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1 Introduction

Over the past few decades, model-based fault detection and 
isolation have been of considerable interest [1–4]. The basic 
idea is to construct a residual signal and compare it with a 
predefined threshold. If the residual exceeds the threshold, 
an alarm is generated. It is well known that unknown inputs 
and control inputs are coupled in many industrial systems 
and are potential sources of false alarm. Thus fault detec-
tion and isolation systems have to be robust to unknown 
inputs and control inputs. Several approaches using the H∞ 
norm techniques have been developed for the design of 
robust fault detection observers or filters [5–9]. It should be 
pointed out that the H∞ norm measures the maximum effect 
of an input on an output, contrary to the main objective of 
fault detection.

Generally speaking, high sensitivity of the residual sig-
nal to faults (i.e., high fault sensitivity) is preferred. To 
ensure the detection of the worst possible faults, the min-
imum fault sensitivity must be maximised. Recently, the 
study on the smallest singular value of a transfer function 
matrix has attracted much attention and various H− ‘norms’ 
have been defined by using the minimum ‘non-zero’ singular 
value, taken either at ω = 0 [10], or over non-zero frequency 
ranges [11, 12]. The exclusion of possible zero singular 
values in the definition prevents it from being a true worst-
case sensitivity measure. In [13–15], the definition of H− 
‘norm’ is extended to what is called the H− index, which is 
defined as the minimum singular value of the transfer func-
tion matrix over a given frequency range. The inclusion of 
possible zero singular values in the definition renders the H− 
index of a true worst-case sensitivity measure. In addition, 
mixed-norm fault detection problems have attracted a great
deal of attention and various approaches and schemes have
been proposed in the literature [16–19]. For example, Wang
et al. [16] proposed a suboptimal solution to the H−/H∞
fault detection observer design problem. In [17], the H−/H∞
fault detection problem was considered and formulated as
a quasi-linear matrix inequality formulation. Linear matrix
inequality based sufficient conditions for the existence of
the mixed H−/H∞ fault detection observers were proposed
in [18, 19].

On another research front line, there has been increas-
ing interest in the stability analysis and control problems
of positive systems because of their significance both in
theory and applications (see, for instance, [20–23] and ref-
erences therein). Furthermore, because of the fact that time
delays are one of the main causes of instability and poor per-
formance of systems, some researchers have devoted their
efforts to the study of positive systems with time delays [24,
25]. Some results on positive systems are based on lin-
ear Lyapunov functions. The motivation for using a linear
Lyapunov function is that the state of a positive system is
non-negative and hence a linear Lyapunov function serves as
a valid candidate. As stated in [26], the results obtained with
the use of linear Lyapunov functions are easier to analyse
than the ones based on quadratic Lyapunov functions. Since
the Lyapunov function is linear, there is no more relationship
with the vector 2-norm and the L2-norm as in the quadratic
case, but rather with the vector 1-norm and the L1-norm.
This framework is then more suitable for the L1-gain anal-
ysis of positive systems. Very recently, an L1-induced per-
formance index [26–29] has been proposed to characterise
the disturbance attenuation property of positive systems.

It is well known that non-linearities exist widely in prac-
tical systems. Owing to the difficulty of non-linearity, some



key results in linear positive systems cannot be applied to 
non-linear positive systems [30]. One of the main reasons 
might be the difficulty in modeling of the non-linearity. It is 
noted that the Takagi–Sugeno (T–S) fuzzy model [31, 32] 
has shed some light on this difficult problem, based on the 
fact that the T–S fuzzy model can approximate the smooth 
non-linear system on a compact set. This model formu-
lates the non-linear systems into a framework consisting of 
a set of local models, which are smoothly connected by 
some membership functions. Based on the local linearity, 
the stability and performance analysis approaches for linear 
systems can be fully developed for non-linear systems in 
this framework [33]. Recently, many authors have focused 
their interest on fuzzy positive systems, and some results on 
the stability and stabilisation of fuzzy positive systems with 
and without delays have appeared in [34–39]. However, to 
the best of our knowledge, the fault detection problem of 
fuzzy positive systems has not been fully investigated to 
date, which constitutes the main motivation of the present 
study.

In this paper, we are interested in dealing with the fault 
detection filter design problem of fuzzy positive systems 
with time-varying delays by utilising the co-positive type 
Lyapunov–Krasovskii functional method. The main contri-
butions of this paper can be summarised as follows: (i) a 
novel residual generator is constructed based on the filter, 
and an L− index that fits well into a linear Lyapunov func-
tional is proposed to measure the sensitivity of the residual 
signal to faults; (ii) based on the proposed L− index, we give 
a sufficient condition under which the L1-gain from faults to 
residuals is not less than a prescribed level; and (iii) by using 
the L− index, we design a mixed L−/L1 fault detection filter 
such that the effect of disturbances on the residual output is 
minimised and the effect of faults on the residual output is 
maximised.

The rest of this paper is organised as follows. In Section 2, 
problem formulation and some necessary lemmas are given. 
In Section 3, robustness conditions on fault detection fil-
ter and L− index fault sensitivity conditions are provided, 
respectively. Then based on the results above, the problems 
of the L− fault detection filter design and the multi-objective 
L−/L1 fault detection filter design are solved. Two examples 
are provided to illustrate the proposed results in Section 4. 
Concluding remarks are given in Section 5.

Notations: In this paper, A � 0(� 0) means that all entries 
of matrix A are non-negative (non-positive); A � 0(≺ 0) 
means that all entries of matrix A are positive (negative); 
A � B(A � B) means that A − B � 0(A − B � 0). AT means 
the transpose of matrix A; R(R+) is the set of all real 
(positive real) numbers; Rn(Rn ) is the n-dimensional real 
(positive real) vector space; Rn

+×m is the set of all real matri-
ces of dimension n × m. The 1-norm of a vector x ∈ Rn is
defined as ‖x‖1 = ∑n

k=1 |xk |, where xk is the kth element
of x. L1[t0, ∞) is the space of absolute integrable vector-
valued functions on [t0, ∞), that is, we say z : [t0, ∞) →
Rp is in L1[t0, ∞) if

∫∞
t0

‖z(t)‖1dt < ∞. We denote 1 =
[1, 1, . . . , 1]T. Matrices, if their dimensions are not explicitly
stated, are assumed to have compatible dimensions for
algebraic operations.

2 Problem formulation and preliminaries

Consider the following fuzzy model system described by the
ith rule as follows:

Plant Rule i: IF θ1(t) is Mi1 and . . . and θg(t) is Mig , THEN

⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) = Aix(t) + Adix(t − d(t)) + Biu(t) + Eiw(t) + Gif (t)

y(t) = Cix(t) + Cdix(t − d(t)) + Diu(t) + Fiw(t) + Hif (t)

x(t) = ϕ(t), t ∈ [−τ , 0]
(1)

where x(t) ∈ Rn is the state, y(t) ∈ Rq is the measured
output; and u(t) ∈ Rl , w(t) ∈ Rp, f (t) ∈ Rz are the control
input, disturbance input and the fault input, respectively,
which belong to L1[0, ∞); r is the number of fuzzy IF–
THEN rulers. θ1(t), θ2(t), . . . , θg(t) are the premise variables.
Mik(i = 1, 2, . . . , r; k = 1, 2, . . . , g) are the fuzzy sets. Ai,
Adi, Bi, Ei, Gi, Ci, Cdi, Di, Fi and Hi, i = 1, 2, . . . , r, are
constant matrices with appropriate dimensions; ϕ(t) is a
vector-valued initial function defined on interval [−τ , 0],
τ > 0; d(t) is the interval time-varying delay satisfying

0 ≤ d(t) ≤ τ , ḋ(t) ≤ μ < 1 (2)

where τ and μ are real positive constants.
Through the use of ‘fuzzy blending’, the final fuzzy

system is inferred as follows (see (3))

where hi(θ(t)) = μi(θ(t))/
∑r

i=1 μi(θ(t)), μi(θ(t)) = ∏g
k=1

Mik(θk(t)), and Mik(θk(t)) is the degree of the mem-
bership of θk(t) in Mik . μi(θ(t)) ≥ 0 for i = 1, 2, . . . , r,
and

∑r
i=1 μi(θ(t)) > 0 for all t. Then hi(θ(t)) ≥ 0 (i =

1, 2, . . . , r) and
∑r

i=1 hi(θ(t)) = 1.

Definition 1: System (3) is said to be positive if, for all
ϕ(t) � 0, t ∈ [−τ , 0], u(t) � 0, w(t) � 0 and f (t) � 0, the
state x(t) � 0 and the output y(t) � 0 for all t ≥ 0.

Definition 2 [20]: A is called a Metzler matrix, if its off-
diagonal entries are non-negative.

Lemma 1 [37]: System (3) is positive if Ai, i = 1, 2, . . . , r,
are Metzler matrices, and Adi � 0, Bi � 0, Ei � 0, Gi � 0,
Ci � 0, Cdi � 0, Di � 0, Fi � 0 and Hi � 0, i = 1, 2, . . . , r.

Model-based fault detection relies on the generation of
a residual, which must be sensitive to failures and able to
distinguish failures from other unknown disturbance inputs.
The design must ensure that residuals are close to zero in
fault-free situations while clearly deviating from zero in the
presence of faults. For the purpose of residual generation,
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ(t) =
r∑

i=1
hi(θ(t)){Aix(t) + Adix(t − d(t)) + Biu(t) + Eiw(t) + Gif (t)}

y(t) =
r∑

i=1
hi(θ(t)){Cix(t) + Cdix(t − d(t)) + Diu(t) + Fiw(t) + Hif (t)}

x(t) = ϕ(t), t ∈ [−τ , 0]

(3)



the following fault detection filter is constructed as a residual
generator.

Filter ruler i: IF θ1(t) is Mi1 and . . . and θg(t) is Mig , THEN{ ˙̂x(t) = Afix̂(t) + Bfiy(t)

r(t) = Cfix̂(t) + Dfiy(t)
(4)

where x̂(t) ∈ Rnf and r(t) ∈ Rm are the state and the residual
output, respectively. Afi, Bfi, Cfi and Dfi, i = 1, 2, . . . , r, are
the parameterised filter matrices to be determined, such that
the following requirements are guaranteed:

(i) System (4) is asymptotically stable under fault-free
conditions;
(ii) The effect of disturbances on the residual output is
minimised;
(iii) The effect of faults on the residual output is maximised.

Remark 1: As a matter of fact, there exist two kinds
of filters, that is, fuzzy-rule-independent filter and fuzzy-
rule-dependent one. Generally speaking, the fuzzy-rule-
dependent filter, because of the fact that it takes the fuzzy
rules into account, is less conservative than the fuzzy-rule-
independent one. In this paper, we consider the fuzzy-rule-
dependent fault detection filter in the form of (4). Moreover,
in the framework of positive fuzzy systems, it is necessary
to construct a positive fuzzy-rule-dependent fault detection
filter to generate a positive residual. Therefore it is also
required that the designed filter (4) is positive, that is, Afi is a
Metzler matrix, Bfi � 0, Cfi � 0 and Dfi � 0, i = 1, 2, . . . , r.

Augmenting the model of positive system (3) to include
the states of positive system (4), we can obtain the following
augmented positive system (see (5))

where

x̃(t) =
[

x(t)

x̂(t)

]
, w̃(t) =

[
u(t)

w(t)

]

Ãij =
[

Ai 0

BfjCi Afj

]
, Ãdij =

[
Adi 0

BfjCdi 0

]

Ẽij =
[

Bi Ei

BfjDi BfjFi

]
, G̃ij =

[
Gi

BfjHi

]

C̃ij = [
DfjCi Cfj

]
C̃dij = [

DfjCdi 0
]

, F̃ij = [
DfjDi DfjFi

]
H̃ij = DfjHi, i, j = 1, 2, . . . , r

Definition 3 [28]: Given a positive scalar γ , system (5) is
said to have an L1-gain performance index γ , if under zero-
initial condition, that is, ϕ(t) = 0, t ∈ [−τ , 0], it holds that

sup
w̃(t)�=0,f (t)=0

∫∞
0 ‖r(t)‖1dt∫∞
0 ‖w̃(t)‖1dt

< γ , w̃(t) ∈ L1[0, ∞) (6)
Remark 2: It is interesting to point out that despite of being
computed with the assumption of non-negative input sig-
nals belonging to L1[0, ∞) and non-negative state values,
the determined L1-gain index is valid for any input signals
in L1[0, ∞) and any non-negative initial state.

Definition 4: Given a positive scalar β, system (5) is said to
have an L− performance index β, if under zero-initial condi-
tion, that is, ϕ(t) = 0, t ∈ [−τ , 0], the following inequality
holds

inf
w̃(t)=0,f (t)�=0

∫∞
0 ‖r(t)‖1dt∫∞
0 ‖f (t)‖1dt

> β, f (t) ∈ L1[0, ∞) (7)

Remark 3: Unlike the H− index proposed in the litera-
ture [13–15], the L− index is defined based on the L1 signal
spaces, and (7) means that the lower bound of the L1-gain
from faults to residuals for any fault signals in L1[0, ∞) is
greater than β, which is contrary to L1-gain index. Hence,
the L− index can be regarded as a measure of the fault
sensitivity.

Definition 5: Given positive system (3), for two positive
scalars γ and β, the filter (4) is said to be an L−/L1 fault
detection filter if

1) System (5) is asymptotically stable when w̃(t) = 0 and
f (t) = 0;
2) Under zero-initial condition, (6) and (7) hold.

The objectives considered in this paper are to find an
admissible filter (4) to minimise γ and to maximise β.

L− fault detection filter design: Given positive system (3)
and a performance bound β > 0, find a stable fault detection
filter in the form of (4), if exists, such that (7) is satisfied.
Then the filter (4) is called an L− fault detection filter.

Multi-objective L−/L1 fault detection filter design: Given
positive system (3), find a stable L−/L1 fault detection filter,
if exists, such that (6) and (7) hold and γ − β is minimised.

Remark 4: Various mixed H−/H∞ performance (γ 2 − β2,
γ /β, etc.) criteria were proposed in [18, 19] using the H−
index. Here in this paper, we adopt the γ − β criterion, using
the L− index, for ease of comparison.

After designing the residual generator, the remaining
important task is to evaluate the generated residual. One of
the widely adopted approaches is to select a threshold and
a residual evaluation function. In this paper, the residual
evaluation function is chosen as

Jr(T ) =
∫ T

0

‖r(t)‖1dt (8)

where T is the evaluation time window.
⎧⎪⎪⎨
⎪⎪⎩

˙̃x(t) =
r∑

i=1

∑r
j=1 hi(θ(t))hj(θ(t)){Ãij x̃(t) + Ãdij x̃(t − d(t)) + Ẽijw̃(t) + G̃ijf (t)}

r(t) =
r∑

i=1

r∑
j=1

hi(θ(t))hj(θ(t)){C̃ij x̃(t) + C̃dij x̃(t − d(t)) + F̃ijw̃(t) + H̃ijf (t)}
(5)



Once the evaluation function has been selected, we are 
able to determine the threshold. It is reasonable to choose 
the threshold as

Jth = sup
f (t)=0

Jr(T ) (9)

Based on this, the faults can be detected by using the
following logical relationship

Jr(T ) > Jth ⇒ with faults ⇒ alarm

Jr(T ) ≤ Jth ⇒ no faults

3 Main results

In this section, we will focus on the design of fault detection
filter. In order to obtain the main results, we firstly consider
the stability of system (5) with w̃(t) = 0 and f (t) = 0, that is

˙̃x(t) =
r∑

i=1

r∑
j=1

hi(θ(t))hj(θ(t))
{

Ãij x̃(t) + Ãdij x̃(t − d(t))
}

(10)

Lemma 2: If there exist vectors v, υ ∈ Rn+nf+ such that, for
i, j = 1, 2, . . . , r

ÃT
ij v + υ ≺ 0 (11)

ÃT
dijv − (1 − μ)υ ≺ 0 (12)

then system (10) is asymptotically stable.

Proof: Consider the following co-positive type Lyapunov–
Krasovskii functional candidate

V (t) = x̃T (t)v +
∫ t

t−d(t)

x̃T (s)υds (13)

where v, υ ∈ Rn+nf+ are vectors to be determined.

Along the trajectory of system (10), we have

V̇ (t) ≤
r∑

i=1

r∑
j=1

hi(θ(t))hj(θ(t))
{

x̃T (t)
(

ÃT
ij v + υ

)

+ x̃T (t − d(t))
(

ÃT
dijv − (1 − μ)υ

)}
(14)

It follows from (11), (12) and (14) that

V̇ (t) < 0 (15)

Thus system (10) is asymptotically stable. The proof is
completed.

3.1 Robustness conditions

In this subsection, the robustness requirement (6) of sys-
tem (5) is considered. Let f (t) = 0 in (5), we have (see (16))

Based on Lemma 2, the following theorem presents a suf-
ficient condition for the existence of L1-gain performance for
system (16).

Theorem 1: Given a positive constant γ , if there exist
vectors v, υ ∈ Rn+nf+ such that, for i, j = 1, 2, . . . , r

ÃT
ij v + υ + C̃T

ij 1 ≺ 0 (17)

ÃT
dijv − (1 − μ)υ + C̃T

dij1 ≺ 0 (18)

ẼT
ij v + F̃T

ij 1 − γ 1 ≺ 0 (19)

then system (16) is asymptotically stable with a prescribed
L1-gain performance index γ .

Proof: According to Lemma 2, we obtain from (17) and (18)
that system (16) is asymptotically stable when w̃(t) ≡ 0.
In the sequel, we shall prove that the L1-gain performance
of system (16) is satisfied for all non-zero w̃(t) ∈ L1[0, ∞)
under zero-initial condition (see (20))

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̃x(t) =
r∑

i=1

r∑
j=1

hi(θ(t))hj(θ(t)){Ãij x̃(t) + Ãdij x̃(t − d(t)) + Ẽijw̃(t)}

r(t) =
r∑

i=1

r∑
j=1

hi(θ(t))hj(θ(t)){C̃ij x̃(t) + C̃dij x̃(t − d(t)) + F̃ijw̃(t)}
(16)

‖r(t)‖1 − γ ‖w̃(t)‖1 =
∥∥∥∥∥

r∑
i=1

r∑
j=1

hi(θ(t))hj(θ(t)){C̃ij x̃(t) + C̃dij x̃(t − d(t)) + F̃ijw̃(t)}
∥∥∥∥∥

1

− γ ‖w̃(t)‖1

≤
r∑

i=1

r∑
j=1

hi(θ(t))hj(θ(t)){‖C̃ij x̃(t)‖1 + ‖C̃dij x̃(t − d(t))‖1 + ‖F̃ijw̃(t)‖1 − γ ‖w̃(t)‖1}

=
r∑

i=1

r∑
j=1

hi(θ(t))hj(θ(t)){x̃T (t)C̃T
ij 1 + x̃T (t − d(t))C̃T

dij1 + w̃T (t)(F̃T
ij 1 − γ 1)} (20)



Consider the Lyapunov–Krasovskii functional candidate
(13), then along the trajectory of system (16), one obtains

V̇ (t) + ‖r(t)‖1 − γ ‖w̃(t)‖1

≤
r∑

i=1

r∑
j=1

hi(θ(t))hj(θ(t)){x̃T (t)(ÃT
ij v + υ + C̃T

ij 1)

+ x̃T (t − d(t))(ÃT
dijv − (1 − μ)υ + C̃T

dij1)

+ w̃T (t)(ẼT
ij v + F̃T

ij 1 − γ 1)} (21)

From (17)–(19), we have

V̇ (t) + ‖r(t)‖1 − γ ‖w̃(t)‖1 ≤ 0 (22)

Under zero-initial condition, integrating both sides of (22)
from 0 to ∞ leads to∫∞

0

‖r(t)‖1dt ≤ γ

∫∞

0

‖w̃(t)‖1dt (23)

Thus, (6) in Definition 3 is satisfied.
This completes the proof.

Remark 5: It should be noticed that the stability condi-
tions (11) and (12) are implied in (17)–(19). Thus the
filter is stable if (17)–(19) are satisfied. Moreover, in the
derivation of Theorem 1, the co-positive type Lyapunov–
Krasovskii functional is employed for the robustness per-
formance analysis, which makes it easier to analyse the
obtained results.

3.2 L− index fault sensitivity conditions

Here, we study the fault sensitivity condition (7). Let w̃(t) =
0 in (5), one has (see (24))

In the following, a sufficient condition is provided for
system (24) to have a prescribed L− fault sensitivity index
β.

Theorem 2: Given a positive scalar β, if there exist vectors
vs, υs ∈ Rn+nf+ such that, for i, j = 1, 2, . . . , r

ÃT
ij vs + υs − C̃T

ij 1 ≺ 0 (25)

ÃT
dijvs − (1 − μ)υs − C̃T

dij1 ≺ 0 (26)

G̃T
ij vs − H̃ T

ij 1 + β1 ≺ 0 (27)

then system (24) has a prescribed L− fault sensitivity
index β.

Proof: Consider the following Lyapunov–Krasovskii func-
tional candidate

V (t) = x̃T (t)vs +
∫ t

t−d(t)

x̃T (s)υsds

where vs, υs ∈ R
n+nf
+ are vectors to be determined.
Similar to the proof of Theorem 1, we can obtain

‖r(t)‖1 − β‖f (t)‖1

≤
r∑

i=1

r∑
j=1

hi(θ(t))hj(θ(t)){x̃T (t)C̃T
ij 1

+ x̃T (t − d(t))C̃T
dij1 + f T (t)(H̃ T

ij 1 − β1)} (28)

Combining (14) and (28) yields

β‖f (t)‖1 − ‖r(t)‖1 + V̇ (t)

≤
r∑

i=1

r∑
j=1

hi(θ(t))hj(θ(t)){x̃T (t)(ÃT
ij vs + υs − C̃T

ij 1)

+ x̃T (t − d(t))(ÃT
dijvs − (1 − μ)υs − C̃T

dij1)

+ f T (t)(G̃T
ij vs − H̃ T

ij 1 + β1)} (29)

It can be obtained from (25)–(27) that

β‖f (t)‖1 − ‖r(t)‖1 + V̇ (t) < 0 (30)

Integrating both sides of (30) from 0 to ∞ leads to

β

∫∞

0

‖f (t)‖1dt −
∫∞

0

‖r(t)‖1dt < V (0) − V (∞) (31)

Noting that V (∞) ≥ 0 and V (0) = 0, (7) is directly
obtained.

The proof is completed.

Remark 6: Unlike the L1-gain performance analysis prob-
lem, although vectors vs and υs are positive, these two
vectors do not guarantee the negativeness of the cho-
sen Lyapunov–Krasovskii functional. Hence, the conditions
in (25)–(27) do not ensure a stable filter.

3.3 Design of L− fault detection filter

Let us consider the L− fault detection filter design prob-
lem. Because the L− index measure requires no stability
and (25)–(27) do not always provide a stable solution, we
should consider the stability of a proposed fault detec-
tion filter in the design process, that is, the existence of
vs = v ∈ Rn+nf+ and υs = υ ∈ Rn+nf+ such that (11) and (12)
hold. Note that (25) and (26) hold if (11) and (12) are sat-
isfied. Then (11), (12) and (27) provide a solution to the L−
fault detection filter design problem.

Theorem 3: Consider positive system (3), for a given pos-
itive scalar β, if there exist vectors vs = v ∈ Rn+nf+ and
υs = υ ∈ Rn+nf+ such that (11), (12) and (27) hold, then there
exists a stable L− fault detection filter in the form of (4).

In what follows, the L− fault detection filter design
procedure is provided.
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̃x(t) =
r∑

i=1

r∑
j=1

hi(θ(t))hj(θ(t)){Ãij x̃(t) + Ãdij x̃(t − d(t)) + G̃ijf (t)}

r(t) =
r∑

i=1

r∑
j=1

hi(θ(t))hj(θ(t)){C̃ij x̃(t) + C̃dij x̃(t − d(t)) + H̃ijf (t)}
(24)



Theorem 4: Consider positive system (3), for a given posi-
tive scalar β, there exists a stable L− fault detection filter in 
the form of (4) if there exist vectors v1 ∈ Rn , v2 ∈ Rnf , υ1 ∈ 
Rn , υ2 ∈ Rnf , ρ1j ∈ Rq and ρ2j ∈ Rnf , and 

+
matrices 

+
Kj � 0

+
with appropriate

+ +
dimensions, such that, for i, j = 1, 2, . . . , r

AT
i v1 + CT

i ρ1j + υ1 ≺ 0 (32)

AT
div1 + CT

diρ1j − (1 − μ)υ1 ≺ 0 (33)

ρ2j + υ2 ≺ 0 (34)

GT
i v1 + H T

i ρ1j − H T
i KT

j 1 + β1 ≺ 0 (35)

Moreover, if the conditions above have a feasible solution,
the filter parameters can be constructed by

ρ2j = AT
fj v2, ρ1j = BT

fj v2, Dfj = Kj (36)

Proof: Denote v = [
vT

1 vT
2

]T
and υ = [

υT
1 υT

2

]T
, then

substituting these vectors and the parameters of system (5)
into (11), (12) and (27), we can obtain from Theorem 3 that
the theorem is true.

Remark 7: It can be seen that Cfj can be any vectors
satisfying Cfj � 0 because of the fact that there is no
additional constraint on Cfj in the conditions (32)–(35).
Furthermore, (32)–(34) ensure the stability of the filter.

3.4 Design of L−/L1 fault detection filter

In this subsection, we study the mixed L−/L1 fault detection
filter design. The following theorem gives a solution to the
multi-objective design problem.

Theorem 5: Consider positive system (3), for given positive
scalars β and γ , if there exist vectors vs = v ∈ Rn+nf+ and
υs = υ ∈ Rn+nf+ such that (17)–(19) and (27) hold, then there
exists a stable L−/L1 fault detection filter in the form of (4).

Proof: Note that (25) and (26) can be directly obtained
from (17) and (18) for vs = v ∈ Rn+nf+ and υs = υ ∈ Rn+nf+ .
Thus the theorem holds.

The proof is completed.

The L−/L1 fault detection filter design procedure is given
in the following.

Theorem 6: Consider positive system (3), for given positive
scalars β and γ , there exists a stable L−/L1 fault detection
filter in the form of (4) if there exist vectors v1 ∈ Rn

+, v2 ∈
Rnf+ , υ1 ∈ Rn

+, υ2 ∈ Rnf+ , ρ1j ∈ Rq
+ and ρ2j ∈ Rnf , and matrices

K1j � 0 and K2j � 0 with appropriate dimensions, such that,
for i, j = 1, 2, . . . , r

AT
i v1 + CT

i ρ1j + υ1 + CT
i KT

2j1 ≺ 0 (37)

AT
div1 + CT

diρ1j − (1 − μ)υ1 + CT
diK

T
2j1 ≺ 0 (38)

ρ2j + υ2 + KT
1j1 ≺ 0 (39)

BT
i v1 + DT

i ρ1j + DT
i KT

2j1 − γ 1 ≺ 0 (40)

ET
i v1 + FT

i ρ1j + FT
i KT

2j1 − γ 1 ≺ 0 (41)

GT
i v1 + H T

i ρ1j − H T
i KT

2j1 + β1 ≺ 0 (42)

Moreover, if the conditions above have a feasible solution,
the filter parameters can be constructed by

ρ2j = AT
fj v2, ρ1j = BT

fj v2, Cfj = K1j, and Dfj = K2j (43)
Proof: Denote v = [
vT

1 vT
2

]T
and υ = [

υT
1 υT

2

]T
, then

substituting these vectors and the parameters of system (5)
into (17)–(19) and (27), it can be obtained that the theorem
is true.

A solution to the mixed L−/L1 fault detection filter
design problem can be obtained by solving the following
optimisation problem

Problem 1 min
v1,v2,υ1,υ2,

ρ1j ,ρ2j ,K1j ,K2j

γ − β

s.t. (37)–(42), i, j = 1, 2, . . . , r

then the optimal filter can be obtained from (43).

4 Examples

In this section, two examples are presented to check the
validity of the proposed results.

Example 1: Consider system (1) with parameters as follows

A1 =
[−4 3

2.5 −3

]
, Ad1 =

[
0.14 0

0.1 0.12

]

B1 =
[

0.3

0.14

]
, E1 =

[
0.24

0.12

]
, G1 =

[
0.5

0.4

]

C1 = [
0.12 0.13

]
, Cd1 = [

0.2 0.15
]

D1 = 0.12, F1 = 0.24, H1 = 0.35

A2 =
[−6 1

2.4 −5

]
, Ad2 =

[
0.1 0.1

0 0.12

]

B2 =
[

0.15

0.16

]
, E2 =

[
0.4

0.23

]
, G2 =

[
0.2

0.4

]

C2 = [
0.3 0.25

]
, Cd2 = [

0.14 0.24
]

, D2 = 0.5

F2 = 0.25, H2 = 0.2, μ = 0.2, τ = 0.5

Take β = 1, then solving (32)–(35) in Theorem 4 gives
rise to

v1 =
[

1.2634

1.6063

]
, v2 =

[
2.6331

2.6331

]
, υ1 =

[
0.9602

0.9317

]

υ2 =
[

2.6331

2.6331

]

ρ11 = 0.4206, ρ21 =
[−5.2662

−5.2662

]
, ρ12 = 0.4206

ρ22 =
[−5.2662

−5.2662

]
, K1 = 10.4314, K2 = 13.9762

From (36), the desired L− fault detection filter can be
obtained with the parameterised matrices as follows

[
Af 1 Bf 1

Cf 1 Df 1

]
=

⎡
⎣−4 1.5 0.0799

2 −3.5 0.0799
/ / 10.4314

⎤
⎦

[
Af 2 Bf 2

Cf 2 Df 2

]
=

⎡
⎣−4.5 2 0.0799

2.5 −4 0.0799
/ / 13.9762

⎤
⎦

where Cf 1 and Cf 2 can be designed as any vectors satisfying
Cf 1 � 0 and Cf 2 � 0.



Fig. 1 Residual signal in Example 1

In this example, the initial conditions are as follows:
x(0) = [0.3 0.5 0 0]T, x(t) = [0 0 0 0]T, t ∈ [−0.5, 0).

The control input u(t) and the external disturbance are
zeros. The fault signal f (t) is set up as

f (t) =
{

0.2t, 4 ≤ t ≤ 10

0, others

The generated residual r(t) is shown in Fig. 1. The threshold
can be determined as Jth = 6.5 for t = 30 s. Fig. 2 shows
the evolution of residual evaluation function Jr(t), in which
the dashed line is fault-free case, and the solid line is the
case with the fault f (t). The simulation results show that
Jr(t) = 7 > 6.5 when t = 6 s, which means that the fault f (t)
can be detected 2 s after its occurrence.

Example 2: Consider the following continuous-time non-
linear positive system with delay (see equation at the bottom
of the page)

where 0 ≤ d(t) ≤ 0.4 and ḋ(t) ≤ 0.4.
Let z(t) = sin2(x1(t)) and x(t) = [

xT
1 (t) xT

2 (t)
]T

. Its
fuzzy model can be represented as follows:
Fig. 2 Evolution of residual evaluation function in Example 1

Rule 1: IF z(t) is about 0, THEN

ẋ(t) = A1x(t) + Ad1x(t − d(t)) + B1u(t) + E1w(t) + G1f (t)

y(t) = C1x(t) + Cd1x(t − d(t)) + D1u(t) + F1w(t) + H1f (t)

Rule 2: IF z(t) is about 1, THEN

ẋ(t) = A2x(t) + Ad2x(t − d(t)) + B2u(t) + E2w(t) + G2f (t)

y(t) = C2x(t) + Cd2x(t − d(t)) + D2u(t) + F2w(t) + H2f (t)

For the convenience of simulation, the normalised
membership functions h1(t) = sin2(x1(t)) and h2(t) = 1 −
sin2(x1(t)) are used for Rules 1 and 2 in this example. Then
state-space matrices of system (3) in form of fuzzy model
are given as follows

A1 =
[−4 0.3

0.5 −3

]
, Ad1 =

[
0.14 0

0.1 0.12

]
,

B1 =
[

0.3

0.14

]
, E1 =

[
0.24

0.12

]
, G1 =

[
0.1

0.2

]

C1 = [
0.12 0.13

]
, Cd1 = [

0.2 0.15
]

ẋ1(t) = −4x1(t) − 2 sin2(x1(t))x1(t) + 0.3x2(t) + 0.7 sin2(x1(t))x2(t)

+ 0.14x1(t − d(t)) − 0.04 sin2(x1(t))x1(t − d(t)) + 0.1 sin2(x1(t))x2(t − d(t))

+ 0.3u(t) + 0.05 sin2(x1(t))u(t) + 0.4w(t)

− 0.16 sin2(x1(t))w(t) + 0.1f (t) + 0.02 sin2(x1(t))f (t)

ẋ2(t) = 0.5x1(t) + 1.9 sin2(x1(t))x1(t) − 3x2(t) − 2 sin2(x1(t))x2(t)

+ 0.1x1(t − d(t)) − 0.1 sin2(x1(t))x1(t − d(t)) + 0.12x2(t − d(t))

+ 0.14u(t) + 0.02 sin2(x1(t))u(t) + 0.12w(t)

+ 0.11 sin2(x1(t))w(t) + 0.2f (t) − 0.1 sin2(x1(t))f (t)

y(t) = 0.12x1(t) + 0.18 sin2(x1(t))x1(t) + 0.13x2(t) + 0.12 sin2(x1(t))x2(t)

+ 0.2x1(t − d(t)) − 0.06 sin2(x1(t))x1(t − d(t)) + 0.15x2(t − d(t))

+ 0.09 sin2(x1(t))x2(t − d(t)) + 0.12u(t) + 0.38 sin2(x1(t))u(t) + 0.24w(t)

+ 0.01 sin2(x1(t))w(t) + 0.35f (t) − 0.15 sin2(x1(t))f (t)



D1 = 0.12, F1 = 0.24, H1 = 0.35

A2 =
[−6 1

2.4 −5

]
, Ad2 =

[
0.1 0.1

0 0.12

]

B2 =
[

0.35

0.16

]
, E2 =

[
0.4

0.23

]
, G2 =

[
0.12

0.1

]

C2 = [
0.3 0.25

]
, Cd2 = [

0.14 0.24
]

, D2 = 0.5

F2 = 0.25, H2 = 0.2, μ = 0.4, τ = 0.4

Solving the optimisation Problem 1 gives rise to

v1 =
[

0.9056

0.9386

]
, v2 =

[
0.7025

0.7025

]
, υ1 =

[
2.1543

2.0704

]

υ2 =
[

0.7025

0.7025

]

ρ11 = 0.0639, ρ21 =
[−2.1076

−2.1076

]
, ρ12 = 0.0639

ρ22 =
[−2.1076

−2.1076

]
, K11 = 2.1306, K12 = 2.1306

K21 = [
0.7025 0.7025

]
, K22 = [

0.7025 0.7025
]

β = 0.2066, γ = 1.7107

From (43), the parameters of the designed optimal filter can
be obtained

[
Af 1 Bf 1

Cf 1 Df 1

]
=

⎡
⎣ −4 2 0.0454

1 −5 0.0454
0.7025 0.7025 2.1306

⎤
⎦

[
Af 2 Bf 2

Cf 2 Df 2

]
=

⎡
⎣ −3.8 1.3 0.0227

0.8 −4.3 0.0681
0.7025 0.7025 2.1306

⎤
⎦

In this example, the external disturbance and the initial state
are as follows

w(t) = 0.1e−0.04t , x(0) = [
0.3 0.5 0 0

]T

x(t) = [
0 0 0 0

]T
, t ∈ [−0.4, 0)

Fig. 3 Residual signal in Example 2
Fig. 4 Evolution of residual evaluation function in Example 2

The control input u(t) is the unit step function, and the fault
signal f (t) is set up as

f (t) =
{

0.4t, 10 ≤ t ≤ 50
0, others

The generated residual r(t) is shown in Fig. 3. The threshold
can be determined as Jth = 140 for t = 100 s. Fig. 4 shows
the evolution of residual evaluation function Jr(t), in which
the dashed line is fault-free case, and the solid line is the
case with the fault f (t). The simulation results show that
Jr(t) = 142 > 140 when t = 33 s, which means that the fault
f (t) can be detected 23 s after its occurrence.

5 Conclusions

In this paper, we have presented a solution to the multi-
objective L−/L1 fault detection filter design problem for
fuzzy positive systems with time-varying delays. The L−
index is proposed as a fault-sensitivity measure. By con-
structing a co-positive type Lyapunov–Krasovskii func-
tional, sufficient conditions for the existence of such a filer
are given. Finally, two examples are provided to show the
effectiveness and applicability of the proposed method. Our
future work will focus on the design of L−/L1 fault detection
filter for switched positive systems.
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