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ABSTRACT This paper is concerned with the problem of sampled-data exponential synchronization
for chaotic Lur’e systems (CLSs) in the form of master–slave framework. An improved time-dependent
Lyapunov functional (TDLF) is put forward to fully exploit the accessible information about sampling
characteristics and nonlinearities of the CLS. By resorting to the improved TDLF, a new synchronization
criterion is established, which ensures the synchronization error system is globally exponentially stable.
An illustrative example is offered to demonstrate the validity and virtue of the proposed design methodology.

INDEX TERMS Master–slave synchronization, sampled-data, chaotic Lur’e systems.

I. INTRODUCTION
Chaotic Lur’e systems (CLSs) are a class of typical nonlinear
systems with nonlinearities satisfying a sector condition, and
can exactly describe many dynamical systems. For instance,
the well-known neural networks [1]–[9] and complex net-
works [10]–[12] belong to this class. As a fundamental
issue in CLSs, the master-slave synchronization (MSS) prob-
lem has persistently received great research attention during
the past years. Up to now, a variety of MSS methodolo-
gies have been developed, including delay feedback con-
trol approach [13], sliding mode control technique [14], and
so on.

In practical control systems, the traditional analog-
circuit-based controllers are rapidly being replaced by
microprocessor-based digital controllers, where the latter
ones have a better reliability and flexibility than former
ones. In this situation, the aforementioned control strate-
gies based on continuous measurements may not be appli-
cable. To reflect the reality, it is necessary to study the
MSS problem for CLSs by resorting to sampled-data con-
trol technique [15]–[20]. During the past years, considerable
research efforts have focused on sampled-data MSS of time-
delay or delay-free CLSs in the framework of input delay
approach [21]–[28]. It is worth mentioning that a common
objective of these results is to achieve MSS of CLSs under
a larger allowable sampling interval, which is motivated by

the fact that less consumption of transmission channel and
more reliability will be ensured with the increase of sam-
pling interval. To this end, a novel TDLF was proposed
in [21] to reduce conservativeness and enlarge the allowable
sampling. Hua et al. [23] further took the characteristics
of nonlinear part into account, which can help to enlarge
the sampling interval. In [26], a helpful triple term was
introduced into the proposed TDLF, and a larger sampling
period than previous results was obtained by partly resorting
to free-matrix-based integral inequality. Two methodologies
called sampling-instant–to-present-time fragmentation and
free-matrix -based TDLF were adopted in [28] to increase
the sampling interval. Although the sampled-data MSS prob-
lem for CLSs has attracted considerable attention and some
methods have been obtained, there still exists the room for
improvement. One important reason is that the available
information about nonlinear part of CLS is not fully utilized
in the constructed TDLF, which can lead to considerable
conservativeness.

In this paper, we further investigate the sampled-data MSS
problem for CLSs. AnMSS criterion is provided to guarantee
the exponential stability of synchronization error system in
presence of sampled data. An illustrative example is given
to demonstrate the effectiveness and advantage of proposed
methodology over some recent results. The contributions of
the note can be highlighted as: 1) To fully use the available
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information about the nonlinear part of the system,
an improved TDLF is constructed by introducing a novel
term; 2) A more relaxed condition that ensures the positive
definiteness of the TDLF on sampling intervals is presented.

II. PRELIMINARIES
Consider the master-slave type chaotic Lur’e systems, which
are described by

M :

{
ẏ(t) = Dy(t)+ Eσ (Fy(t))
z(t) = Gy(t)

S :
{
˙̄y(t) = Dȳ(t)+ Eσ (F ȳ(t))+ u(t)
z̄(t) = Gȳ(t)

C : u(t) = K (z(tk )− z̄(tk )) (1)

where M, S , and C denote the master system, slave system
and controller, respectively. y(t) ∈ <n and ȳ(t) ∈ <n

represent the state vectors. u(t) ∈ <n is the control input with
gain matrix K ∈ <l×n. z(t) ∈ <l and z̄(t) ∈ <l represent
output vectors. D ∈ <n×n, G ∈ <l×n, F ∈ <m×n, and
E ∈ <n×m are system matrices. σ (·) : <m → <m is a non-
linear vector with elements σi (·) belonging to sector [0,wi].
For the sampled-data MSS, it is assumed that measurement
signals z(tk ) and z̄(tk ) are only available at the sampling
instant tk with 0 = t0 · · · < tk < · · · + ∞. The sampling
interval is bounded by

tk+1 − tk ≤ h, ∀k ≥ 0 (2)

where h > 0 represents the maximum upper bound of
sampling intervals.

FIGURE 1. The framework of sampled-data MSS scheme.

The basic framework of the sampled-data MSS is pro-
vided in Fig. 1. Denote the synchronization error as
δ(t) = y(t) − ȳ(t). From the MSS scheme (1), the following
synchronization error system can be obtained

δ̇(t) = Dδ(t)+ EJ (Fδ(t))−KGδ(tk ), tk ≤ t < tk+1
(3)

with J (Fδ(t)) = σ (Fδ(t)+ F ȳ(t)) − σ (F ȳ(t)). For
any δ, ȳ,

0 ≤
Ji(f Ti δ, ȳ)

f Ti δ

=
σi(f Ti δ, ȳ)− σi(f

T
i ȳ)

f Ti δ
≤ wi, i = 1, 2, . . . ,m

where f Ti represents the ith row for matrix F .

III. MAIN RESULTS
During this subsection, a new sampled-dataMSS criterion for
CLSs will be provided by resorting to the constructed TDLF.
Before proceeding, we denote the following notations:

τ (t) = t − tk , hτ (t) = h− τ (t),

ς (t) =
[
δT (t) δ̇T (t) δT (tk )

∫ t
tk
δT (α)dα

J T (Fδ(t))
∫ t
tk
J T (Fδ(α)) dα

]T
ς̄ (t) =

[
δT (t) δT (tk )

∫ t
tk
δT (α)dα

∫ t
tk
J T (Fδ(α)) dα

]T
(4)

Theorem 1: For given scalars h > 0, λ ≥ 0, ε1, ε2,

κ =

{
1, if λ = 0
0, if λ 6= 0,

the exponential MSS of system (1) can be ensured,
if there exist positive diagonal matrices Si, Ti, i = 1, 2,
L = diag (l1, l2, . . . , lm), W = diag (w1,w2, . . . ,wm),
positive matrices P , Q, Z ,

R =
[
R11 R12
∗ R22

]
, U =

[
U11 U12
∗ U22

]
,

V =
[
V11 V12
∗ V22

]
,

and appropriately dimensioned matrices H, K̄, 5, 5̂ and X
such that the following conditions are feasible

4+ 0 < 0 (5)4+ 0̄ 5̄ h5̂
∗ −hQ− he−2λhR11 0
∗ ∗ −2e2λhZ

 < 0 (6)

42=


P + e−2λhQ −e−2λhQ 0 0

∗ e−2λhQ 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

+ hX > 0 (7)

where

4=



411 412 413 414 −ε1HE +5T
5 416

∗ 422 423 −e−2λh5̂2 −κFTLT −HE 0
∗ ∗ 43,3 434 −ε2HE −5T

5 436

∗ ∗ ∗ 444 −e−2λh5̂T
5 446

∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 466



0=


211 212 213 214 hX14 + FTWS2 216
∗ 222 223 hX13 0 hX14
∗ ∗ 233 2λhX23 hX24 + hV12 2λhX24
∗ ∗ ∗ 2λhX33 hX34 2λhX34
∗ ∗ ∗ ∗ −2S2 − T2 + hV22 hX T

44
∗ ∗ ∗ ∗ ∗ 2λhX44
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0̄=


2̄11 he−2λh5̂T

2 he
−2λh5̂T

3 he
−2λh5̂T

4 2̄15 he−2λh5̂T
6

∗ h2Z/4 0 0 0 0
∗ ∗ 2̄33 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 2̄55 0
∗ ∗ ∗ ∗ ∗ 0


411 = 2λP − X11 − X T

11 +51 +5
T
1 − ε1HD − ε1DTHT

412 = P + κFTWLF +5T
2 + ε1H−DTHT

413 = X11 + X22 −51 +5
T
3 + ε1K̄G − ε2DTHT

414 = −X13 +5
T
4 − e

−2λh5̂1, 422 = H+HT

416 = −X14 +5
T
6 , 423 = −52 + K̄G + ε2HT

433 = −X22 − X T
22 −53 −5

T
3 + ε2K̄G + ε2GT K̄T

434 = −X23 − e−2λhU12 −5
T
4 − e

−2λh5̂3

436 = −X24 − e−2λhV12 −5
T
6

444 = −X33 − h−1e−2λhU22 − e−2λh5̂4 − e−2λh5̂T
4

446 = −X34 − e−2λh5̂T
6 ,

466 = −X44 − h−1e−2λhV22

211 = h(X13 + X T
13)+ 2λh(X11 + X T

11)

+ hU22 + FTWT2WF
212 = h(X11 + X T

11),

213 = hX T
23 − 2λh(X11 + X22)+ hUT

12

214 = hX T
33 + 2λhX13, 216 = hX34 + 2λhX14

222 = hQ+ hR11 + h2Z/4,
223 = −hX11 − hX22 + hR12

233 = 2λh(X22 + X T
22)+ hR22 + hU11 + hV11

2̄11 = he−2λh(5̂1 + 5̂
T
1 )+ FTWT1WF

2̄15 = FTWS1 + he−2λh5̂T
5

2̄33 = −he−2λhR22 − he−2λhU11 − he−2λhV11,

2̄55 = −2S1 − T1
5 =

[
5T

1 5T
2 5T

3 5T
4 5T

5 5T
6

]T
5̂ =

[
5̂T

1 5̂T
2 5̂T

3 5̂T
4 5̂T

5 5̂T
6

]T
5̄ = −h

[
5T

1 5T
2 e−2λhR12 +5

T
3 5T

4 5T
5 5T

6

]T
X =


X11 + X T

11 −X11 − X22 X13 X14
∗ X22 + X T

22 X23 X24
∗ ∗ X33 X34
∗ ∗ ∗ X44


Then, gain matrix K of sampled-data controller can be

computed as follows:

K = H−1K̄. (8)

Proof: The following improved TDLF is constructed for
synchronization error system (3):

V (t) =
4∑
i=1

Vi(t), t ∈ [tk , tk+1) (9)

where

V1(t) = 2κe2λt
m∑
i=1

∫ f Ti ε

0
[li(wiα − hi(α))] dα

V2(t) = e2λtδT (t)Pδ(t)+ hτ (t)e2λt ς̄T (t)X ς̄ (t)

+ hτ (t)
∫ t

tk
e2λα δ̇T (α)Qδ̇(α)dα

V3(t) = hτ (t)
∫ t

tk
e2λα

[
ĖT (α) δT (tk )

]
×R

[
δ̇T (α) δT (tk )

]T dα
+ hτ (t)

∫ t

tk
e2λα

[
δT (tk ) δT (α)

]
×U

[
δT (tk ) δT (α)

]T dα
+ hτ (t)

∫ t

tk
e2λα

[
δT (tk ) J T (Fδ(α))

]
V

×
[
δT (tk ) J T (Fδ(α))

]T dα
V4(t) = hτ (t)

∫ 0

−τ (t)

∫ t

t+β
e2λα δ̇T (α)Z δ̇(α)dαdβ

From (4) and the assumption of theorem, we know that
V1(t), V3(t) and V4(t) are positive definite. It can be verified
that

V2(t) ≥ h−1τ (t)e2λtδT (t)Pδ(t)+ h−1hτ (t)e2λtδT (t)Pδ(t)
+ hτ (t)e2λt ς̄T (t)X ς̄ (t)+ h−1hτ (t)e2λ(t−h)

× [δ(t)− δ(tk )]T ×Q [δ(t)− δ(tk )]

= h−1τ (t)e2λtδT (t)Pδ(t)+ h−1hτ (t)e2λt ς̄T (t)42ς̄ (t)

(10)

From condition (7), we can conclude that V2(t) ≥ 0,
t ∈ [tk , tk+1), then the whole TDLF (9) is positive definite.
It is noted that V (t) is a continuous function on [0,∞)

except the jumps tk (k = 0, 1, 2, . . .). When t = tk , the sec-
ond and third terms in V2(t) and the terms in V3(t) are not less
than zero when t → t−k and equal to zero when t = t+k . This
implies V (t) does not increase along the sampling instants.
By taking the derivatives of V (t) along system (3), we have

V̇1(t) = 2κe2λtδT (t)FTWLF δ̇(t)
− 2κe2λtJ T (Fδ(t))LF δ̇(t) (11)

V̇2(t) ≤ 2e2λtδT (t)P δ̇(t)+ 2λδT (t)Pδ(t)
+ 2hτ (t)e2λt ς̄T (t)X ˙̄ς (t)− e2λt ς̄T (t)X ς̄ (t)
+ 2λhτ (t)e2λt ς̄T (t)X ς̄ (t)
+ hτ (t)e2λt δ̇T (t)Qδ̇(t)

− e2λte−2λh
∫ t

tk
δ̇T (α)Qδ̇(α)dα (12)

V̇3(t) ≤ hτ (t)e2λt
[
δ̇T (t) δT (tk )

]
R
[
δ̇T (t) δT (tk )

]T
− e2λ(t−h)

∫ t

tk

[
δ̇T (α) δT (tk )

]
×R

[
δ̇T (α) δT (tk )

]T dα
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+ hτ (t)e2λt
[
δT (tk ) δT (t)

]
U
[
δT (tk ) δT (t)

]T
− τ (t)e2λ(t−h)δT (tk )U11δ(tk )

− h−1e2λ(t−h)
∫ t

tk
δT (α)dα

×U22

∫ t

tk
δ(α)dα − 2e2λ(t−h)δT (tk )U12

∫ t

tk
δ(α)dα

− 2e2λ(t−h)δT (tk )V12

∫ t

tk
J (Fδ(α)) dα + hτ (t)e2λt

×
[
δT (tk ) J T (Fδ(t))

]
×V

[
δT (tk ) J T (Fδ(t))

]T
− h−1e2λ(t−h)

∫ t

tk
J T (Fδ(α)) dαV22

×

∫ t

tk
J (Fδ(α)) dα

− τ (t)e2λ(t−h)δT (tk )V11δ(tk ) (13)

V̇4(t) ≤ 0.25 (hτ (t)+ τ (t))2 e2λt δ̇T (t)Z δ̇(t)

−

∫ 0

−τ (t)

∫ t

t+β
e2λα δ̇T (α)Z δ̇(α)dαdβ

≤ 0.25h (hτ (t)+ τ (t)) e2λt δ̇T (t)Z δ̇(t)

− e2λ(t−h)
∫ 0

−τ (t)

∫ t

t+β
δ̇T (α)Z δ̇(α)dαdβ

≤ 0.25he2λthτ (t)δ̇T (t)Z δ̇(t)+ 0.25he2λtτ (t)δ̇T (t)

×Z δ̇(t)− e2λ(t−h)
∫ 0

−τ (t)

∫ t

t+β
δ̇T (α)Z δ̇(α)dαdβ

(14)

On the other hand, the following inequality holds

0 = 2ςT(t)5̂
[
τ (t)δ(t)−

∫ t

tk
δ(α)dα−

∫ 0

−τ (t)

∫ t

t+β
δ̇T (α)dαdβ

]
≤ 2τ (t)ςT(t)5̂δ(t)−2ςT(t)5̂

∫ t

tk
δ(α)dα+0.5τ 2(t)ςT(t)5̂

×Z−15̂T ξ (t)+ 2τ−2(t)
[∫ 0

−τ (t)

∫ t

t+β
δ̇T (α)dαdβ

]
Z

×

[∫ 0

−τ (t)

∫ t

t+β
δ̇(α)dαdβ

]
≤ 2τ (t)ςT(t)5̂δ(t)−2ςT(t)5̂

∫ t

tk
δ(α)dα+0.5τ 2(t)ςT(t)5̂

×Z−15̂T ξ (t)+
∫ 0

−τ (t)

∫ t

t+β
δ̇T (α)Z δ̇(α)dαdβ (15)

which implies

−e2λ(t−h)
∫ 0

−τ (t)

∫ t

t+β
δ̇T (α)Z δ̇(α)dαdβ

≤ 2τ (t)e2λ(t−h)ςT (t)5̂δ(t)− 2e2λ(t−h)ςT (t)5̂
∫ t

tk
δ(α)dα

+ 0.5hτ (t)e2λ(t−h)ςT (t)5̂Z−15̂Tς (t) (16)

For any matrix 5 with appropriate dimension, the follow-
ing equation holds:

0 = 2e2λtςT (t)5
[
δ(t)− δ(tk )−

∫ t

tk
δ̇(α)dα

]
(17)

Similarly, for any matrixH ∈ <n×n, and scalars ε1 and ε2,
we obtain from (3) that

0 = 2e2λt
[
ε1δ

T (t)H+ ĖT (t)H+ ε2δT (tk )H
]

×
[
Ė(t)−Dδ(t)− EJ (Fδ(t))+KGδ(tk )

]
(18)

Moreover, for any Si = diag (si1, si2, . . . , sim) ≥ 0, and
Ti = diag (ti1, ti2, . . . , tim) ≥ 0, i = 1, 2, it follows from (4)
that

2h−1τ (t)e2λt
[
δT (t)FTW − J T (Fδ(t))

]
S1J (Fδ(t))

+ 2h−1τ (t)e2λt
[
δT (t)FTW − J T (Fδ(t))

]
S2J (Fδ(t))

≥ 0 (19)

h−1τ (t)e2λtδT (t)FTWT1WFδ(t)− h−1τ (t)e2λtJ T(Fδ(t))
× T1J (Fδ(t))+ h−1hτ (t)e2λtδT (t)FTWT2WFδ(t)
− h−1hτ (t)e2λtJ T (Fδ(t)) T2J (Fδ(t)) ≥ 0 (20)

Then, by adding the right sides of (17), (18) and the left
sides of (19) and (20) into V̇ (t), and setting K̄ = HK, we can
have from (11)-(14) and (16) that for t ∈ [tk , tk+1),

V̇ (t) ≤
hτ (t)
h

e2λtςT (t)(4+ 0)ς (t)+ h−1e2λt
∫ t

tk

[
ς (t)
δ̇(α)

]T
×

([
4+ 0̄ 5̄

∗ −hQ− he−2λhR11

]

+ 0.5h2e−2λh
[
5̂

0

]
Z−1

[
5̂

0

]T)[
ς (t)
δ̇(α)

]
dα

(21)

Following the similar analysis in [21], we can obtain
from (21) that there exists a scalar κ > 0 such that
‖e(t)‖ ≤ κe−λt ‖e(0)‖, if conditions (5) and (6) hold. This
implies that the chaotic Lur’e systems (1) are exponentially
synchronous. The proof is completed.
Remark 1: Compared with previous TDLFs in [21]–[28],

the main difference in the constructed TDLF (9) is that the
useful term

∫ t
tk
J (Fδ(α)) dα is introduced into the second

term of V2(t) to fully use the available information about
nonlinear part, which will contribute to the enlargement of
sampling interval. Moreover, motivated by [29], the double
integral term in V4(t) is adopted for the first time to reduce
design conservativeness.
Remark 2: It is worth mentioning the constraint condi-

tion (7) is used to ensure the positive definiteness of the
whole TDLF on sampling intervals, which is more relaxed
than the ones in [21]–[28] by imposing P + hX > 0. The
relaxation comes from the introduction of an additional free
matrixQ, which will reduce conservativeness to some extent.
It should be pointed out that there are some other ways that
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can further improve the obtained result. For instance, an effec-
tive way is to use sampling-instant-to-present-time fragmen-
tation to fully exploit the inner sampling behavior and reduce
conservativeness.
Remark 3: The number of decision variables involved in

our MSS criterion obtained in Theorem 1 is 42.5n2 + 9m2
+

36mn + 4.5n + 7m + nl, which is bigger than previous
results [21]–[28]. This means that the solution of the criterion
can be searched in a larger set. As a consequence, more
computational burden will be consumed.

IV. ILLUSTRATIVE EXAMPLE
During this subsection, an illustrative example about Chua’s
circuit will be utilized to verify the effectiveness and advan-
tage of the proposed sampled-data MSS scheme.

The nonlinear model of a Chua’s circuit can be presented
as follows:

ẏ1(t) = ᾱ (y2(t)− π1y1(t)+ σ (y1(t)))
ẏ2(t) = y1(t)− y2(t)+ y3(t)
ẏ3(t) = −βy2(t) (22)

where parameters π0 = −1/7, π1 = 2/7, ᾱ = 9, β̄ = 14.28,
and nonlinear part

σ (y1(t)) = 0.5 (|y1(t)+ 1| − |y1(t)− 1|) ,

belongs to sector [0, 1].
Then, the related system matrices are provided as

D =

−ᾱπ1 ᾱ 0
1 −1 1
0 −β̄ 0

, E =

−ᾱ(π0 − π1)0
0

,
G = F =

 1
0
0

T .
We first verify the virtue of the obtained MSS criterion.

By choosing ε1 = 0, ε2 = 1 and λ = 0, the exponential
MSS criterion obtained in Theorem 1 reduces to the asymp-
totic one. In this situation, the obtained maximum allowable
sampling interval h is 0.6728, while using the methodolo-
gies given in [25]–[28], the corresponding ones are 0.5218,
0.5319, 0.5342 and 0.5368, respectively. So, a larger sam-
pling interval has been obtained by using our MSS criterion.
Denote h = 0.32, themaximum allowable decay rate λ in [21]
is 0.07, while adopting Theorem 1, the maximum decay rate
is 0.22. This implies that a shorter convergence time can be
achieved by our approach. Based on (8), the corresponding
gain matrix of sampled-data controller can be computed as

K =
[
3.1789 0.8559 −1.6012

]T
Let y(0) =

[
0.1 −0.3 0.4

]T , ȳ(0) = [−0.4 0.2 −0.1
]T

be initial conditions of CLS. Under the sampling interval
h = 0.32, decay rate λ = 0.22 and the above gain
matrix for the sampled-data controller, the responses about
states y(t), ȳ(t), and synchronization error δ(t) are depicted
in Fig. 2, which verifies that under the designed controller,

FIGURE 2. Responses of states y (t), ȳ (t) and synchronization error δ(t).

the synchronization error δ(t) can exponentially converge to
zero despite the divergence of state for master system.

V. CONCLUSION
In this paper, the sampled-data master-slave synchro-
nization (MSS) problem has been studied for chaotic
Lur’e systems (CLSs) subject to the sampled-data. To fully
use the information of nonlinear part, an improved TDLF
has been established. A relaxed constraint condition is also
presented to keep the positive definiteness of the whole
TDLF on sampling intervals. By resorting to the TDLF
and constraint condition, a less conservative MSS criterion
has been achieved. The validity and virtue of the devel-
oped methodology has been demonstrated by an illustrative
example. In future, we shall study sampled-data fuzzy
systems [30]–[40] and sampled-data -based state estima-
tion/consensus problems [41]–[49].
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