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Abstract

This paper proposes an attitude tracking control for a rigid spacecraft that
adapts to two types of faults that commonly occur in reaction wheels: a gain
fault and a deviation fault. In its normal operating mode the tracking con-
troller replicates that of a continuous quaternion feedback controller. When
a fault occurs in the system the attitude of the spacecraft will deviate from
the reference trajectory and will consequently trigger a sliding mode response
of the control which introduces robustness. For the proposed control law, we
construct a suitable Lyapunov function to prove the closed-loop system is
asymptotically stable in the presence of such faults. However, the proposed
control is not practically suitable over long periods as the gain on the sliding
mode component will always increase unless the sliding surface is exactly
zero (in practise this is never the case because of sensor noise). To address
this problem a simple adaptive parameter is defined such that it converges
to an appropriate upper-limit. Simulations of the attitude dynamics of a
spacecraft are undertaken which compares the tracking performance in the
presence of a fault with and without the adaptive sliding mode component.

Keywords: Unknown external disturbances, Actuator limited output
torques, Actuator failures, Robust gain control, Sliding surface, Adaptive
control
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1. Introduction

Fault-tolerant attitude control has been an active area of research in re-
cent years. Conventional spacecraft are designed with very high reliability
due to their high cost and it is necessary to design fault-tolerant controls to
further reduce the risk of mission failure given the failure of an actuator. Fur-
thermore, nano-spacecraft have shifted the emphasis of reliability dominated
design to efficiency design and thus have a much higher risk of failure than
conventional spacecraft. Thus, for nano-spacecraft where the risk of failure
of an actuator, such as a reaction wheel, is much higher it is essential to
design controllers that ensure a mission can still be undertaken in the event
of failure. There have been a number of fault-tolerant-controls [1]-[3] (FTC)
developed based on adaptive control and sliding mode control methods.

Adaptive attitude control methods [4]-[7] can guarantee the performance
of a system when there exists actuator uncertainty by autonomously up-
dating control parameters. An adaptive quaternion feedback fault-tolerant
control was presented in [8] to deal with a gain fault and a deviation fault that
commonly occur in reaction wheels. However, this type of control is not use-
ful over long time periods as the adaptive parameter increases continuously
and can lead to excessive control demands beyond the limits of the reac-
tion wheels. The attitude stabilization problem has been investigated using
adaptive control in the presence of external disturbances, unknown inertia
parameters, and actuator uncertainties including faults in [9]. In [10] both
passive and active designs based on variable structure reliable control (VSR-
C) are presented which uses an observer to actively identify faults. A robust
adaptive control strategy using a fuzzy compensator for MEMS triaxial gyro-
scope is proposed in [11]. Adaptive controllers have also been combined with
extended state observers that estimate the unknown disturbance torques and
inertia and compensate for them at each sampling period to provide accurate
pointing and tracking [12, 13]. The use of an extended state observer (ESO)
improves tracking performance when the disturbances are compensated for at
each sampling period, but the ESO can add significant additional on-board
computational expense.

Recently, sliding mode control [14]-[17] has been used for robust tracking
in the presence of uncertainties, however, these have not been applied to
address actuator faults. An indirect (non-regressor-based) approach based
on adaptive sliding mode control (SMC) has been used for attitude tracking
control in the presence of modeling uncertainties, unknown disturbances,
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actuator failures and limited resources in [18]. In [19] high precision attitude
tracking of spacecraft in the presence of actuator failures and saturations with
finite-time convergence was achieved by using a non-singular terminal sliding-
mode control law. The FTC based on an integral-type sliding mode strategy
to compensate for actuator faults is proposed in [20]. However, although
the sliding mode controllers can provide robustness to faults they can induce
chattering or non-smooth feedback that is detrimental to the reaction wheels.
Moreover, a continuous proportional tracking control can provide asymptotic
tracking without actuator faults and provides a smooth feedback that can be
efficiently produced by the reaction wheel. Thus, it is intuitive to consider
that proportional type tracking controllers should be used when there are
no faults or significant uncertainties and only use sliding mode control if the
fault or disturbances significantly effect performance. In this paper a control
is proposed where a quaternion feedback control is used to track a reference
trajectory and when a fault occurs a sliding mode component is adaptively
introduced where the gain increases to ensure robustness to faults.

In this paper, we propose an adaptive control law based on a conventional
continuous tracking control and an adaptive sliding mode component that
can be implemented using reaction wheels. When there are no disturbances,
actuator constraints or actuator faults the proposed control operates in the
same way as a conventional proportional control and will accurately track a
prescribed, smooth, reference attitude. However, when there is an actuator
failure the adaptive control triggers a sliding mode component to induce
robustness into the tracking. The adaptive gain parameter will continue
to increase until it is greater than the magnitude of the disturbance and
induce the closed loop system to asymptotically stable. The actuator failures
considered in this paper are typical of those for reaction wheels and include
a gain fault and a deviation fault [21],[22]. However, one of the weaknesses
of the proposed adaptive parameter is that it increases continuously for all
values of attitude errors except for when they are exactly zero i.e. only when
the sliding surface is zero. This could pose problems practically as there
will be noise and errors from the sensors and therefore the sliding surface
will never be exactly zero. Thus, we augment the adaptive parameter such
that it is bounded from above to ensure that it does not saturate the reaction
wheels. The adaptive control os proved to asymptotically stabilize the closed-
loop system and track the reference trajectory in the presence of disturbances
and specific actuator faults.

The attitude kinematics and dynamics of the spacecraft in the presence
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of disturbances, actuator limited output torque and actuator failures are for-
mulated including a real control torque model in Section 2. Section 3 then
addresses the problem of developing a adaptive sliding mode control and
proving the closed-loop system stability. Firstly, adaptive sliding mode con-
trol using unbounded adaptive parameter has been designed in 3.1. For the
proposed control law, we construct a suitable Lyapunov function to prove
the closed-loop system is asymptotically stable. However, the adaptive pa-
rameter will continue to increase and eventually lead to a control law that
is not feasible given the actuator constraints. In 3.2 then improves a novel
adaptive parameter to address this problem based on adaptive update law
and uses an appropriate Lyapunov function to prove the closed-loop system
is asymptotically stable. In Section 4, simulations are undertaken using the
model of a spacecraft which illustrates the robustness of the proposed control
method to tracking desired quaternion trajectory and angular velocity with
unknown disturbances and actuator failures.

2. Attitude dynamics and kinematics of a rigid-spacecraft

In this section the attitude dynamics and kinematics considered nonlinear
saturated characteristic and failures of the actuator are formulated in the
appropriate form for the application of the control law design.

The spacecraft is assumed to be a rigid body described by the dynamics
and kinematics:

Jω̇ = −ω×Jω + τ + d (1)

q̇ = 1
2

(q4ω − ω×q)
q̇4 = −1

2
ωTq

(2)

where, J ∈ R3×3 is the positive definite and symmetric inertia tensor, the
angular velocity vector of nano-spacecraft is ω=[ω1, ω2, ω3]

T with respect to
the inertial frame and expressed in the body coordinates, τ = [τ1, τ2, τ3]

T

denotes the real control torque and d is the unknown external disturbance.

Assumption 1. Considering two types actuator failures of practical space-
craft, F g = diag(g1, g2, g3) is multiplication fault which denotes efficiency of
actuator and 0 ≤ gi ≤ 1(i = 1, 2, 3), F d = [Fd1, Fd2, Fd3]

T is plus fault and
satisfied ‖F d‖ ≤ ld. Since the output of controller is bounded in practice, the
actuator nonlinear saturated limit is umax and the beyond part denotes ū.
Hence, the real control torque is

τ = F g(u+ ū) + F d (3)
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where ū = [ū1, ū2, ū3]
T is bounded ‖ū‖ ≤ lθ and satisfies

ūi =

{
sgn (ui)umax − ui, |ui| ≥ umax

0, otherwise

The unit quaternion is q̄ = [q1, q2, q3, q4]
T , which can be expressed equiv-

alently as q̄ =
[
qT , q4

]T
with q = [q1, q2, q3]

T and such that qTq + q24 = 1,
the × denotes an operator, such that

ω× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


The attitude tracking control problem is to track a desired quaternion

q̄d, where q̄d =
[
qTd , qd4

]T
with qd = [qd1, qd2, qd3]

T satisfying qTd qd + q2d4 = 1
denotes the desired attitude quaternion and ωd is the target angular velocity.

Considering the error quaternion q̄e =
[
qTe , q4e

]T
where qe = [q1e, q2e, q3e]

T

and the error angular velocity ωe are defined as

qe = qd4q − q×d q − q4qd
qe4 = qTd q + q4qd4
ωe = ω −Cωd

(4)

where C =
(
q2e4 − qTe qe

)
I3 + 2qeq

T
e − 2qe4q

×
e is the direction cosine matrix

from inertial frame A to body coordinate B, where I3 an identity matrix.
The kinematics can be expressed as error quaternion form [23]

q̇e = 1
2

(qe4ωe − ω×e qe)
q̇e4 = −1

2
ωTe qe

(5)

where q̄e satisfies qTe qe + q2e4 = 1.
Substitution the ωe = ω −Cωd into the Eq.(1), considered Ċ = −ω×e C

[24], the error dynamic equations is

Jω̇e = −(ωe +Cωd)
×J (ωe +Cωd) + Jω×e Cωd − JCω̇d + τ + d (6)

3. Adaptive Sliding Mode Control Law and Stability Proof

In this section, we propose a an adaptive control law that consists of a
(conventional) proportional component and an adaptive sliding mode com-
ponent. The robust sliding mode control law is designed and proved to track
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a feasible attitude with asymptotic convergence. The sliding manifold will
be used as

S = ωe + κqe (7)

where κ = diag(κ1, κ2, κ3), κi(i = 1, 2, 3) are positive scalars.
Then the Eq.(6) has became

JṠ = −(ωe +Cωd)
×J (ωe +Cωd) + Jω×e Cωd − JCω̇d

+ τ + d+
1

2
Jκ
(
qe4ωe − ω×e qe

)
= G+ u+Ed

(8)

where Ed = (F g−I3)u+F gū+F d+d, G = −(ωe +Cωd)
×J (ωe +Cωd)+

Jω×e Cωd− JCω̇d + 1
2
Jκ(qe4ωe − ω×e qe). It is assumed that Ed is bounded.

3.1. Robust adaptive control with unbounded adaptive parameter

We present the design of a sliding mode controller with unbounded adap-
tive parameter for the spacecraft with external disturbance and actuator
failures.

Theorem 1. Considering the spacecraft system model by Eq.(5) and Eq.(8),
for any initial S(0), the adaptive sliding mode feedback control law:

u = −G− σS − Ξ(S)ρ (9)

with the function Ξ(S) is given by

Ξ(S) = diag[sgn(S1), sgn(S2), sgn(S3)] (10)

and adaptive parameter ρ = [ρ1, ρ2, ρ3]
T satisfies

ρ̇ = λ |S| (11)

with ρ(0) = 0 and λ = diag(λ1, λ2, λ3), |S| = [|S1| , |S2| , |S3|]T . λi ≥ 0
are scalar constants. with the parameter σ > 0. Given the control law (9)
the sliding surface (7) will converge to the zero vector as t→∞, such as
lim
t→∞

S = 0.
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Proof: Defining the Lyapunov function as:

V =
1

2
STJS (12)

The time derivative of the Lyapunov function is

V̇ = STJṠ (13)

Recalling Eq.(8), the time derivative of this Lyapunov function becomes

V̇ = ST (G+ u+Ed) (14)

Substituting the control law Eq.(9) into Eq.(14) gives

V̇ = ST [−σS − Ξ(S)ρ+Ed]

= −σSTS −
3∑
i=1

|Si|ρi + STEd

≤ −σ
3∑
i=1

S2
i −

3∑
i=1

|Si|ρi +
3∑
i=1

|Si||Edi|

= −σ
3∑
i=1

S2
i +

3∑
i=1

(|Edi| − ρi)|Si|

(15)

then from (15) it follows that there is a finite time t1 when all ρi > |Edi| and
therefore V̇ < 0 when t ∈ [t1,∞). Therefore, |S| → 0 as t→∞.

Note that if ρi is set to zero for all time then (9) reduces to a proportional
tracking controller. This adaptive sliding mode control is effective in practise
as it can provide convergence in the presences of faults without knowledge
of the upper bound on unknown disturbances. However, care must be taken
in implementation as the adaptive gain is always increasing unless |S| = 0
which in practise is never the case due to sensor noise. This means that the
gain on the sliding component will continue to increase beyond the required
value and can lead to aggressive chattering. However, the gain parameter in
the adaptive control law will continue to increase and eventually lead to a
control law that is not feasible given the actuator constraints. In the following
section the adaptive parameter update law is designed to avoid saturation of
the actuators. Thus, the following adaptive parameter is proposed to bound
the adaptive parameter.
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3.2. Robust adaptive control with bounded adaptive parameter

ρ̇ = λ |S| − [Ŝ]ρ (16)

where [Ŝ] = diag[|S1| , |S2| , |S3|]. This adaptive parameter rate of increase
is proportional to |S|. Furthermore, there are two equilibrium points in the
adaptive gain |S| = 0 which corresponds to the desired state and λ = ρ. It
is clear to see that if λ > ρ then ρ̇ > 0 and if λ < ρ then ρ̇ < 0 so ρ→ λ. In
this case the proof of asymptotic stability of the closed-loop system is given
by the following Lyapunov function as:

V =
1

2
STJS +

1

2
ρTλ−1ρ (17)

The time derivative of the Lyapunov function is

V̇ = STJṠ + ρTλ−1ρ̇ (18)

Recalling Eq.(8) and Eq.(16), the time derivative of this Lyapunov function
becomes

V̇ = ST (G+ u+Ed) + ρTλ−1(λ |S| − [Ŝ]ρ) (19)

Substituting the control law Eq.(9), Eq.(10) and Eq.(16) into Eq.(19) gives

V̇ = ST [−σS − Ξ(S)ρ+Ed] + ρT |S| − ρTλ−1[Ŝ]ρ (20)

V̇ = −σSTS + STEd−ρTλ
−1

[Ŝ]ρ (21)

then

V̇ ≤ −σ
3∑
i=1

S2
i +

3∑
i=1

|Si||Edi| −
3∑
i=1

|Si|
λi
ρ2i (22)

in this case V̇ < 0 if |Edi| < ρ2i
λi

. Note that as t→∞ ρi → λi so the condition
for asymptotic stability is |Edi| < λi.

3.3. Practical considerations

There are several practical aspects to implementing this control in prac-
tise. The first is related to a well-known problem of sliding mode control
related to chattering. To avoid this problem we replace the sign function in
(10) with Sn(Si)(i = 1, 2, 3) defined by

Sn(Si) =

{
Si/ε, |Si| ≤ ε
sgn(Si), otherwise

(23)
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where ε is a small constant scalar. In addition the adaptive parameter must
be adjusted such that when |Si| ≤ ε then ρ must also be held constant such
that:

ρ̇ =

{
0, |Si| ≤ ε

λ |S| − [Ŝ]ρ, otherwise
(24)

The second practicality of implementing the control is to consider the
tuning. The initial stage of the tuning process for a known reference attitude
is to consider the perfect case with no constraints, disturbances or actuator
failures. In this case σ,κ are tuned experimentally to achieve a good tracking
performance. The maximum torque required to track the reference in an ideal
case is computed as |uideal|. Then given the maximimum torque that can be
provided by the actuator |umax| we can define

|umax| ≥ |uideal|+ |ρ| (25)

From the adaptive law (16) if we select ρ(0) = 0 then ρ will increase until it
reaches λ therefore we can choose an upper limit for ρi = λi such that

λi = |ui,max| − |ui,ideal| (26)

Using this strategy for selecting λi gives the stability condition

|ui,max| − |ui,ideal| > Edi (27)

4. Numerical Example

In this section, the proposed control law (9) with (16) will be tested
effectively compared with a sliding mode control such as

τ = −G− σS (28)

The inertial matrix of a representative rigid spacecraft in simulation has been
given as

J =

 20 1.2 0.9
1.2 17 1.4
0.9 1.4 15

 kg ·m2 (29)

The multiplication fault model is given

gi =

{
1, t < 80s
0.6 + 0.1 sin (0.5t+ π/3), t ≥ 80s

(30)
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the plus fault model is

Fdi =

{
0, t < 80s
0.01 + 0.005 sin (0.5πt), t ≥ 80s

(31)

and the external disturbance torque d is assumed:

d =

 sin(0.1t)
2 sin(0.2t)
3 sin(0.3t)

× 10−3N ·m (32)

In order to test the robust tracking effectiveness of the proposed control
law (9), it will be compared with the feedback control Eq.(28) in presence
of multiplication fault F g, plus fault F d and external disturbance d. The
reference quaternion trajectory will be generated by the use of Eq.(28) and
spacecraft model Eq.(1) without d and Eq.(2).

Let the desired quaternion be as

q̄(tf ) =

{
[0.5, 0.5, 0.5, 0.5]T , t < 150s

[0.1, 0.7, 0.1, 0.7]T , t ≥ 150s
(33)

The initial angular velocity ω(0) = [0.01, 0.01, 0.01]T rad/s, initial quater-
nion q̄ (0) = [0, 0, 0, 1]T . The gain parameters of adaptive control are λi =
0.1, ρ̂i (0) = 0, κi = 0.5, σ = 10, ε = 0.1 and maximum of control torque
umax ≤ 0.1N ·m.

The quaternion q̄ tracking with the proposed control law (9) with (16)
are respectively shown in Fig.1 and Fig.3 and the corresponding error qe
denotes in Fig.5. The comparison results without or with actuator failures
using the control law by Eq.(28) indicate in Fig.2, Fig.4 and Fig.6. Since the
reference attitude designed by the control law by Eq.(28), there is no error in
the first 10 seconds under a perfect actuator. It is clear shown in Fig.2, Fig.4
and Fig.6. In contrast of the quaternion feedback control, the proposed
control has a small tracking error because of needing a dynamic response
process to track the reference trajectory. However, the tracking performance
of the simply quaternion feedback control is much worse than the proposed
control with the actuator failures happened. It is obviously illustrated by
comparing Fig.5 and Fig.6. The proposed control strategy has such high
tracking precision because the adaptive parameter can accurately estimate
the total uncertainties including actuator failures, external disturbance and
inertia uncertainty.
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Figure 1: Quaternion q1 and q2 of proposed
control
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Figure 2: Quaternion q1 and q2 of compared
control

It has shown that the tracking error of proposed control is much smaller
than conventional control with actuator fault and external disturbance, very
closed to zero. It can be seen that the quaternion tracking error of the pro-
posed control has significantly stable to reject uncertainty. This is extremely
significant for high tracking accuracy attitude control of nano-spacecraft.
The Fig.7 and Fig.9 illustrate the angular velocity and tracking error of the
proposed control in contrast of feedback control shown in Fig.8 and Fig.10.
We can know that the angular velocity of spacecraft can great track the de-
sired angular velocity with extremely small error. The corresponding control
torque of two control methods are shown in Fig.11 and Fig.12. In Fig.14 the
initial value of ρ̂ei = 0, then when there is a fault the sliding mode is triggered.
The stable values have changed old ones of no failures to new values after
happening fault. In this example, it can be seen from the figures that the pro-
posed controller is effective at dealing with the uncertainties(actuator fault
and external disturbance) and shows a significant improvement in tracking
capability in the presence of uncertainties.

Next, the simulations at more operating conditions should be performed
and discussed to verify the performance of the proposed control strategy un-
der an another external disturbance and inertia uncertainty. Therefore, a
desired attitude trajectory is designed by Eq.(34) and Eq.(2). The compari-
son simulation results of tracking the reference attitude quaternion trajectory
with the external disturbance and inertia uncertainty respectively calculated
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Figure 3: Quaternion q3 and q4 of proposed
control
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Figure 4: Quaternion q3 and q4 of compared
control
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trol
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Figure 9: Angular velocity error of proposed
control
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Figure 10: Angular velocity error of com-
pared control
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Figure 11: Control torque of proposed control
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Figure 12: Control torque of compared con-
trol
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Figure 13: Sliding surface of proposed control
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Figure 14: Adaptive parameters of proposed
control
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by Eq.(35) and Eq.(36) are shown in Fig.15 to Fig.26.

ω =

 0.03 sin(2πt/200)
0.02 sin(2πt/200)
0.01 sin(2πt/200)

 rad/s (34)

the external disturbance torque d is assumed:

d =

 3 + 2 sin(0.1t)
1 + 4 sin(0.2t)
2 + 3 sin(0.3t)

× 10−3N ·m (35)

and the inertia uncertainty is as follow

∆J = 0.1J (36)

The quaternion q̄ tracking with the proposed control law (9) with (16)
are respectively shown in Fig.15 and Fig.17 and the corresponding error qe
denotes in Fig.19. The comparison results without or with actuator failures
using the control law by Eq.(28) indicate in Fig.16, Fig.18 and Fig.20. Since
the reference attitude designed by the control law by Eq.(28), there is no
error in the first 10 seconds under a perfect actuator. It is clear shown in
Fig.16, Fig.18 and Fig.20. In contrast of the quaternion feedback control,
the proposed control has a small tracking error because of needing a dynam-
ic response process to track the reference trajectory. However, the tracking
performance of the simply quaternion feedback control is much worse than
the proposed control with the actuator failures happened. It is obviously
illustrated by comparing Fig.19 and Fig.20. The proposed control strategy
has such high tracking precision because the adaptive parameter can accu-
rately estimate the total uncertainties including actuator failures, external
disturbance and inertia uncertainty.

It has shown that the tracking error of proposed control is much smaller
than conventional control with actuator fault and external disturbance, very
closed to zero. It can be seen that the quaternion tracking error of the pro-
posed control has significantly stable to reject uncertainty. This is extremely
significant for high tracking accuracy attitude control of nano-spacecraft.
The Fig.21 and Fig.23 illustrate the angular velocity and tracking error of
the proposed control in contrast of feedback control shown in Fig.22 and
Fig.24. We can know that the angular velocity of spacecraft can great track
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Figure 15: Quaternion q1 and q2 of proposed
control

0 50 100 150 200
−0.2

0

0.2

0.4

0.6

0.8

t(s)

Q
ua

te
rn

io
n

Quaternion Tracking of Compared Control

 

 
q

1

q
ref

100 105
0.72

0.74

0.76

0 50 100 150 200
−0.2

0

0.2

0.4

0.6

t(s)

Q
ua

te
rn

io
n

 

 
q

2

q
fef

100 105
0.49

0.5

0.51

Figure 16: Quaternion q1 and q2 of compared
control

the desired angular velocity with extremely small error. The corresponding
control torque of two control methods are shown in Fig.25 and Fig.26. In
this example, it can be seen from the figures that the proposed controller
is effective at dealing with the uncertainties(actuator fault and external dis-
turbance) and shows a significant improvement in tracking capability in the
presence of uncertainties.

5. Conclusion

The control law proposed in this note is not only robust to unknown
disturbance, but also adapts to limited output torque and actuator failures
which consist of a gain fault and a deviation fault. It is proved that the closed-
loop system is asymptotically stable by Lyapunov’s direct method. Contrary
to traditional quaternion feedback control which have fixed gains, the adap-
tive parameter can be automatically tuned as functions of the quaternion
and angular velocity of spacecraft. Furthermore, a significant advantage of
this control is that it is tolerant to faults and unexpected disturbances.
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Figure 17: Quaternion q3 and q4 of proposed
control
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Figure 18: Quaternion q3 and q4 of compared
control
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Figure 19: Quaternion error of proposed con-
trol
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Figure 21: Angular velocity of proposed con-
trol
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Figure 22: Angular velocity of compared con-
trol
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Figure 23: Angular velocity error of proposed
control
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Figure 24: Angular velocity error of com-
pared control
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Figure 25: Control torque of proposed control
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Figure 26: Control torque of compared con-
trol
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