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Abstract

Staggered platelet composites found in nature, such as nacre, bone, and conch-shell, 

exhibit a remarkable combination of high toughness, strength, and stiffness, and have 

inspired the development of bio-inspired composites mimicking their characteristic features. 

However, those excellent mechanical properties are primarily observed under specific 

loading conditions due to their mechanical anisotropy, which originates from the aligned 

microstructures consisting of high aspect ratio inclusions. In this study, we combine 

numerical simulations and 3D-printing to propose a design strategy of isotropic two-

dimensional structural composites consisting of stiff and soft constituents that are arranged in 

square, triangular, and quasicrystal lattices. For these relatively isotropic structures, the soft 

tile/stiff boundary configuration significantly outperforms the stiff tile/soft boundary 

configuration in terms of normalized toughness, strength, and stiffness with respect to the 

simple rule of mixture estimates for each, because the former provides more extrinsic 

toughening mechanisms and effectively lower the stress concentration near the crack tip. The 

quasicrystal lattice offers the best isotropy in elastic response, while its absolute values of 

stiffness, strength, and toughness turn out to be similar or lower than those of triangular 

lattice composites due to more irregular stress distribution. In contrast, for the highly 

anisotropic staggered platelet structure, the stiff tile/soft boundary configuration significantly 

outperforms the inverted one, owing to its unique load-transfer mechanism which relies 

primarily on the shear-lag effect.



1. Introduction

Inspired by natural load-bearing materials, significant efforts have been devoted to 

obtaining optimal structural composites exhibiting high strength and toughness at the same 

time [1-5], while avoiding the limitation of most engineering materials, a mutually exclusive 

relationship between strength and toughness [6]. Many natural organisms achieve the 

strength-toughness balance by evolving their body composition into composites consisting of 

both stiff and soft constituents in specific arrangements that are optimized to resist certain 

loading conditions from the environment and natural enemies [7-12]. Such a need has led 

most natural structural materials to have significantly anisotropic mechanical properties, 

which are excellent against some loading conditions at the expense of inferior responses 

under other loading conditions [11, 13-16]. For instance, nacre, which is composed of 95% of 

high aspect ratio stiff mineralized aragonite and 5% of soft biological polymer in a staggered 

platelet structure, shows excellent strength and toughness under tension in the longitudinal 

direction (i.e. parallel to the longitudinal platelet axis) because of the unique inter-lamellae 

slip mechanism of the stiff aragonite platelets stacked with the soft organic materials [7, 10-

12, 15, 17, 18]. However, such mechanism does not operate under tension along the 

transversal direction, which results in very weak mechanical resistance [7, 19, 20]. Similarly, 

the anisotropic nanostructure of bone, which consists of mineralized cylindrical collagen 

fibrils stacked in an extrafibrillar matrix (mainly made of soft collagen molecules) results in 

very anisotropic mechanical properties [11, 14, 16, 21]. Accordingly, bio-inspired composites 

that mimic the microstructures of such natural composites exhibit very strong anisotropy in 

mechanical responses [22-25].

Despite the presence of mechanically isotropic natural materials and the need for 

constructing composites with better isotropic responses [18, 26], relatively less attention has 

been paid to the design of mechanically isotropic composites. Most existing studies have 



mainly focused on understanding and strengthening the mechanical properties in specific 

directions with additional toughening mechanisms, such as mineral bridges and wavy 

interlocking shaped platelets in the out-of-plane direction [27, 28]. The effect of inclusion 

aspect ratio has been investigated in studies considering osteon-like composites [23, 24], 

albeit the primary focus was not on the design of isotropic composites.

In this study, we investigate a design strategy of two-dimensional structural 

composites that possess both excellent mechanical properties and high degree of isotropy. We 

consider composites made of stiff and soft phases to enhance toughness by leveraging the 

extrinsic toughening mechanisms that originate from crack deviation and stress 

delocalization. To construct composites with reduced loading direction dependence, we 

consider the composites arranged in relatively isotropic two-dimensional Bravais lattices 

(square and triangular), as well as quasicrystal lattice. For the triangular lattice, we consider 

two types of unit cells with either circular or hexagonal tiles to preserve the six-fold 

rotational symmetry of the triangular lattice. Also, inspired by the previous studies of one of 

the authors [23, 24], we consider two configurations, soft-tile/stiff-boundary (SoTStB) and 

stiff-tile/soft-boundary (StTSoB), with fixed tile/boundary volume fraction, as illustrated in 

Figure 1. We compare the absolute values and isotropies of stiffness, strength, and toughness 

for the eight composite structures, by employing numerical simulations based on the spring 

network model, and experimental testing carried out on 3D-printed samples. We also discuss 

the performance of SoTStB and StTSoB configurations for the highly anisotropic staggered 

platelet structure mimicking nacre, to highlight the difference between isotropic and 

anisotropic structures.

2. Methodology

2.1 Construction of two-dimensional isotropic composite structure



The structural composites were constructed in square, triangular, and quasicrystal 

lattices, composed of soft and stiff materials, as represented by the grey and black regions, 

respectively (Figure 1). The square lattice and triangular (or hexagonal) lattice were chosen 

because they have four-fold and six-fold rotational symmetries, respectively, while the other 

three two-dimensional Bravais lattices have only two-fold rotational symmetry [29]. For the 

triangular lattice, we consider two different unit cells made of circular and hexagonal tiles, 

which preserve the six-fold symmetry in elastic moduli [30, 31]. The triangular lattice with 

circular tile has been previously studied for a bone-inspired composite mimicking the 

Harversian structure [23, 24]. 

We also adopted a quasicrystal structure, called Penrose tiling, which lacks both 

translational and rotational symmetry, as highlighted in a view overlapped with the translated 

Penrose tiling in Figure 2a: as a result, the elastic response becomes isotropic when averaged 

over sufficiently large numbers of quasi-unit cells [32]. Hereafter, we will refer to the square 

lattice with square tiles as the ‘square structure’, the triangular lattice with circular tiles as the 

‘circle structure’, the triangular lattice with hexagonal tiles as the ‘hexagon structure’, and the 

quasicrystal lattice based on Penrose tiling as the ‘quasicrystal structure’. To make a fair 

comparison among the four structures, we used an identical unit cell area for all the structures 

(see details defining the equivalent unit cell for Penrose tiling in Figure S1, Supplementary 

Information), and an identical areal ratio of tile (around 63%), inspired by the previous 

studies on the bone-inspired composite mimicking the Harversian structure [23, 24].

We measured the anisotropies of mechanical properties such as stiffness, strength, 

toughness, and fracture strain by considering the relative difference in the maximum and 

minimum values measured along tension in different directions. Due to the four-fold 

symmetry, the square structure is expected to exhibit two extreme mechanical responses 

under uniaxial tension, along  and  orientations, as depicted in Figure 1.  θ = 0° θ = 45° θ



refers to the counter-clockwise rotational angle relative to the reference configuration in the 

1st column of Figure 1. Circle and hexagon structures will have two extreme mechanical 

responses, from  and  orientations, due to the six-fold symmetry. For the θ = 0° θ = 90°

quasicrystal structure featuring five-fold local symmetry, we considered four representative 

orientations, with rotation angles of . These rotation angles were θ = 0°, 45°, 90°, and 135°

chosen to minimize artifacts from the inherent 8-fold rotational symmetry of the mechanical 

properties of the bead-spring network model used in the study (see details in the 

Supplementary Information).

2.2 Simulation methods using sLSM (square Lattice Spring Model)

For the numerical simulations of tensile loading, we employed the bead-spring 

model, also known as the lattice spring model (LSM), to analyze the deformation/fracture 

mechanism of the structural materials. We underline that the word ‘lattice’ in lattice spring 

model means “bead-spring network”, adopted for the material discretization (Figure 2b), and 

is different from the lattice defining the arrangements of stiff and soft constituents in the 

previous section. Because of its computational efficiency and ease of implementation, LSM 

has been used to analyze the deformation and fracture mechanism of nature-inspired 

composites [24, 33-40]. However, most previous studies have employed triangular LSM 

(tLSM), where mechanical properties highly depend on the loading direction [24, 33-39]. The 

inherent anisotropy of the spring network was less concerning when modeling those highly 

anisotropic composites because its primary purpose is to capture the toughening mechanism 

in a qualitative manner. However, it becomes a more important issue when studying the 

isotropy of composites. Hence, in this study, we adopted square LSM (sLSM), which is 

known to have a reduced anisotropy in elastic behavior and a reduced anisotropy in fracture 

behavior, allowing us to more selectively consider the effect of macroscopic stiff/soft-phases 



arrangements [41]. Detailed information about the sLSM used in the study is described in the 

Supplementary Information.

For the numerical simulations with sLSM, we employed the large-scale 

atomic/molecular massively parallel simulator (LAMMPS) package [42]. To simulate two 

different material phases, the spring constant for the stiff material region was specified to be 

100 times larger than that of soft materials, and the spring cut-off values for the soft material 

region were set to assign equivalent toughness modulus to the stiff and soft materials, as 

indicated in Table 1. We set around 400 beads per unit cell to minimize the size effect as well 

as the artifact in the discretization [36]. The overall size of the samples was chosen to be 

about 800 horizontal spring segments in both the x and y directions. 

We considered a single edge-notched sample with a pre-existing crack spanning 20% 

of the sample width, as shown in Figure 2. The pre-existing crack was modelled by removing 

the springs along the crack, and the crack tip was positioned at the center of a tile to allow 

some spacing from the boundary. We conducted quasi-static uniaxial tension simulations by 

applying an incremental strain of 2.5 10-4 via an affine transformation and running energy ×

minimization with the conjugate gradient method. This procedure was repeated until the 

samples were fully fractured. Stress distribution was obtained using the Virial stress 

definition, which is equivalent to the Cauchy stress for quasi-static loading at 0K [43].

2.3 Experimental methods with 3D-printed structures 

Experimental testing was performed on composites fabricated via multi-material 3D-

printing. We adopted the Stratasys J750, a PolyJet printer making complex geometry by 

spraying liquid layers of the photopolymer precursors, which are subsequently solidified by 

UV light [44]. This technology ensures good interfacial adhesion between the two different 

materials [23, 34]. Hence, experimental validation can be performed by ignoring the weak 



interfacial bonding problem. However, at the same time, the intermixing of different liquid 

precursors before curing causes printing direction-dependent mechanical properties in the 

materials [45, 46]. 

In this study, to minimize the anisotropy caused by the printing direction 

dependency, we used an equivalent printing direction for all the samples as depicted in the 

Supplementary Information. As with the simulations, we assigned an equivalent size to the 

periodic (or quasi-periodic) unit cell of each structure. The samples are notched at 20% of 

their length, and the crack tips are placed at the center of the tile. We designated the stiff 

materials as VeroWhitePlus and the soft material as DM9875, to ensure a high enough 

modulus ratio between the soft and stiff phases. The material properties of the notched base 

material samples are presented in Table S1. In the 3D-printed samples, the volume fraction of 

materials occupying the tile region of each composites was set to be , which is 64 ± 0.2%

almost identical to that of the simulations. 

To measure the mechanical properties of both the base materials and the composites, 

we conducted tensile experiments with an MTS alliance RT/100 Universal Testing Machine 

having 100kN load cell. In order to apply tensile deformation, the samples were clamped with 

a thickened grip part made of stiff materials, and displacement control was applied. To limit 

the viscoelastic effect on the mechanical response of the base materials, we used a slow strain 

rate, 0.01/min, applied through a crosshead speed of 0.7 mm/min and gauge length of 70 mm. 

The overall specimen dimensions are represented in Figure S8 of Supplementary Information.



Results and discussion

3.1 Stress distribution and fracture mechanism of the SoTStB/StTSoB composite 

observed in the simulations

Figure 3 compares the stress distribution of a homogeneous stiff sample (Fig 3a) with 

those of SoTStB (Fig 3b) and StTSoB (Fig 3c) with  subjected to the uniaxial strain θ = 0°

of . The stress distributions (  component) were visualized by the Open ε𝑥𝑥 = 0.001 σxx

Visualization Tool (OVITO) [47]: the red and navy colors represent the maximum and 

minimum stresses, respectively. The units of stresses are represented with the spring 

constants (k) and the undeformed axial spring length ( ) of the sLSM. r0

For the homogeneous sample and the StTSoB samples, the stress was highly 

concentrated at the crack tip. In contrast, the SoTStB samples not only showed significantly 

reduced stress concentration at the crack tip, but also a more heterogeneous stress 

distribution over the entire volume. We found that such heterogeneous stress distribution 

promotes the activation of additional toughening mechanisms, such as uncracked-ligament 

bridging and constrained microcracking. For the SoTStB samples (Figure 4a), microcracks 

formed in front of the primary crack tip during the fracture process, promoting additional 

energy dissipation, and the interaction between microcracks and primary crack led to wavy 

crack propagations. In addition, the crack-bridging mechanism induced by the stiff 

boundary segments contributed to a further increase in toughness [14]. These findings, also 

observed in the bone-inspired topology, here called circular structure, are corroborated by 

previous studies on bone tissues, which revealed that the heterogeneity in bone structure 

plays a crucial role in increasing flaw tolerance, promoting strain delocalization, and 

boosting energy dissipation during deformation and failure [48, 49]. Contrarily, the cracks 

in the homogeneous sample and the StTSoB samples propagated continuously along the soft 



boundary until the complete failure because of the high stress concentration at the crack tip, 

as shown in Figure 4b. 

3.2 Comparison between the SoTStB and StTSoB samples 

We obtained the stiffness, toughness, fracture strength, and fracture strain from the 

stress strain curves of single-edge notched samples (Figure 5). The stiffness was obtained 

from the initial slope, toughness and fracture strength were defined by the area underneath 

the stress-strain curve until complete fracture and the maximum stress, respectively. The 

fracture strain was defined as the strain at which the stress is reduced by 95 % of the 

maximum stress, to filter out artifacts from the numerical error, i.e., the small post-fracture 

stress fluctuation that occurs from a few remaining spring segments.

The maximum and minimum mechanical properties of each composite structure are 

illustrated in Figure 6. The toughness of the SoTStB composites is significantly higher than 

that of StTSoB composites, which can be explained by two primary reasons. First, the stress 

required to initiate crack propagation in SoTStB composite is greater than that needed by the 

StTSoB composites, because the stress concentration at the crack tip is delocalized in the 

SoTStB composites. Second, the activation of extrinsic toughening mechanisms during crack 

propagation in the SoTStB composites contributes to a higher energy dissipation. This can be 

confirmed by the gradual stress reduction after the fracture initiation of SoTStB in Figure 5. 

The mechanism observed in the SoTStB composites is different from that of the conventional 

anisotropic staggered platelet composites with the StTSoB configuration, where the primary 

toughening mechanism is the crack detouring around the high aspect ratio stiff platelets [11]. 

We will discuss about the aspect ratio effect further in Section 3.4. 

Additionally, although the volume fraction of the stiff phase in SoTStB (~ 37%) is 

much smaller than that of StTSoB (~ 63%), the stiffness and fracture strength values of the 



SoTStB samples are higher than those of the StTSoB samples. This means that the 

microstructure has a larger contribution in defining the overall mechanical performance, than 

the averaged properties of the two constituents by simple rule of mixture. 

For both the SoTStB and StTSoB samples, the percolated boundary phase is 

responsible for the primary load transfer mechanism under tension. As an extreme example, 

the square structure under tension along  sustains the external loading primarily via θ = 0°

the tensile elongation of two kinds of parallel entities: the thin boundary phase line and thick 

alternating boundary-tile strip. The stiffness can be roughly estimated from the Voigt rule of 

mixture of the two parallel entities [50], and one can notice that it is advantageous to dispatch 

stiff materials in the percolated continuous boundary line for efficient load transfer. Like 

cellular solids, the stiff materials aligned along the tensile direction are subjected to 

stretching-dominant deformation, requiring larger strain energy than the bending-dominant 

deformation [51]. Hence, despite a significantly smaller fraction of stiff phase in SoTStB, the 

maximum stiffness of the SoTStB square structure was significantly higher than the 

maximum stiffness of StTSoB counterpart. 

Although the load transfer mechanisms in the other structures (circle, hexagon, 

quasicrystal structures) were more complex, it is evident that the percolating stiff boundary 

phase is responsible for the efficient load transfer mechanism in SoTStB. Accordingly, the 

fracture strength of SoTStB was predominantly higher than that of StTSoB samples. These 

findings also show there are some similarities between the SoTStB structures in this study 

and cortical bone tissue, where the osteons are interspersed into a more mineralized (i.e. 

stiffer) matrix, and could provide further insights into the deformation and toughening 

mechanisms occurring in bone Haversian structure.

3.3 Comparison of the different geometrical structures of SoTStB samples 



After showing that the SoTStB exhibited superior mechanical properties compared to 

StTSoB, we turned our attention to evaluating the effect of different geometrical structures in 

SoTStB configurations. As shown in Figure 5, the anisotropy of the square lattice was the 

largest because the deformation and fracture mechanisms are completely different for each 

loading direction. The stiff boundary phase undergoes stretching-dominant deformation for θ

 tension requiring large strain energy, while it undergoes bending-dominant = 0°

deformation for the  tension requiring much less strain energy, as presented in Figure θ = 45°

7. In comparison, a combination of stretching and bending deformation occurs in tensile 

loading along any direction for the other three structures (circle, hexagon, and quasicrystal), 

leading to a significantly higher degree of isotropy. Due to the lack of long-range 

translational order and rotational symmetry, the quasicrystal structure shows the most 

isotropic response in the elastic regime, i.e. stiffness (Figure 6). The circle structure has 

noticeably higher stiffness and strength compared to hexagon and quasicrystal structures, 

because its percolated boundary has rounder junction, which induces less stress concentration 

and thus endows higher resistance to the bending deformation. Because the fracture strength 

is determined by the crack growth at the weakest point (either with the highest stress 

concentration and/or weakest material property) out of the entire specimen, the quasicrystal 

sample is likely to undergo an earlier crack nucleation/initiation compared to the hexagon or 

the circle structure under identical loading because it possesses the most heterogeneous stress 

distribution (or, highest standard deviation of stress). Still, because the heterogeneous stress 

distribution promotes external toughening mechanisms, the toughness modulus is comparable 

to circle or hexagon structures. 

After numerically predicting the mechanical properties of the various composite 

designs, we tested the SoTStB prototypes fabricated with the multimaterial 3D-printer. The 

outcomes of the tests are depicted in Figure 8. Both the numerical and experimental results 



show that the circle structure has relatively higher stiffness compared to the others, and the 

quasicrystal structure exhibits the most isotropic elastic response. The experimental results 

qualitatively agree with the numerical ones, but not quantitatively. This can be attributed to: 

i) the stress-strain curve of the soft constituent materials in experiments is nonlinear while in 

the numerical modeling it is assumed to be linear until fracture, ii) the intermixing of liquid 

precursors at the stiff/soft material interface causes the printing-orientation-dependent 

material properties, and iii) the artifacts of the discrete LSM model in simulations, iv) the 

different ratios of mechanical properties between the stiff and soft phases in experiments 

and simulations. Still, we note that the LSM-based design can be used as a guideline to 

qualitatively predict the mechanical performance of different composite structures. 

3.4 Comparison of the anisotropic staggered platelet structures of SoTStB and StTSoB

We have shown that the SoTStB structures outperform StTSoB ones for isotropic 

composites. Now, to better highlight the role of structural anisotropy, we turn our attention 

to the performance of SoTStB and StTSoB for staggered platelet structures in a brick and 

mortar style. We constructed the staggered platelet structures with a rectangular tile having 

an aspect ratio of ~12, which is similar to the aspect ratio of platelets in nacre [52], as 

depicted in Figure 9 (a). The stress distributions under uniaxial tension are plotted in Figure 

9 (b). The anisotropic brick-and-mortar StTSoB composite has a lower stress concentration 

at the crack tip compared to the isotropic StTSoB composites (Figure 3c), because the load 

transfer via the inter-lamellar slip (or shear-lag effect) becomes significant. Accordingly, the 

crack path increases significantly due to the crack-detouring, enhancing the toughness, as 

shown in Figure 9c,d. Compared to the properties of the isotropic square StTSoB structure 

with the same volume fraction, the toughness, fracture strength, stiffness, and fracture strain 

are improved multiple times with the increase in tile aspect ratio. This effect has also been 



confirmed by research works on the natural brick-and-mortar structures, e.g. nacre and bone 

ultrastructure, where the stiff platelets carry the load and the soft matrix transfers the load by 

shear, and helps dissipate the energy. 

In contrast, for the SoTStB composite, the stiffness and fracture strength are 

relatively constant values, regardless of the tile aspect ratio (Figure 9d and Figure 5). The 

stress distribution of the highly anisotropic SoTStB composite (Figure 9b) is similar to that 

of the square SoTStB composite (Figure 3c) and the crack path is also similar (Figure 9c and 

Figure 4b) owing to the similarity in the load transfer mechanism. The stretching of the 

percolated stiff boundary is the primary load transfer mechanism occurring in both the 

anisotropic and isotropic SoTStB structures, regardless of the aspect ratio or overlap 

between the tiles. 

Conclusion

In this work, we investigate the mechanical properties of isotropic two-dimensional 

structural composites consisting of stiff and soft constituents that are arranged in relatively 

isotropic structures involving small aspect ratio inclusions. We adopted a comprehensive 

approach, including numerical simulations, to provide the main design guidelines, and 

additive manufacturing as proof-of-concept. We find that the SoTStB configuration 

significantly outperforms the StTSoB configuration, because the former provides more 

extrinsic toughening mechanisms and effectively lower the stress concentration near the 

crack tip. We also reveal that the composite in a quasicrystal lattice shows the best isotropy in 

elastic response, while its absolute values of stiffness, strength, and toughness turn out to be 

similar or lower than those of the composites organized in triangular lattice. This structure 

dependency, observed in the numerical study, draws parallels to mechanisms and properties 

seen in the experiments with the four different SoTStB composites fabricated by the multi-



material 3D-printer. In contrast, for the highly anisotropic staggered platelet structure, the 

StTSoB configuration outperforms the SoTStB one, owing to its unique load-transfer 

mechanism which relies primarily on the shear-lag effect.

Our study suggests that isotropic composites balancing stiffness, strength, and 

toughness can be constructed with SoTStB configuration which resembles the bone 

Haversian structure. We also show that the design guideline for the isotropic composite must 

be opposite to the anisotropic composite in the staggered platelet structure where the inverted 

configuration (StTSoB) provides better mechanical properties.
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Tables

Table 1. The spring properties assigned for the stiff/soft phase in the sLSM.  represents the r0
length between the nearest neighbor beads, which is unit lattice spacing. To model isotropic 
materials with sLSM, the axial spring constant  and diagonal spring constant  have (k1) (k2)
the following relationship,  [42]. Detailed information on the sLSM is provided in k1 = 2𝑘2
the Supplementary Information.



Figure set

Figure 1. Schematic of the (a) soft tile stiff boundary (SoTStB) composite and (b) stiff tile 
soft boundary (StTSoB) composite with square, circular, hexagonal, and quasicrystal tiles and 
unit structures in square, triangular and quasicrystal lattices. The rotated topologies are 
divided into different columns (for different rotation angle), also taking into account the 
rotational symmetry of each structure.



Figure 2. (a) Large quasicrystal structure composite. (b) Configuration of the adopted sLSM 
(square lattice spring model). (c) Numerical and experimental stress-strain curves of the 
homogeneous base materials: tests were carried out on square single edge-notched samples. 
The detailed conditions of the experimental/simulation samples are provided in the 
Methodology section.



Figure 3. Stress  distribution of (a) stiff homogeneous sample, (b) SoTStB composite, (σxx)
and (c) StTSoB composite samples with 0° rotated topologies. The stresses of each sample 
were measured when the samples were subjected to uniaxial tension  in the εxx = 0.001
simulations. The units for stress are represented as the function of the spring constants (k) and 
undeformed axial spring length .  represents the averaged ) in the green-line-(r0) (𝜎𝑥𝑥) (σxx

highlighted strip, normalized by the maximum average stress in each strip. The  trend (𝜎𝑥𝑥)
is plotted on the right side of each graph and shows a reduction of stress concentration in the 
SoTStB composites. The pre-existing cracks are highlighted as thick white lines. 



Figure 4. Snapshot of crack propagation and principal toughening mechanisms in all the 
samples having the 0° rotated topologies. (a) SoTStB composites: uncracked-ligament 
bridging, constrained microcracking, and crack deflection along the soft tile from the 
interactions between the crack tip and the defects ahead of the crack tip. (b) StTSoB 
composites: crack deflection along the soft boundary and soft boundary bridging.



Figure 5. The stress-strain curves for the (a-d) SoTStB and (e-g) StTSoB composites with 
rotated topologies measured in the simulations. The maximum stress points, assumed to be 
the fracture initiation point, are illustrated as ‘ ’. The units for stress are represented as a ⋆
function of the spring constant (k) and undeformed axial spring length  used for the (r0)
sLSM simulations.



Figure 6. The maximum and minimum mechanical properties of toughness, stiffness, fracture 
strength, and strain measured in the uniaxial tensile simulations of the SoTStB and the StTSoB 
composites (containing an edge crack) by rotating the topologies. The properties are compared 
with the properties of homogeneous base materials and presented with the unit of spring 
constant (k) and undeformed axial spring length  used for the sLSM simulations.(r0)



Figure 7. Schematic of the deformation mechanism of the square, circle, hexagon and 
quasicrystal structures with the SoTStB. In sqaure  in (a) the stretching-dominant direction, 
having relatively small deformation, i.e.  and (b) the bending-dominant direction, 𝑙𝑎

0 ≈ 𝑙𝑎
1

having large deformation, i.e. , at a given tensile stress. 𝑙𝑏
0 < 𝑙𝑏

1



Figure 8. (a) The maximum and minimum properties of the SoTStB composites measured in 
the experiments. (b-e) Stress-strain curve obtained from the tensile experiments with (b) 
square, (c) circular, (d) hexagonal, and (e) quasicrystal composite samples. The maximum 
stress points, assumed to be the fracture initiation point, are illustrated as ‘ ’.⋆



Figure 9. (a) Staggered platelet composites having the SoTStB and StTSoB. (b) The stress (
 distribution measured at  in the simulations for both cases.  represents σxx) εxx = 0.001 (𝜎𝑥𝑥)

the average of stress component  in the green-line-highlighted strip, normalized by the (σxx)
maximum average stress in each strip. (c) Snapshots showing the final fracture of both 
samples. (d) Mechanical properties of the composites in terms of the spring constant (k) and 
undeformed axial spring length . (r0)



Supplementary Information 

1. Defining equivalent unit cell for Penrose tiling with other structures

Unlike the square, circle and hexagon structures, which can be expanded into two-

dimensional space with a periodic arrangement of single unit cells in Bravais lattices, as 

represented in Figure S1, Penrose tiling is composed of two different types of unit structures: 

a thin rhombus having an acute angle of π/5 and a thick rhombus having an acute angle of 

2π/5, as shown in Figure S2(a). Therefore, we have to set up specific conditions of 

equivalent unit cells to allow a fair comparison between the Penrose tiling and the other 

structures. In this work, a periodic average structure of Penrose tiling was adopted [1], and 

specified to have an area equivalent to that of the unit cell characteristic of other structures. 

The periodic average structure of the Penrose tiling with edge length, 𝑙 , has a rhombus 

shape with an edge length, 𝑙∗, and an acute angle of 2π/5. The geometrical relationships are 

the following: 

𝑙∗ 𝑙 3 𝜏 /𝜏        𝜏 1 √5 /2        (1) 

A schematic of the equivalent unit cell of each composite is shown in Figure S2 (b). 

2. Mechanical behavior of triangular lattice spring model and square lattice spring

model about uniaxial tension considering lattice symmetry 

In this work, we adapted the square lattice spring model (sLSM) to simulate the 

mechanical properties of the composites. Since the triangular lattice spring model (tLSM) has 

been more widely used in the literature, we also provide a comparison between the 

mechanical behaviors of tLSM and those of sLSM. The tLSM is composed of one type of 

spring and the sLSM is composed of an axial spring and diagonal spring, as shown in Figure 



S3. To simulate the isotropic materials in sLSM, we defined the behavior of the axial springs 

in terms of spring constant, k , and cutoff distance, r , and the behavior of the diagonal 

springs in terms of spring constant, k , and cutoff distance, r . These values were assigned 

so as to satisfy the following: k 2𝑘  and r √2r  [2, 3]. To allow a comparison of 

the inherent mechanical anisotropy of each model, uniaxial tensile deformations were applied 

to the homogeneous sample modeled by the tLSM and the sLSM subjected to periodic 

boundary conditions, along different loading directions (𝜙). As depicted in Figure S3, the 

elastic response of the tLSM is more anisotropic than that observed in the sLSM. Figure S4 

presents the orientation-dependent fracture strength (normalized with respect to the minimum 

strength of each model) and shows that the variance in fracture strength in the sLSM is much 

smaller than that of the tLSM. In addition, we can see that the mechanical responses (in both 

elastic and fracture regime) of the tLSM and sLSM have a 6-fold symmetry and 8-fold 

symmetry, respectively.  

In Figure S5, the crack propagation path of homogeneous materials subjected to 

three-point bending were simulated by rotating the lattice structure of each model. We can 

see that the crack path of the sLSM is closer to the theoretical crack path than that of tLSM 

regardless of mesh alignment, and it was found that the sLSM was more suitable for 

predicting the crack path of isotropic materials. More details can be found in our previous 

study [2]. 

 

3. Normalized mechanical properties of each composite. 

 In Figures S6 and S7, to highlight the effect of the composite design, the measured 

mechanical properties of each composite (𝐸 ) are normalized by the estimated mechanical 

properties of composites (𝐸 ) obtained from the simple rule of mixtures, i.e., 𝐸



𝜌𝐸 1 𝜌 𝐸 , based on the properties of the base materials (𝐸) and the volume 

fraction of stiff materials (𝜌). The mechanical properties of each base material, measured 

with single edge notched samples, are presented in Table S1. Significant improvement was 

found in terms of toughness, compared to the base materials. 

 

4. Experimental samples and observation of fracture mechanism. 

 The dimensions of the 3D-printed samples are presented in Figure S8. The samples 

were printed in the z-direction to minimize deviations in mechanical properties and interfacial 

mixing occurring during the printing process. The fracture mechanisms of each composite 

sample are shown in Figure S9. The overall trend in fracture mechanism coincides with the 

simulations results.  
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Tables 

 

(a) 

 Toughness (𝑘/𝑟 ) Stiffness (𝑘/𝑟 ) 
Fracture 

strength (𝑘/𝑟 ) 
Fracture 

strain 

Stiff materials 1.59 10  2.34 10  2.53 1.14 10  

Soft materials 1.16 10  2.34 10 2.33 10  9.85 10  

 

(b) 

 Toughness (Pa) Stiffness (kPa) 
Fracture 

strength (kPa) 
Fracture 
Strain 

Stiff materials 
(VeroWhite plus) 

1.12 10  9.57 10  1.74 10 1.18 10  

Soft materials 
(FLX9795-DM) 

5.81 10 8.77 10  6.07 10  1.02 10  

 

Table S1. Mechanical properties of homogeneous stiff and soft materials samples in (a) the 

simulations and (b) the experiments. To measure the properties of the base materials, single 

edge notched samples were prepared.  

  



Figures 

 

 

Figure S1. Schematic of five different Bravais lattices in two-dimensional space. ‘a’, ‘b’, ‘c’ 

and ‘d’ represent the lattice vectors and θ and φ represent the angles between them. The 

lattices are grouped into four crystal systems and divided into different columns. The 

monoclinic and orthorhombic lattices have two-fold symmetry. The tetragonal lattice and 

hexagonal lattice have four-fold and six-fold symmetry, respectively. 

 

  



 

Figure S2. (a) The periodic average structure of Penrose tiling having an edge length, 𝑙∗, and 

an angle of 2𝜋/5 is illustrated by the gray dashed line, overlapped with the original Penrose 

tiling composed of thin rhombi having an acute angle of 𝜋/5 and thick rhombi having an 

acute angle of 2𝜋/5  with an edge length, 𝑙∗. (b) Unit cell of square, circle and hexagon 

structures in a unit lattice, and Quasicrystal averaged structure. The tile regions are hatched 

with red lines. 

  



 

Figure S3. Stress-strain curves of homogeneous materials simulated via (a) tLSM and (b) 

sLSM. The plots show the outcome of uniaxial tension in the large deformation regime by 

varying the orientations of loading (ϕ) considering the rotational symmetry of each structure. 

The stress and strains are represented by the 2nd Piola-Kirchoff stress and the Green-

lagrangian strain, respectively, because of the large deformation, by setting the minimum 

fracture strains as 100%. The units for stress are given in terms of the spring constant, for 

tLSM (𝑘 ) and of the axial spring constant for sLSM (𝑘 ). 

  



 

Figure S4. Normalized fracture strength 𝑆̅ 𝑆 min 𝑆  of homogeneous 

materials according to different orientations (ϕ) of the uniaxial tensile deformation in the 

infinitesimal deformation regime with (a) tLSM and (b) sLSM, and in the large deformation 

regime with (c) tLSM and (d) sLSM. The infinitesimal and large deformation regimes were 

specified by setting the minimum fracture strains at 1% and 100%, respectively. The × 

markers on the graph represent the simulation results. The ideal isotropic materials have an 

ideal circular fracture strength mapping with a radius of one, because they have constant 

fracture behavior, regardless of the loading direction. 

  



 

Figure S5. (a) Three-point bending simulation configurations using a rigid indenter, (b) 

Theoretical crack path of homogeneous materials for three-point bending. The simulated 

crack paths and the pre-crack shape for (c) the tLSM and (d) the sLSM. The red dashed line 

represents the magnified pre-crack shape. 

 

  



 

 

Figure S6. The normalized maximum and minimum properties of toughness, stiffness, 

fracture strength and strain measured in the simulations of the SoTStB and StTSoB 

composites. The properties are normalized by the properties of the mixture, obtained from the 

rule of mixtures, i.e., 𝐸 𝜌𝐸 1 𝜌 𝐸  based on the properties of the base 

materials 𝐸  and the volume fraction of stiff materials 𝜌  from the simulations.  

 

  



 

Figure S7. The normalized maximum and minimum properties of the SoTStB composites 

measured in the experiments. The properties are normalized by the properties of the mixture 

obtained from the rule of mixtures, i.e., 𝐸 𝜌𝐸 1 𝜌 𝐸  based on the 

properties of the base materials 𝐸  and the volume fraction of stiff materials 𝜌  from the 

experiments. 

  



 

Figure S8. (a) Overall dimensions of homogenous and composite samples printed with the 

3D-printer. The unit of length is millimeter. (b) The samples printed by using the 3D-printer 

with rotated topologies without the thickened grip part. The notch was printed and the notch 

tip sharpened by using a razor blade. 

  



Figure S9. Snapshots of crack propagation of the SoTStB composite with (a-b) 0° and 45° 

rotated square topology, (c-d) 0° and 30° rotated circular topology, (e-g) 0° and 30° 

rotated hexagonal topology, (g-j) 0°, 45°, 90° and 135° rotated quasicrystal topology. The 

first snapshots of each experiment represent the initial configuration of the samples. The 

second snapshots were taken in the middle of crack propagation. The final snapshots were 

taken at the point where the tensile tester detected the fracture, with the crack almost fully 

propagated.  




