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1 Introduction

In the last decades, enormous efforts have been devoted 
in developing intelligent systems for road vehicles. Thus, a 
trend was the application of active safety systems to improve 
vehicle handling characteristics like stability and comfort. 
Various works have been carried on collision warning, col-
lision avoidance, adaptive cruise control and automated 
lane-keeping systems. Furthermore, majority of cars are 
nowadays equipped with traction control system, anti-lock 
braking system and many variants of electronic stability pro-
gram [1]. However, the development of effective control 
systems in more challenging operating conditions and sys-
tems failure is still the objective of intense research from 
both academic and industrial perspectives. In terms of the 
translation vehicle motion, three types of control systems for 
vehicle dynamics can be distinguished: lateral, longitudinal 
and vertical control system. The presented work focuses on 
fault-tolerant control of vehicle lateral dynamics. Hence, an 
occurring fault must not only be detected and isolated but 
also accommodated by a so-called fault-tolerant control law, 
to preserve satisfactory system performances.

Over the past decades, fault diagnosis and fault-tolerant 
control strategies (FTC) have been proposed especially for 
sensor and/or actuator faults for vehicle lateral dynamics 
[2–4]. Two classes of the existing strategies have been dis-
tinguished. The first one is the so-called passive FTC or 
robust control where faults are treated as non-structural 
bounded uncertainties [5–7]. However, the issues of fault 
detection and estimation are not involved either. Contrar-
ily to the passive FTC, active FTC requires the knowledge 
of the faults to reconfigure the controller law to maintain 
system stability, thus ensuring a smooth operation (see e.g.
[8–12] and references therein). The success of the previous
methods mainly depends on the model complexity. Indeed,
most studies have considered simple models and generally
linear. The reality is far from these assumptions and sys-
tems are extremely non-linear [10]. Moreover, a large class
of non-linear systems can be well approximated by Takagi–
Sugeno (T–S) models [10, 11, 13]. This later is described by
a set of linear time invariant (LTI) models and an interpola-
tion mechanism between these models based on non-linear
weighting functions. Indeed, the T–S models can be cast
into two main classes depending on whether the decision
variables are measurable or not [14]. Furthermore, the T–S
models with unmeasurable premise variables may be more
interesting [14, 15]. Recently, it has been demonstrated that
the multiple model approach is suitable for observer and/or
controller design, because it allows avoiding the need of
Lipschitz hypothesis like [16, 17] does.

Observers design for the non-linear T–S systems has
been studied using a quadratic Lyapunov functions (see e.g.
[18, 19] and references therein). These approaches remain
conservative since a common Lyapunov matrix must be
found for a set of linear matrix inequalities (LMIs) [20]. To
leave the quadratic framework, some works deal with poly-
quadratic and non-quadratic approaches [21–24] for control
and observer or filter design [14, 21, 25–27]. In this context,
relaxation schemes have been proposed for fault diagnosis
and fault-tolerant control [6, 11, 15, 28–31], and even for
Markovian jump systems with sensor saturation [32] and
network sensors [33–35].

Among control theory, regarding to output stabilisation
of T–S models, several techniques have been proposed for
dynamic output-feedback FTC design [2, 36, 37]. In these
studies, T–S systems with sensor failures are considered in



which an augmented fault observer is designed to yield fault
estimates and, based on the on-line fault estimates, observer-
based static output-feedback fault-tolerant controllers are
proposed. Following this way, one of our preliminary studies
has dealt with the problem of robust sensor fault detection
observer design for non-linear T–S systems with unmeasur-
able premise variables [38]. In the later, in aid of the descrip-
tor approach, a mixed H−/H∞ observer design for nominal
T–S systems has been proposed. However, this preliminary
result discusses only sensor fault estimation or detection
without considering the problem of fault-tolerant controller
design. However, it is noted that complementary works
have been recently done in the discrete-time framework,
which is reputed more favourable than the continuous-time
case for LMI purposes. Motivated by the issues mentioned
above, this paper further investigates the issues of descriptor
approach and multiple Lyapunov functions leading to strict
LMIs based on robust fault estimation and fault-tolerant con-
trollers design for the class of continuous-time disturbed
T–S systems. Taking advantages of the descriptor represen-
tation, it will be emphasised through a vehicle non-linear
model how this modelling approach is relevant to deal with
unmeasured premise variables for FTC design. Moreover,
the non-quadratic framework will be considered leading to
less conservative LMI conditions [39].

This paper is organised as follows. First, in Section 2,
the studied vehicle lateral dynamics model and the prob-
lem statement are defined with highlights on the descrip-
tor approach and unmeasurable premises. Then, Section 3
presents the robust observer-based FTC strategy: observer
and controller gains are designed using relaxed non-
quadratic LMI-based robust SOFC design conditions.
Finally, vehicle lateral dynamics model is provided to show
the effectiveness of the proposed approach.

Notation. Throughout this paper, when there is no ambi-
guity, the time t in a time varying variable will be omitted
for space convenience. As usual, in a matrix, (*) denotes
a symmetrical transpose quantity. H(H) denotes the Hermi-
tian of the matrix H, that is, H(H) = H + HT. Moreover In

is the identity matrix with appropriate dimensions.

2 System modelling and problem
formulation

A schematic diagram of the considered vehicle model is
shown in Fig. 1. The system under consideration describes
vehicle lateral dynamics, which is obtained by consider-
ing the well-known single-track (bicycle) model with a roll
degree of freedom, and mainly treated as a multi-model sys-
tem in [1, 3, 4]. First the vehicle non-linear system with the
multimodel representation used is detailed.

2.1 Takagi–Sugeno vehicle model

In this paper, a two-dimensional non-linear model of vehicle
with non-linear tire characteristics can be described by the
Fig. 1 Schematic diagram of the bicycle model

following differential equations [1, 3, 4]

[
β̇

ṙ

]
=

⎡
⎢⎢⎣

Ff + Fr

mU
af Ff − arFr

J
+ M

J

⎤
⎥⎥⎦ (1)

where, Ff is the cornering force of the two front tires, Fr

is the cornering force of the two rear tires, β denotes the
sideslip angle and r is the yaw velocity. U is the vehicle
velocity, J is the yaw moment of inertia, M is the yaw
moment and m is the vehicle mass.

Cornering forces Ff and Fr , based on the magic formula
[1], are given as functions of tire slip angles by the following
expressions (see (2))

with

αf = δf − β − tan−1
(af

U
r cos(β)

)
,

αr = tan−1
( ar

U
r cos(β)

)
− β

(3)

where δf is the front steer angle, af is the slip angle of the
front tires and ar is the slip angle of the rear tires (Fig. 1).
Coefficients Di, Li, Gi and Vi(i = f , r) depend on the tire
characteristics, road adhesion coefficient and the vehicle
operational conditions. Generally, in control design, only the
linear part of the forces is considered. However, this approx-
imation is only valid for low slip angle. In this work, using
T–S fuzzy representation, we have approximated non-linear
behaviour of forces (2) by two slip regions M1 and M2. We
obtain two rules defined as follows

if |αf | is M1 then {
Ff = Cf 1(σ )αf

Fr = Cr1(σ )αr
(4a)

if |αf | is M2 then {
Ff = Cf 2(σ )αf

Fr = Cr2(σ )αr
(4b)
Ff = Df (σ ) sin[Lf (σ ) tan−1{Gf (σ )(1 − Vf (σ ))αf + Vf (σ ) tan−1(Gf (σ )αf )}]
Fr = Dr(σ ) sin[Lr(σ ) tan−1{Gr(σ )(1 − Vr(σ ))αr + Vr(σ ) tan−1(Gr(σ )αr)}]

(2)



where Cf i, and Cri represent front and rear tire stiffness 
which depend on the road adhesion and the mass of vehicle. 
The overall forces are then obtained by{

Ff = μ1(|αf |)Cf 1(σ )αf + μ2(|αf |)Cf 2(σ )αf

Fr = μ1(|αf |)Cr1(σ )αr + μ2(|αf |)Cr2(σ )αr
(5)

where μi, i = 1, 2 is the ith bell curve membership function
of fuzzy set Mi to be determined. It is important to note that
the stiffness coefficients Cfi and Cri are not constant and vary
according to the road adhesion σ . To take into account these
variations, we assume that these coefficients vary as follows{

Cfi = Cfi0(1 + di fi)

Cri = Cri0(1 + di fi)
| fi| ≤ 1 (6)

where di indicates the deviation magnitude of the stiffness
coefficient from its nominal value. The problem here con-
sists in determining the parameters of the generalised Bell
membership functions μi, i = 1, 2 allowing to reproduce the
non-linear behaviour of cornering forces. For this, we have
developed an algorithm based on quadratic error minimi-
sation which combines Levenberg–Marquadt algorithm and
least squares method. We obtain

μi(|αf |) = �i(|αf |)∑2
i=1 �i(|αf |)

, �i(|αf |) = 1

[1 + |(|αf | − ci/ai)|]2bi

(7)

a1 = 0.5077, b1 = 0.4748, c1 = 3.1893,

a2 = 5.3907, b2 = 0.4356, c2 = 0.5633,

Using the above approximation for non-linear lateral forces
by T–S fuzzy rules and by considering that

αf
∼= δf − β − af ṙ

U
, αr

∼= arψ̇

U
− β, x = [β r]T (8)

non-linear model (1) with approximated forces (5) can be
represented by the following T–S fuzzy model⎧⎪⎨
⎪⎩

ẋ(t)
2∑

i=1

μi(|αf |)(Ai(σ )x(t) + Bi(σ )δf (t) + BM (t))

y(t) = Cx(t)

(9)

where (see equation at the bottom of the page)

The nominal values of the vehicle parameters are given in
Table 1.

2.2 Problem statement

Generally, dynamic non-linear systems are modelled by the
following ordinary differential equations{

ẋ(t) = f (x(t), u(t))
y(t) = h(x(t), u(t))

(10)

Where x(t) ∈ R
n, y(t) ∈ R

p, and u(t) ∈ R
nu represent,

respectively, the state vector, the measured system output
Table 1 Vehicle parameters

Parameters Values

J 3000 Kg m2

m 1500 m Kg
af 1.3 m
ar 1.2 m
U 20 m/s
Cf 10 60712 N/rad
Cf 20 4812 N/rad
Cr10 60088 N/rad
Cr20 3455 N/rad

and the bounded input vectors. The functions f (x(t), u(t))
and h(x(t), u(t)) are generally non-linear. As explained in
the previous section, the T–S formalism allows to represent
any non-linear system in a compact set of the state-space
with a convex combination of adequate r linear submodels

⎧⎪⎨
⎪⎩

ẋ(t) =
r∑

i=1

μi(ξ(t))(Aix(t) + Biu(t))

y(t) = Cx(t)

(11)

where Ai ∈ R
n×n and Bi ∈ R

n×nu . The activating functions
μi(ξ(t)) are non-linear that depend on the decision variable
ξ(t) which can be measurable (as the input or the output of
the system) or non-measurable variables (as the state of the
system) [15]. These functions verify the following so-called
convex sum property

⎧⎪⎨
⎪⎩

0 ≤ μi(ξ(t)) ≤ 1
r∑

i=1

μi(ξ(t)) = 1∀i ∈ {1, 2, . . . , r} (12)

The multiple model structure may be obtained either
by identification, linearisation, or the so-called sector
non-linearity transformation. In this work, the multiple
model under study involves unmeasurable premise vari-
ables depending on the state variables. We consider the
continuous-time T–S model to be affected by sensor faults
and unknown bounded disturbances. Then the T–S system
(11) becomes

⎧⎪⎨
⎪⎩

ẋ(t) =
r∑

i=1

μi(ξ(t))(Aix(t) + Biu(t)) + Bdd(t)

y(t) = Cx(t) + Df f (t)

(13)

where f (t) ∈ R
s is the sensor fault vector and d(t) ∈ R

nd is
the unknown bounded disturbance vector. Matrices Bd and
Df are of appropriate dimensions and Df is assumed to be of
Ai(σ ) =

⎡
⎢⎢⎣

−2
Cf i(σ ) + Cri(σ )

mU
−2

Cf i(σ )af − Cri(σ )ar

mU 2
− 1

−2
Cf i(σ )af − Cri(σ )ar

J
−2

Cf i(σ )a2
f + Cri(σ )a2

r

JU

⎤
⎥⎥⎦ , Bi(σ ) =

⎡
⎢⎣

2Cf i(σ )

mu
2af Cf i(σ )

J

⎤
⎥⎦ , Bi = B =

⎡
⎣ 0

1

J

⎤
⎦ , C = [0 1]



full column rank. Construct the augmented descriptor system
as follows⎧⎪⎨
⎪⎩

Ē ˙̄x(t) =
r∑

i=1

μi(ξ(t))(Āix̄(t) + B̄iu(t)) + B̄dd(t) + D̄hh(t)

y(t) = C̄x̄(t) = C0x̄(t) + h(t)
(14a)

where

x̄(t) =
[

x(t)

h(t)

]
∈ R

n+p, Ē =
[

In 0

0 0

]
, Āi =

[
Ai 0

0 −Ip

]
,

B̄i =
[

Bi

0

]
, B̄d =

[
Bd

0

]

D̄h =
[

0

Ip

]
, C0 = [

C 0
]

, C̄ = [
C Ip

]
,

h(t) = Df f (t) ∈ R
p (14b)

To estimate both the system state and fault, the following
singular observer structure is proposed⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
Ev̇(t) =

r∑
i=1

μi(ξ̂ (t))(Siv(t) + B̄iu(t))

ˆ̄x(t) = v(t) + Ly(t)

ŷ(t) = C0x̂(t) = Cx̂(t)

(15a–c)

where v(t) ∈ R
n+p is the auxiliary state vector of the

observer and ˆ̄x(t) ∈ R
n+p is the estimate of x̄(t). ξ̂ (t) is the

unmeasured premise variable depending partially or com-
pletely on the estimated state x̂(t). The observer design is
now reduced to finding the gains Si, E and L such that the
state and fault estimation error obey to a stable generating
system.

2.3 Descriptor observer design

This section is devoted to the state and fault estimation of
the continuous-time T–S model (13). In fact a more general
situation will be analysed since sensor faults and unknown
disturbances are envisaged. In this case, the observer design
task consists in generating residual signals that are sensitive
as possible to the faults, whereas insensitive to the distur-
bance so that the fault diagnosis is robust. The input signals
f (t) and d(t) belong to L2 set. The L2-norm of a signal
H (t) ∈ L2 is defined by

‖H (t)‖2 =
(∫+∞

0

H T(t)H (t)dt

)1/2

(16)

In fact, the problem of residual generation can be viewed
as L2-control (i.e. generalisation of H∞-control problem to
the non-linear case), since the residual generator is designed
by minimising the L2-gain from the disturbance signals to
the residual signal rd(t) = ∑r

i=1 μi(ξ(t))ViC0ed(t). For this
purpose, we propose the following theorem.

Theorem 1: The state observer in the form of (15a–c) can
asymptotically estimate states and sensor faults if there
exist some symmetric positive definite matrices P11, P12, P2

i ,
matrices N1, N2, and positive scalar λ that minimise the
scalar γ under the following LMI constraints (see (17))

with {
�1j = H(P11Aj) + H(N1C) + In

�2ij = N T
1 − P12T

i CAj − N2C{
ÃT

ij = AT
i − AT

j , B̃T
ij = BT

i − BT
j

Kij = (BT
i − AT

j )P
11

(18)

{
N1 = P11�℘−1

N2 = P12(℘−1 + C�℘−1)
(19)

The observer gains are then obtained by

Sj =
[

Aj 0

−C −Ip

]
, L =

[
0

Ip

]
, E =

[
In + �C �

℘C ℘

]
(20)

where � ∈ R
n.p and ℘ ∈ R

p.p are two free matrices chosen
to obtain non-singular matrix E

℘ = (P−1
12 N2 − CP−1

11 N1)
−1 (21a)

� = P−1
11 N1℘ (21b)

The attenuation level of exogenous disturbance signal on
residuals is given by. Since Df is assumed to be of full col-
umn rank, then the sensor faults estimation can be obtained
by

f̂ (t) = (DT
f Df )

−1DT
f ĥ(t) (22)

Proof: The proof can be inspired directly from [38]. �

Remark 1:

• To enhance the residual generator robustness with regard
to faults f (t) residual generator is designed to minimise the
sensitivity to the perturbation and to maximise the sensitivity
to faults [15, 38]. In the case of multiple fault diagnosis,
the optimisation problem can be resolved by introducing a
residual generator for each fault. More details can be found
in [15].
• Since Df is assumed to be of full column rank, then
the sensor faults estimation can be obtained by (22). This
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1j ∗ ∗ ∗ ∗ ∗
�2ij −H(N2) ∗ ∗ ∗ ∗

ÃT
ijP

11 −ÃT
ijC

TP12 H(P2
i Ai) ∗ ∗ ∗

Kij −B̃T
ijC

TP12 BT
i P2

i −λ2Inu ∗ ∗
BT

d P11 −BT
d CTP12 BT

d P2
i 0 −γ 2Ind ∗

ViC 0 0 0 0 −In

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 0 for, j = 1, . . . , r (17)



Fig. 2 Fault tolerant control scheme

assumption seems to be too strong in some cases, and the
condition can be omitted using finite frequency domain
method [40, 41].

3 LMI-based conditions for FTC design

In this section, to achieve the fault-tolerant control, a static
output-feedback controller (SOFC) law is designed against
sensor faults and external disturbances. As illustrated in
Fig. 2, an observer provides faults and state estimations,
required for the control law reconfiguration. Sufficient con-
ditions to guarantee the stability of the resulting closed-loop
system will be given in the form of LMIs.

Based on the parallel Disturbed Compensation (PDC)
[42], a SOF control law is designed as follows

u(t) =
r∑

i=1

μi(ξ̂ (t))Kiyc(t) (23a)

where Kj are the output-feedback gains to be determined and
yc(t) represents the compensated output defined by

yc(t) = y(t) − ĥ(t) = y(t) −  ˆ̄x(t) (23b)

with

 = [0 Ip] (23c)

Remark 2: Generally, the aim of SOFC is to control a
dynamical system from only knowledge of measurable sig-
nals. Thus, the decision variables are required to depend only
on the input u(t), the output y(t) and, eventually on mea-
surable state variables. Whereas, it is still possible to design
a robust static feedback controller in the case of unmeasur-
able premise variables. Indeed, in the sequel the structure of
the FTC law is calculated, taking into account the states and
sensor fault signals estimation derived from the descriptor
observer (15a–c).

Let us now analyse the stability of the closed-loop system.
The state estimation error e(t) = x̄(t) − ˆ̄x(t) is generated
using (20) by the following differential equation

Eė =
r∑

i=1

r∑
j=1

μi(ξ)μj(ξ̂ )[(SjLC0 + Āj)e

+ (Āi − Āj)x̄ + (B̄i − B̄j)u + B̄dd] (24)

substituting (23a) into (24), we conclude that

Eė =
r∑

i=1

r∑
j=1

μi(ξ)μj(ξ̂ )[Sje + (Āi − Āj)x̄

+ (B̄i − B̄j)(Kjc̄x̄ − Kj ¯̂x) + B̄dd] (25)

Adding and subtracting (B̄i − B̄j) Kjx̄(t), (25) can be rewrit-
ten as

Eė =
r∑

i=1

r∑
j=1

μi(ξ)μj(ξ̂ )[Fije + Aij x̄ + B̄dd] (26)

where

Fij = Sj + (B̄i − B̄j)Kj (27)

Aij = (Āi − Āj) + (B̄i − B̄j)Kj(C̄ − ) (28)

Consequently (17) is equivalent to

ė =
r∑

i=1

r∑
j=1

μi(ξ)μj(ξ̂ )[F̄ije + Āij + Gd] (29)

where the following nations are used (see (30) and (31))

To rewrite the whole model in a state-space representation,
let us define the augmented state vector

xT
a (t) = [

eT(t) xT(t)
]

(32)

The following closed-loop system is obtained

ẋa =
r∑

i=1

r∑
j=1

μi(ξ)μj(ξ̂ ) (33)

×
{[

F ij Aij

0 Ai + BiKjC

]
xa +

[
G
Bd

]
ḋ

}

In the sequel, the following lemma is needed.

Lemma 1: Consider two real matrices X , Y and F(t) with
appropriate dimensions, for any positive scalar δ, the fol-
lowing inequality is verified

X TFY + Y TFTX ≤ δX TX + δ−1Y TY , δ > 0 (34)

The objective is now to find out the observer and controller
gains minimising the effect of the perturbation d(t) on the
E−1 =
[

In −�℘−1

−C ℘−1 + C�℘−1

]
, Āij =

[
Ai − Aj + (Bi − Bj)KjC

−C(Ai − Aj) − C(Bi − Bj)KjC

]
, G = E−1B̄d =

[
Bd

−CBd

]
(30)

F̄ij =
[

Aj + �℘−1C �℘−1 + (1 + �℘−1C)(Bi − Bj)Kj

−CAj − (℘−1 + C�℘−1)C −(℘−1 + C�℘−1) − (1 + ℘−1 + C�℘−1)C(Bi − Bj)Kj

]
(31)



Fig. 3 Disturbance d(t) (left), front steering angle (right)

closed-loop system. That problem leads to solve a stan-
dard L2-control under the LMIs constraints provided by the
following theorem.

Theorem 2: System (13) with observer-based controller
(15a–c) is asymptotically stable if there exist symmetric
definite positive matrices P11, P12, P2i, matrices Q1, Q2

and positive scalars η, and δi, i = 1, . . . , 7 satisfying the
following conditions for, i, j = 1, 2 . . . , r and i 	= j

min η

Wii < 0 (35)

2

r − 1
Wii + Wij + Wji < 0 (36)

where

Wij =
[

Y(1,1)
ij (∗)

Y(2,1)
ij Y(2,2)

]
(37)

with (see (38))
and

Y(2,2) = −diag(δ1 + δ5 δ2 (δ3 + δ4 + δ2)
−1

× δ3 δ4 δ−1
1 δ6 δ7 (δ5 + δ6 + δ7)

−1) (39)

{
ÂT

ij = AT
i − AT

j

B̂T
ij = BT

i − BT
j

;

{
Q1 = P11�℘−1

Q2 = P12(R−1 + C�℘−1)
(40a)

The observer gains are then obtained by (20) � and ℘ are
defined by

℘ = (P−1
12 Q2 − CP−1

11 Q1)
−1 (40b)

� = P−1
11 Q1℘ (40c)

Proof: See Appendix 1 �

4 Simulation results

In this section, numerical simulations have been performed
to demonstrate the effectiveness and the applicability of the
proposed approach on the vehicle lateral dynamics model
(1). The constructed T–S model, representing the vehicle
model with premise variables depending on unmeasurable
state variable, is used to build the observer. In the design,
the vehicle parameters considered are given in Table 1.

Let us consider the following fault signal f (t) = (f1(t),
f2(t))T affecting the system output behaviour and described
as follows
f1(t) = 0.3 sin(t + 2) exp(t/5) occurs at 3 s ≤ t ≤ 10 s

f2(t) =

⎧⎪⎨
⎪⎩

0.1(t − 1) 12 s ≤ t < 15 s

0.01(t − 1) 15 s ≤ t < 18 s
0 otherwise

(41)

Simulations were performed to assess the effects of external
disturbance d(t) and the efficiency of the L2-gain attenuation
are illustrated in Fig. 3.

Recall that, only the yaw rate is supposed to be measur-
able with a gyroscope sensor. Moreover, the lateral velocity

Y (1,1)
ij =

⎡
⎢⎢⎢⎢⎣

H(P11Aj) + H(Q1C) ∗ (∗) (∗)

−P12CAj − Q2C + QT
1 −H(Q2) ∗ ∗

ÂT
ijP11 −ÂT

ijC
TP21 H(PT

2iAi) (∗)

BT
d P11 −BT

d CTP21 BT
d P2i −η2I

⎤
⎥⎥⎥⎥⎦ ; Y (2,1)

ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P11B̂ij 0 0

Q1C 0 0

0 KjB̂ij 0

0 Q1C 0

0 Q2 0

0 Kj 0

0 P21CB̂ij 0

0 0 P2iBi

0 0 KjC

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(38)



Fig. 4 Faults (f1, f2) and their estimates (left), SOFC (right)

Fig. 5 Vehicle states without FTC strategy (left), with FTC strategy (right)

Lateral velocity estimation error

yaw rate estimation error

f1 estimation error

f2 estimation error

Fig. 6 State estimation errors (left), fault estimation errors (right)



is estimated using the proposed observer. Solving the optimi-
sation problem under LMI constraints in Theorem 2, results
in the following observer and controller gain matrices for a
nominal attenuation level η = 0.843

S1 =
⎡
⎢⎣

−6.9425 −0.8758 0 0
26.8958 −7.7952 0 0
1.4062 1.9354 −1 0

0 −1 0 −1

⎤
⎥⎦ ,

S2 =
⎡
⎢⎣

−0.4751 −0.9968 0 0
0.6997 −0.4918 0 0
1.4062 1.9354 −1 0

0 −1 0 −1

⎤
⎥⎦ ,

L =
[

0 0 1 0
0 0 0 1

]T

K1 = [−0.0019 0.0020
]

, K2 = [−0.0020 0.0020
]

E =
⎡
⎢⎣

0.8684 0.0066 0.0936 0.1878
0.3121 0.9167 −0.2219 −0.5128

−0.1232 −0.0218 0.0876 0.1478
−0.0420 −0.0001 0.0299 0.0577

⎤
⎥⎦

and

℘ =
[

0.0876 0.1478
0.0299 0.0577

]
, � =

[
0.0936 0.1878

−0.2219 −0.5128

]

Fig. 4 shows the estimation of fault sensor and the obtained 
FTC control input. The state estimation errors together with 
the fault estimation errors are given in Fig. 6. The simula-
tion results in Fig. 4 clearly demonstrate that the accurate 
estimates of the sensor fault signals are achieved via the 
proposed descriptor observer.

The simulation results are given in Fig. 5 with and with-
out the FTC strategy. We can clearly see from the first case 
that the vehicle lost its performance just during the occur-
ring of sensor faults. For the second case we can note that 
the vehicle remains stable despite the presence of faults and 
external disturbances, which shows the effectiveness of the 
proposed FTC strategy based on SOFC.

5 Conclusion

In this paper, the problem of robust fault-tolerant control 
method based on static output-feedback stabilisation for 
vehicle lateral dynamics model has been considered. First 
using H∞ formalism to derive conditions which ensure a 
minimal attenuation level of external disturbance, a descrip-
tor state and fault estimation observer was designed to 
estimate state and fault signals. Then utilising the infor-
mation of online fault estimates an observer-based static 
output-feedback fault-tolerant controller has been developed 
and its design has been involved through fuzzy Lyapunov 
approach. Sufficient conditions for the existence of both 
state observer and static output fault-tolerant controller were 
given in terms of LMIs. Finally, a non-linear model of the 
vehicle was presented to illustrate the effectiveness of the 
proposed approach when the sideslip angle is unavailable for 
measurement. It is noted that the extensions of the proposed 
model to take into account the parameter uncertainty or 
delay, which would help to calculate a more accurate results, 
deserve further investigation, see for instance [43–45]. Also, 
as a part of our future works, we will consider validation of 
the proposed theoretical results on vehicle system in a real 
traffic environment.
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8 Appendix

8.1 Appendix 1: Proof of Theorem 2

Proof: To obtain less conservative conditions, the following
non-quadratic Lyapunov function [46] is adopted

V (e(t), x(t)) =
[

ė(t)

ẋ(t)

]T
(

r∑
i=1

μi(ξ(t))Pi

) [
e(t)

x(t)

]
(A.1)

where Pi = diag[P1 P2i] and P1, P2i are symmetric posi-
tive definite matrices. The closed-loop system with the FTC
control is stable and the L2-gain from d(t) to e(t) is bounded
by η if V̇ (xa(t)) + eT(t)e(t) − η2dT(t)d(t) < 0. The deriva-
tive of the Lyapunov function V (xa(t)) is expressed as (see
(A.2))

This condition is negative definite if (see (A.3))

where (see (A.4))

Indeed, after some manipulation the inequality (A.3)
becomes (see (A.5))
V̇ (xa) =
r∑

i=1

r∑
j=1

μj(ξf )μj(ξ̂f )x
T
a H

(
PT

i

[
F ij Aij

0 Ai + BiKjC

])
xa + H

(
xT

a Pi

[
G

Bd

]
d

)
(A.2)

r∑
i=1

r∑
j=1

μi(ξf )μj(ξ̂f )

⎡
⎢⎣

�ij (∗) (∗)

ĀT
ijP1 H(PT

2iAi) + H(PT
2iBiKjC) (∗)

GTP1 BT
d P2i −η2I

⎤
⎥⎦ < 0 (A.3)

�ij =
[

H(P11Aj) + H(Q1C) (∗)

−P12CAj − Q2C + QT
1 + KT

j B̂T
ijP11 + KT

j B̂T
ijC

TQT
1 −H(Q2) − H(P12CB̂ijKj) − H(Q2B̂ijKj)

]
(A.4)

r∑
i=1

r∑
j=1

μi(ξf )μj(ξ̂f )

⎡
⎢⎢⎢⎣

H(P11Aj) + H(Q1C) ∗ (∗) (∗)

�12
ij �22

ij ∗ ∗
�13

ij �23
ij �33

ij (∗)

BT
d P11 −BT

d CT P21 BT
d P2i −η2I

⎤
⎥⎥⎥⎦ < 0 (A.5)



where

�12
ij = P12CAj − Q2C + QT

1 + KT
j B̂T

ijP11 + KT
j B̂T

ijC
TQT

1

�13
ij = ÂT

ijP11 + CTKT
j B̂T

ijP11

�23
ij = −ÂT

ijC
TP21 − CTKT

j B̂T
ijC

TP21

�22
ij = −H(Q2) − H(P12CB̂ijKj) − H(Q2B̂ijKj)

�33
ij = H(PT

2iAi) + H(PT
2iBiKjC)

Using the well-known Lemma 1, there exist positive scalars
δi, i = 1, . . . , 7 such that (see (A.6))
r∑
i=1

r∑
j=1

μi(ξf )μj(ξ̂f )

⎡
⎢⎢⎢⎢⎣

�11
ij

−P12CAj − Q2C + QT
1

ÂT
ijP11

BT
d P11
where

�11
ij = H(P11Aj) + H(Q1C) + (δ−1

1 + δ−1
5 )P11B̂ijB̂

T
ijP11

+ δ−1
2 Q1CCTQT

1

�22
ij = −H(Q2) + (δ3 + δ2 + δ4)K

T
j B̂T

ijKjB̂ij + δ−1
3 Q1CCTQT

1

+ δ−1
4 QT

2 Q2 + δ1KT
j Kj + δ−1

6 P21CB̂ijB̂
T
ijC

TP21

�33
ij = H(PT

2iAi) + δ−1
7 P2iBiB

T
i P2i + (δ5 + δ6 + δ7)C

TKT
j KjC

Applying Schur complement [47] on the BMI terms �11
ij ,

�22
ij and �33

ij the sufficient LMI conditions proposed in
Theorem 2 hold.
∗ (∗) (∗)

�22
ij ∗ ∗

−ÂT
ijC

TP21 �33
ij (∗)

−BT
d CTP21 BT

d P2i −η2I

⎤
⎥⎥⎥⎥⎦ < 0 (A.6)




