting to semi-empirical 
relations, no consistency issues have to be taken into account, 
providing that positive values are achieved.

The paper is structured as follows: the theoretical background 
of the novel LuT methodology is initially outlined in Section 2. 
Issues concerning thermodynamic stability, accuracy and compu-
tational cost are discussed in Section 3, in which the LuT method 
is applied to the siloxane MDM and the carbon dioxide; both single
Fig. 1. Left: Discretized MDM vapor saturation line in the T–s plane. Right: Dis
and two-phase regions close to the vapor saturation line are 
explored, for reduced temperatures ranging between Tr ’ 0:6 and 
Tr ’ 1:05. To conclude, two examples of LuT application in combi-
nation with CFD simulation are extensively presented in the latest 
Section 4.

2. Look-up Table approach (LuT)

The standard computational scheme of any interpolation based 
method for the calculation of thermo-physical properties consists 
of a two-step procedure. As a first step, the thermodynamic mesh is 
generated based on the data provided by an existing database 
(tables of experimental data or even Equations of State and trans-
port properties correlations). The whole set of properties is com-
puted afterwards on the basis of the data stored in each node of the 
grid. The key aspects of a LuT algorithm, namely its efficiency and 
its accuracy, are then related to the methodologies introduced to 
resolve either steps. This section presents the methods devel-oped 
in this work to achieve an optimal compromise between accuracy 
and computational cost, given that the thermodynamic consistency 
is intrinsically satisfied.

Differently from current LuT approaches, the present method 
allows to compute the thermodynamic quantities on physical 
basis, i.e. the properties stored in the nodes of the table are used 
to construct (by proper interpolation) local fundamental relations, 
which are analytically differentiated to retrieve the properties of 
interest –P; T; c; . . .– in a straightforward manner. Each step of 
the procedure is separately described in the following.

2.1. Generation of the thermodynamic mesh

The construction of the thermodynamic mesh is based on the 
discretization of the saturation line according to a given tempera-
ture interval. The points can be uniformly or variably spaced 
through a spline-based reconstruction method, allowing also a 
refinement as the critical point is approached; an example of dis-
cretized vapor saturation line for siloxane MDM is given in Fig. 1. 
The resulting saturation grid represents the support line on which 
the LuT is constructed by proceeding along directions locally 
orthogonal to the line.

The normal spacing may be, in principle, specified using a gen-
eric pair of states (e.g. q; e), however, this choice strongly affects 
the shape and the thermodynamic regions covered by the resulting 
grid. Fig. 2 depicts three different thermodynamic meshes gener-
ated starting from the same basis points and specifying the normal
spacing as a function of logðvÞ; s; logðTÞ; s, and logðvÞ; e. As well 
visible, the third grid extends in regions far from the critical point, 
while the former two also include the supercritical zone; this 
represents a crucial advantage in processes that occur, at least
cretized MDM vapor saturation line in the critical region of the T–s plane.



Fig. 2. Thermodynamic meshes generated using logðvÞ; s; logðTÞ; s, and logðvÞ; e as independent variables for normal spacing. For clarity, the tables are reported in the T—s
plane.

Fig. 3. Look-up Tables for siloxane MDM (left) and CO2 (right) in the T–s plane.
partially, in the dense-gas region, such as organic Rankine cycles 
(ORC) turbine expansions. Furthermore, the use of logðTÞ; s as 
independent variables usually leads to relevant deformations of the 
mesh for different couples of thermodynamic properties. This 
results in higher computational costs and lower accuracies when 
the LuT method is applied in process or CFD calculation, in which 
different couples (e.g. q; e or P; q) are required. After several trials 
on a large variety of fluids, the definition of the normal spacing in 
the logðvÞ; s plane resulted as the best construction strategy. This
allows to easily embed real gas regions in the thermodynamic 
domain, while preserving an acceptable skewness of the mesh 
for the couples commonly required in CFD calls. As a result,
logðvÞ; s represents the basic choice of all grids constructed for 
the CFD simulations reported in the following.

The use of the saturation line as a basic support for LuT 
construc-tion enables also the adoption of a multi-block approach, 
providing that the saturation line is split into several pieces, 
possibly with dif-ferent discretization. The multi-block 
construction also allows to easily embed two-phase regions in the 
domain; the adjacent blocks result completely separated, with two 
different sets of points (one for each block) assigned at the 
boundary. All properties are contin-uous across any single cell of 
the domain, since (by construction) none of them can be crossed by 
the saturation line. Fig. 3 sketches, in the T—s plane, two examples 
of thermodynamic mesh for, respec-tively, MDM (split into three 
blocks) and CO2 (made by two blocks). As the original tables are 
generated in the logðvÞ; s plane, the corre-sponding grids in the T; s 
plane may exhibit a certain skewness, especially for fluids featuring 
a positive slope of the saturation line such as MDM. Notice also that 
mesh spacing can differ from one block to another and in both grid 

directions (e.g., Fig. 3, left).
2.2. Construction of the fundamental relation

The major novelty of the present approach is the construction of
a thermodynamic fundamental relation in the form e ¼ eðv ; sÞ valid 
within each cell through an interpolation-based method. The pre-
computed thermodynamic properties (stored at any grid node) 
are used as basis points. An analytic functional form is then 
required to mimic the real thermodynamic behavior of the fluid. 
In this context a simple bilinear and a more accurate bicubic bivar-
iate interpolation methods based on edge-points are implemented. 
In particular the bicubic form was chosen in such a way to guaran-
tee a degree of variability of the second derivatives within the 
cells; as a matter of fact the second derivatives of the fundamental 
relation are required for the calculation of some thermodynamic 
quantities, such as the specific heats or the speed of sound, as 
shown in Section 2.4. The bicubic functional form can be written as

eðv; sÞ ¼
XN

j¼0

XM

i¼0

bi;jv isj N ¼ 3; M ¼ 3 ð1Þ

For each cell the coefficients bi;j of the interpolation functions
are determined by using the values of entropy, specific volume,
and internal energy of the surrounding 4 (bilinear) or 16 (bicubic)
grid nodes.

This approach allows to manage the calculation of the whole set
of weights for all grid cells in a pre-processing phase. As a result,
the accuracy of the method may be further enhanced by using
higher-order interpolating functions without compromising the
computational efficiency of the calculation strategy; indeed, the
overall expense remains only dependent on the number of cells
and on the pair of state variables, as outlined in the following.



2.3. Transport property functional forms

Similarly to the case of thermodynamic properties, the transport
properties of any point of the domain are calculated according to a
LuT approach. Therefore, a local analytical functional form is con-
structed for both the dynamic viscosity l and the thermal conduc-
tivity k at any cell of the grid. In either cases the specific volume v
and the specific entropy s have been taken as independent variables
and simple bilinear functions are implemented, since no second
order derivatives of transport properties are required in the context
of fluid-dynamic computations. However, more complex relations
can be adopted with no significant increase of the computational
cost. The bilinear functional forms for l and k can be written as:

lðv ; sÞ ¼
XN

j¼0

XM

i¼0

bi;jv isj N ¼ 1; M ¼ 1 ð2Þ

kðv ; sÞ ¼
XN

j¼0

XM

i¼0

fi;jv isj N ¼ 1; M ¼ 1 ð3Þ

Each set of local coefficients bi;j; fi;j is established by taking the
triple v ; s; l or v ; s; k of the surrounding 4 grid nodes. As in the
case of thermodynamic property calculation, the whole set of
weights is determined in the pre-processing phase, thus not
affecting the computational efficiency of the method.

2.4. Computation of thermodynamic properties

The whole set of thermodynamic quantities normally involved
in process or fluid-dynamic calculations, e.g., P; T; h; c; cv ; cP , is
provided by properly deriving the analytical expression of the fun-
damental relation. As a result, the thermodynamic consistency of
the method is automatically satisfied. Since the speed of sound
and the specific heats are functions of the second-order partial
derivatives of e, the bicubic interpolation form is suited for the
solution of flow problems. The full set of thermodynamic proper-
ties as a function of s; v can be written as

P ¼ � @e
@v

� �
s
;

T ¼ @e
@s

� �
v
;

h ¼ e� @e
@v

� �
s

v ;

c ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@2e
@v2

 !
s

vuut ;

cv ¼
T

@2e
@s2

� �
v

;

cP ¼
T @2e

@v2

� �
s

T
cv

@2e
@v2

� �
s
� @2e

@v@s

� �2 ;

ð4Þ

in which cP is only defined in single phase regions. Furthermore, 
most of the flux splitting numerical schemes suitable for arbitrary 
equations of state, as the one proposed in [25] and implemented in 
the flow solvers described in the following, require the calcula-tion 
of secondary thermodynamic properties to reconstruct the fluxes 
among adjacent cells. These are commonly limited to deriv-atives of 
pressure with respect to density and to internal energy for inviscid 
simulations [5], which, properly combined, are used to recover the 
fluid speed of sound. The specification of temperature derivatives is 
further needed in case of viscous [19] and through-flow problems 
[16] solved by implicit time integration algorithms.
If analytically rewritten as function of s; v , such derivatives can
be additionally obtained as outcome of the present LuT method as
follows:

@P
@e

� �
q
¼ � 1

T @2e
@v2

� �
s

;

@P
@q

� �
e
¼ c2

c2 þ @P
@e

� �
q

@e
@v

� �
sv2

;

@T
@e

� �
q
¼

@2e
@s2

� �
v

T
;

@T
@q

� �
e

¼ � v2

@2e
@v@s

:

ð5Þ

 For a given input pair of thermodynamic properties (e.g. 
vs; ve; Ps; PT) the calculation strategy is divided into three main
steps: the mesh cell containing the desired point is initially identi-
fied and the corresponding set of coefficients bi;j is separately 
selected; then the given pair is converted into the explicit state v; s 
by iteratively solving a non-linear equation (system); finally
the thermodynamic properties are calculated by means of the set 
of Eqs. (4) and (5).

The identification of the correct grid element where the ther-
modynamic point of interest lies represents the most demanding 
operation of any LuT approach and the time correspondingly 
required proportionally increases with the number of mesh nodes. 
A considerable reduction of the computational expense related to 
the search process is herein achieved by adopting fast nearest-
neighbor techniques. Within the present LuT algorithm a robust kd-
tree partitioning algorithm [1,21] has been implemented and tuned 
to decompose the original thermodynamic domain in a tree 
structure suitable for a highly efficient search procedure.

In particular, several tree structures are assembled and stored, 
one for each couple of thermodynamic states required in CFD 
codes. Such an approach leads to approximately the same compu-
tational cost for a single search procedure using different input 
pairs, at least on meshes characterized by similar skewness. 
Moreover, as kd-tree methods act primarily on Euclidean spaces, 
an algebraic transformation is initially applied to the thermody-
namic properties in order to map the original values within the 
normalized space 0–1. This ensures an acceleration of the search-
ing process.

Apart from the favorable case of v; s, which seldom occurs in 
CFD or process calculations, any other pair of states cannot be 
directly used for the computation of the thermodynamic 
properties, as the fundamental relation explicitly depends on 
v; s. Therefore the input state has to be preliminarily converted 
into the independent state v; s by solving a non-linear problem 
in the form fðv; sÞ ¼ f0; f0 being a vector of two given properties. 
The most demanding case occurs when none of the input variables 
correspond to the independent variables of the fundamental rela-
tion. Considering for example P; T as independent variables, the 
non-linear system to be solved to restore v; s can be written as

Pðv ; sÞ ¼ P0;

Tðv ; sÞ ¼ T0:
ð6Þ

Eq. (6) can be solved by any iterative algorithm available for 
non-linear systems. In this work some Newton’s updates are 
employed to hasten the solution. The linearization of Eq. (6) simply 
holds

Pðv þ dv; sþ dsÞ ¼ Pðv ; sÞ þ @P
@v dv þ @P

@s
ds ¼ P0;

Tðv þ dv ; sþ dsÞ ¼ Tðv ; sÞ þ @T
@v dv þ @T

@s
ds ¼ T0:

ð7Þ



By plugging the fundamental relation into the linearized
equations, the full system is more conveniently expressed as

@P
@v

@P
@s

@T
@v

@T
@s

" #
dv
ds

	 

¼

@2e
@v2 � @2e

@v@s

@2e
@v@s

@2e
@s2

" #
dv
ds

	 

¼

P0 � Pðv ; sÞ
T0 � Tðv; sÞ

	 

; ð8Þ

where the vector dv; ds represent the incremental steps of the solu-
tion v; s. A very fast convergence is usually achieved by selecting as 
initial guess for the iterative process the couple v; s belonging to 
the mesh node closest to the assigned one. Given the couple v; s 
corresponding to the point of interest, the thermodynamic quanti-
ties are straightforwardly evaluated by applying the relations (4), 
while the transport properties are simply given by the functional 
forms (2) and (3).

3. Analysis of the method

In this section the accuracy and the computational efficiency of 
the method are carefully assessed, alongside a discussion about the 
thermodynamic stability of the local fundamental relations. Carbon 
dioxide and siloxane MDM are considered as reference compounds 
for the investigations. The thermodynamic tables are constructed 
on the basis of the data based on the reference EoS implemented in 
FluidProp.

3.1. Thermodynamic stability

Each fundamental relation describing thermodynamic 
equilibrium states has to satisfy the so-called stability conditions 
[9]. To guarantee the thermodynamic stability it is necessary and 
sufficient that the fundamental relation is convex with respect to 
the specific entropy and the specific volume, namely that, for a pure 
substance:

d2e ¼ 1
2

@2e
@s2

 !
v

ds2 þ @2e
@s@v

 !
dsdv þ 1

2
@2e
@v2

 !
s

dv2
> 0 ð9Þ

Therefore, the quadratic form (9) which expresses d2e is 
required to be positive definite or, equivalently, that all the princi-
pal minors of the matrix of the quadratic form are positive. As the
matrix of (9) is the Hessian matrix ðH ¼ Hðs; vÞÞ of e, the stability of 
the fundamental relation is guaranteed if and only if [9]:

H1;1 ¼ @2e
@s2

� �
v
> 0

detðHÞ ¼ @2e
@s2

� �
v

@2e
@v2

� �
s
� @2e

@s@v

� �
@2e
@v@s

� �
> 0:

8><
>: ð10Þ
Fig. 4. Verification of the thermodynamic stability for the siloxane MDM. Left: Non-dim
Hessian matrix of the fundamental relation e ¼ eðs;vÞ established at a certain cell of t
quantities are obtained.
The bicubic relation expressed in (1), therefore, must guarantee 
the thermodynamic stability in the region of application. This sim-
ply leads to local conditions, since a different fundamental relation 
is defined on a single mesh element. As a result, a simple method to 
ensure the local stability of a given bicubic function requires the 
verification of the conditions specified by (10) over the domain of 
application. In the present work this operation is performed 
immediately after the definition of the full set of bicubic relations. 
In particular, the stability conditions have been investigated in 
additional verification points obtained by equally dividing each cell 
of the support mesh in eight parts. These points include the 
barycenter of the cells, which represent the points where the inter-
polation error tends to be higher. The fulfillment of the stability 
conditions have been satisfactorily verified for different fluids and 
for mesh of different dimensions over the entire (possibly multi-
block) domain. Fig. 4 shows, in the T—s diagram, how the stability 
conditions are fulfilled by the whole set of fundamental relations 
established in the domain using the LuT. The results reported in Fig. 
4 refer to a two-block LuT constructed for the silox-ane MDM using 
5000 cells for the single-phase block and 2500 cells for the two-
phase block. The verification points are about 40,000 for the vapor/
supercritical region and about 20,000 for the two-phase region. It 
can bee seen how conditions (10) are respected at any investigated 
point of the thermodynamic domain and not only on the support 
grid nodes, as already guaranteed by the stability of the Span–
Wagner EoS [4] employed for the gener-ation of the mesh.
3.2. Accuracy

The accuracy of the proposed LuT approach is herein evaluated 
by quantitatively estimating the deviations of the interpolated val-
ues against the quantities given by the native model implemented 
in the FluidProp database, i.e. the Span–Wagner model for both flu-
ids [4,23], referred to as FP-SW in the sequel. Two ensembles of Np 

500 randomly distributed points are initially generated and used 
for the analysis. The former group is representative of the regions 
far from the critical point, the latter one is conversely extrapolated 
from the critical one. The results shown in the following report the 
Mean Relative Error (MRE) of W ¼ ðP; c; cP ; . . .Þ, defined as

MRE ¼ 100
PNp

i¼1
kðWiLuT

�WiFP�SW
Þ=WiLuT

k
Np

, as a function of the grid node

number for v; s as input pair. Further calculations, not reported 
herein, gave similar outcomes for the remaining couples.

Figs. 5 and 6 display the convergence of the mean relative error 
as a function of the table nodes. For both fluids, the error tends to 
be higher in the critical region. This behavior is most probably due
ensional value of H1;1. Right: Non-dimensional value of detðHÞ. H ¼ Hðs; vÞ is the
he domain. Scales are extended to negative values to highlight that only positive



Fig. 5. LUT accuracy for MDM. Left: Mean relative error far from the critical point. Right: Mean relative error in the critical region.

Fig. 6. LUT accuracy for CO2. Left: Mean relative error far from the critical point. Right: Mean relative error in the critical region.

Table 1
Mean computational time ratio between the LuT and the FP-SW method far from the 
critical region.

vs ve Ps PT

MDM 10�3 10�2 10�2 10�1

CO2 10�3 10�2 10�3 10�1
to strong real gas effects, which induce high deviations of the 
thermo-physical properties between two close states. As a conse-
quence, the bicubic shape is less suitable to predict the trend of 
internal energy within a single cell element, resulting in a degrada-
tion of the accuracy of its first and second-order derivatives. As 
expected, Figs. 5 and 6 also show a lower accuracy for c and cP . This 
can be easily explained by inferring the order of the interpolating 
polynomials used for approximating the three properties. Such 
orders, with respect to the independent variables, can be synthet-
ically written as

P / v2;

c / v3
2;

cP / s:

ð11Þ

As shown, pressure (and temperature) are described by
quadratic functions, whereas specific heat capacities are basically
linear and, therefore, result to be calculated with minor accuracy.
In general the interpolation error decreases quadratically ð1=N2Þ
with the number of mesh elements N far from the critical point,
whereas lower convergence orders are achieved in proximity of
the critical region.
Table 2
Mean computational time ratio between the LuT and the FP-SW in the critical region.

vs ve Ps PT

MDM 10�3 10�3 10�2 10�2

CO2 10�3 10�3 10�3 10�2
3.3. Computational efficiency

The computational efficiency of the LuT approach is now
assessed by comparing the time necessary for a direct evaluation
of the thermo-physical properties using FluidProp with that
required by the LuT algorithm. The mean ratio of the computa-
tional burdens of the two methods (LuT cost divided by the direct
evaluation cost) for the set of the previously described 500 points,
randomly distributed in the thermodynamic space (in both critical 
and non-critical regions) is summarized in Tables 1 and 2. For a 
given input pair the whole set of thermodynamic and transport 
quantities is evaluated on a fixed thermodynamic mesh composed 
by 10,000 elements. The computational cost to generate the tables, 
including the construction of the fundamental relations, has been 
found relatively cheap, the time being less than a second for both 
fluids on a single core Intel Xeon 3.6 GHz workstation.

The present interpolation-based scheme outperforms the direct 
evaluation method for any pair of thermodynamic states. The com-
putational cost reduces up to three orders of magnitude with
respect to direct calls where v; s (or one of them) explicitly appears 
as input state. Up to three orders of magnitude gain can be achieved
by calling with v; e in critical regions, which represents the most



Fig. 7. Total computational cost of 500 search operations carried out for MDM in 
non-critical regions on grids of varying dimension.
used couple in a CFD solver. Conversely, the use of P; T as indepen-
dent variables needs the solution of the non-linear system (6), 
which entails a reduction of the computational gain offered by the 
LuT method. However, this type of call is not required in real-gas 
CFD solvers adopting conservative variables.

The influence of the grid dimension on the total computational 
burden is now investigated. The whole set of thermodynamic 
properties (previously based on a mesh of 10,000 cells) is assessed 
against grids of increasing size. The investigation is performed for 
MDM in the region far from the critical point. The computational 
expenses are coherently evaluated on meshes having similar 
skewness.

The results shown in Fig. 7 point out a very interesting trend. 
The computational cost increases less than linearly with the 
number of mesh elements, leading to the considerable advantage of 
making use of very fine mesh, i.e., very accurate properties 
calculation, without considerably affecting the whole cost of the 
simulation. Since most of the computational effort is due to the cell 
identification rather than to the property evaluation (using the 
same call the evaluation time is almost the same on different grid 
size), this outcome can be completely conferred to the characteris-
tics of the kd-tree partitioning algorithm. In fact, grids covering 
similar thermodynamic areas but characterized by different num-
ber of elements have comparable tree structures, namely the ther-
modynamic domain is divided in the same number of main 
partitions. Therefore, the introduction of further mesh points only 
leads to a modification of the tree structure at a lower level, result-
ing in an increase of local partitions of the domain for a finer mesh.

Hence, the main architecture of the tree is fully conserved 
between a coarse and a fine grid, while only its sub-structure is 
changed. This allows to envisage a search procedure as split in
Fig. 8. Overview of kd-tree partitioning algorithm. The values shown are the coordina
indicate the query points. (For interpretation of the references to color in this figure leg
two main parts: the search starts by proceeding along the primary 
partitions of the tree (global search), which are approximately 
equal between the two grids, then, in the case of a fine grid, the cell 
of interest is reached through the peripheral branches (local search) 
effectively arranged on the main tree structure. For a coarse grid, 
contrarily, the search stops at the first (global) level; see Fig. 8. The 
additional time consumed is then only related to the local search, 
which is usually very efficient. A further investiga-tion conducted 
by using carbon dioxide provided the same indica-tions. The 
potential of this feature of the LuT algorithm can be fully exploited 
in CFD simulations, as those reported in the next section.
4. Application to turbomachinery flows

The proposed LuT method has been embedded into existing CFD 
solvers for the simulation of turbomachinery flows of organic flu-
ids. In particular TzFlow code [16] for throughflow calculations of 
multistage machines and zFlow code [5] for blade-to-blade cascade 
calculations are considered. The performances of both solvers for 
realistic turbomachinery applications are investigated in the fol-
lowing, considering a transonic multistage radial turbine and a 
supersonic axial turbine nozzle.
4.1. Throughflow simulation of a multi-stage ORC radial turbine

The throughflow simulation of the transonic six-stage radial 
turbine proposed in [17], designed to operate with siloxane MDM, 
is first considered. The calculation presented in [17] was originally 
performed by coupling the TzFlow solver with the exter-nal 
thermodynamic library FluidProp, which characterizes the MDM 
fluid with the Span–Wagner model [4]. In the present con-text the 
TzFlow solver is extended to implement the proposed LuT 
approach, and then applied to the same machine using tables 
constructed with the Span–Wagner model, so to guarantee full 
coherence between the physical models used in the LuT and FP-SW 
calculations. The comparison between the results achieved with 
LuT and the FP-SW methods allows to highlight the impact of the 
thermodynamic treatment on the computational cost and accuracy 
of a CFD simulation for a whole machine.

The isentropic thermodynamic process ideally experienced by 
the fluid within the machine is represented in the left frame of Fig. 
9, where also the table used for the LuT calculation is provided in 
the T—s state diagram.

From the fluid dynamic point of view the TzFlow solver imple-
ments the so-called CFD-based throughflow model. In a nutshell, 
the flow model is obtained by averaging the three dimensional 
Euler equations in the azimuthal direction; this leads to a highly 
simplified axisymmetric problem, but proper source terms have to 
be introduced to model the flow deflection imparted by the
tes of the dividers (red circles), namely the basis points of the table. Black circles
end, the reader is referred to the web version of this article.)



Fig. 9. Tabulated region and expansion line for the throughflow simulation (MDM).
@t
result, differently from a standard inviscid flow solver, throughflow 
simulations also require the calculation of temperature, entropy, 
and their derivatives.

The TzFlow calculations of the six-stage centrifugal turbine have 
been performed using Craig & Cox loss model [8], and assum-ing 
elliptic-arc mean line blades (following the design remarks 
proposed in [15]). The computational grid is composed by about 30 
kcells (40 � 750 cells in spanwise and streamwise direction 
respectively), arranged in a structured multi-block assembly and 
composed by cascades and channels; the relatively high number of 
cells, with respect to the common experience on axisymmetric 
calculations, is motivated by the spatial resolution required for an 
appropriate modeling of the gradients of blockage in bladed zones 
(which holds for the twelve cascades of the machine). For the LuT 
calculations four thermodynamic tables are considered, composed 
by 5000, 10,000, 20,000 and 50,000 cells, all of them covering the 
same area on the state diagram but characterized by different levels 
of refinement.

blades, the aerodynamic losses, and the blade blockage [16]. From 
the thermodynamic point of view the solver is formulated in con-
servative form, hence the couple e; v represents the input pair in 
many instances of the calculation; however in the throughflow 
model the loss source term, formulated as a friction force, is 
expressed as D ¼ T @s (with t the streamwise coordinate). As a
Fig. 10. Left: Meridional evolution of total enthalpy and entropy field within the 6-stage
streamwise distribution of pressure and temperature at turbine mid-span.
An example of result for real-gas throughflow calculations is 
shown in the left frame of Fig. 10, where the distributions of total 
enthalpy and entropy on the meridional plane are depicted for the 
LuT calculation performed with the 5 kcells table. As clearly visible, 
the total enthalpy only drops across rotors, due to the work 
exchange (adiabatic flow conditions are assumed, as usually done 
in turbomachinery); conversely the entropy increases progres-
sively along the machine, due to the action of losses in stator and 
rotor cascades; both the quantities exhibit large spanwise gradi-
ents in the last stages, due to the significant flaring of the channel. 
All these features are properly captured by both the FP-SW and LuT 
models, from the quantitative and the qualitative points of view. A 
relevant quantitative comparison is provided in the right frame of 
Fig. 10, where the midspan profiles of static pressure and static 
temperature for FP-SW and LuT models are shown to be perfectly 
overlapped. This proves that the LuT algorithm (with the specific 
grid used) is accurate as much as the underlying FP-SW equation in 
providing the evolution of thermo-physical quantities along the 
machine.

The crucial quantitative comparison among different models is 
now performed in terms of computational efficiency. For this com-
parison the 5 kcells table has been first considered for the LuT 
model and, beside the FP-SW model, further calculations have been 
performed using more simple equations of state, namely the poly-
tropic ideal gas (PIG) and the polytropic Van der Waals (PVdW) 
laws. These latter models are also available in TzFlow by direct 
implementation of the EoSs within the solver. It should be noted 
that this procedure represents the most efficient strategy to deter-
mine the thermo-physical properties of a working fluid, as just 
simple analytical operations are required to solve for the full set of 
thermodynamic relations. Both polytropic models predict the fluid 
properties by using a constant specific heat ratio, obtained by 
conveniently averaging the c values along the ideal expansion line 
shown in the left frame of Fig. 10.

Table 3 compares the savings in computational cost with respect 
to FP-SW (implemented through the external library) provided by 
the LuT, PIG and PVdW models. Since in a CFD calculation a large 
amount of resources are required by the integration of the flow 
equations (e.g., for the calculation of fluxes, the solution of linear 
system, etc.), to properly analyze the effectiveness of the 
thermody-namic approach the overall computational cost is 
conveniently split into two contributions: the first one is the cost 
needed for the fluid-dynamics calculation, which is a fixed and 
irremovable fraction of the total expense; the second one is the cost 
needed for the calculation of thermodynamic properties.
centrifugal turbine. Right: Comparison between FP-SW and LuT results in terms of



Table 3
Total computational cost saved by using different thermodynamic modeling
approaches compared to FP-SW model for the throughflow simulation.

PIG PVdW LUT (5 kc) FP-SW

Time saving 53% 52% 33% –

Fig. 11. Total computational cost of the throughflow simulation using different grid
size.

Fig. 12. Tabulated region and expansion line for the axial supersonic turbine
simulation (MDM).

Fig. 13. Left: Blado-to-blade Mach flow field at nominal operating conditions. Ri

Table 4
Total computational cost saved by using different thermodynamic modeling
approaches compared to FP-SW model for the supersonic cascade simulation.

PIG PVdW LuT FP-SW

Time saving 83% 82% 65% –
For calculations performed using PIG or PVdW models the 
thermodynamic cost is a few percent of the total one, so their cost 
represents a rough estimate of the fluid-dynamic cost – the PIG and 
PVdW simulations share the same computational time indeed, as 
seen from Table 3. The FP-SW computational cost being the double 
of the PIG/PVdW one, the thermodynamic cost of the calls to the 
external library roughly equates the fluid dynamic one. When the 
LuT approach is used, the fast-searching algorithm and the local 
analytical model enable to strongly reduce the thermodynamic 
cost, saving about 2/3 of the corresponding one required by the FP-
SW simulation.

The influence of the grid size on the total computational cost of 
the LuT simulation is now investigated, with reference to the PIG/
PVdW computational cost. The three refined grids are used for the 
comparison, beside the original one. From the data reported in 
Table 3 it is possible to obtain a rough estimation of a PIG compu-
tation, which results approximately 150 s. The difference between 
the PIG and LuT burdens is around 65 s for a grid of 5 kcells. 
Increasing the number of grid nodes of one order of magnitude (50 
kcells) the extra cost, purely thermodynamic, is just about 13%. As a 
result the grid size has a slight relevance on the total computational 
cost of the simulation, allowing for the use of fine (and accurate) 
thermodynamic meshes, if required by the problem, without 
compromising the effectiveness of the computational procedure 
(see Fig. 11).
4.2. Blade-to-blade simulation of a supersonic ORC cascade

The second test case focuses on the blade-to-blade simulation 
of an axial supersonic ORC nozzle at mid-span. The cascade is char-
acterized by an extremely high expansion ratio, which leads to a 
design exit Mach number of 2. As a result thereof, the inter-blade 
channel is of a converging–diverging shape, with a sonic throat 
upstream of the discharge section. The working compound is 
siloxane MDM also in this application; the ideal thermodynamic 
process through the cascade is sketched in Fig. 12, along with the 
thermodynamic table used for the LuT simulations.
    The calculations have been performed with a simplified version 
of the zFlow code, which solves for the two-dimensional inviscid
ght: Predicted isentropic Mach number distribution along the blade surface.



Fig. 14. Left: Total computational cost of the blade-to-blade simulation using different grid sizes. Right: Convergence rate of the flow solver as a function of grid size.
flow equations in Cartesian coordinates; the codes zFlow and 
TzFlow were developed on the same bases, sharing the same 
numerical solution procedure and most of the computational 
features. After a preliminary grid dependence analysis, a computa-
tional grid of about 20,000 triangular elements has been selected 
for the present blade-to-blade calculations; the relatively large 
number of cells, with respect to typical values used for inviscid 
blade-to-blade simulations, is motivated by the presence of strong 
shocks. As done for the previous test case, the results of the LuT 
approach are now compared with the ones achieved with FP-SW, 
PIG and PVdW models, first considering a 5 kcells table for the LuT 
calculation.

The accuracy of the LuT approach is first evaluated against the 
solution gained by using FP-SW model. The left frame of Fig. 13 
shows the distribution of Mach number, from which the sonic 
throat and the trailing edge shock can be observed. In the same 
Figure the streamlines are also reported, showing the considerable 
flow turning both within and, especially, downstream of the blade 
channel.

Once again, all the flow features are captured by the LuT 
approach from both the qualitative and quantitative points of view. 
In particular a relevant quantitative comparison is provided in the 
right frame of Fig. 13, where the distributions of isentropic Mach 
number along the blade surface for FP-SW and LuT models are 
shown to perfectly overlap, confirming the accuracy of the solution 
provided by the LuT algorithm.

The computational cost and the accuracy of the LuT method are 
now analyzed. In full coherence with the preceding throughflow 
application, the same thermodynamic models are herein utilized 
for the analysis.

The time savings provided by LuT, PIG and PVdW approaches 
compared to the FP-SW one, reported in Table 4, are larger than 
that in the throughflow case. In particular, for the FP-SW calcula-
tion the thermodynamic cost amounts to 80% of the overall com-
putational cost, considerably higher than that occurring in the 
throughflow simulation; as a result, the LuT approach provides an 
even more significant saving, almost the double of that achieved for 
the throughflow test-case.

As already found for the throughflow calculation, the influence 
of the table size on the overall computational burden is limited, as 
depicted in the left frame of Fig. 14; a further study is finally carried 
out to evaluate the sensitivity of the conver-gence rate on the table 
size. Very similar residual values are achieved at end of the 
simulation going from 5 to 200 kcells, as visible in the right frame 
of Fig. 14. However, lower convergence rates of the flow solver are 
observed for coarser thermodynamic meshes, as highlighted in the 
same figure for LuT tables composed by 5 and 10 kcells.
5. Conclusions

This research study has presented an original LuT interpolation
method for efficiently managing the calculation of thermo-physical
properties. The method has been developed in a fully general man-
ner in order to cope with a variety of pure fluids, mixtures and
thermodynamic conditions, i.e., supercritical state, dense-gas, and
two-phase flows. Distinguishing features of the proposed approach
are the intrinsic thermodynamic consistency and the inherent
thermodynamic stability. The performance of the algorithm have
been proven through an exhaustive numerical campaign per-
formed at two different levels. First, accuracy and computational
efficiency have been carefully evaluated against the results
provided by the direct use of EoS, available through the software
FluidProp, on 500 points randomly distributed in both critical and
non-critical region. Second, the method has been coupled with
two existing CFD solvers equipped with built-in thermodynamic
models (PIG and PVdW) to assess the computational penalty with
respect to the use of more simple and less costly EoS.

Both levels of investigation have pointed out the strengths of
the method, which revealed high accuracy, high efficiency, and
low sensitivity, in terms of computational cost, with respect to grid
size. Notably, the last achievement is mainly due to the character-
istics of the kd� tree search algorithm, which leads the cost of the
LuT method to be logarithmically increasing with the number of
mesh points. This outcome fosters the adoption of very fine (and
accurate) thermodynamic grids for CFD simulations.
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