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1 Introduction

Air-breathing hypersonic vehicle (AHV) is a kind of vehi-
cle which can fly at a speed of five times the speed of 
sound (Mach 5). With the utmost aim of feasible and afford-
able atmospheric flight, AHV has drove much attention 
in recent years [1]. The design of guidance and control 
systems for AHVs is a challenging task since the interac-
tions between the airframe, the propulsion system and the 
structural dynamics are very strong, and AHVs are very sen-
sitive to changes in flight condition and the aerodynamic 
characteristics [2–4].

Owing to the enormous complexity of the dynamics, 
only longitudinal models have been developed and used 
for control design. A lot of works have been done and 
several results are available in literature which consider 
control solutions for AHVs. A design strategy of a multi-
input/multi-output adaptive sliding mode controller for the 
longitudinal dynamics of AHVs is reported in [5], in which 
the vehicle model is non-linear, multi-variable and unsta-
ble, and includes uncertain parameters. In [6], the authors 
consider the development of the control-oriented model 
and also provide an example of control design based on 
approximate feedback linearisation. In [7], the design prob-
lem of a non-linear robust adaptive controller for AHVs 
is discussed. In [8], the authors consider the longitudi-
nal motion of a hypersonic aircraft containing inertial 
and aerodynamic uncertain parameters. By using stochastic 
robustness analysis approach, robust flight control systems 
with non-linear dynamic inversion structure are synthesised.
In [9], the authors present an adaptive linear quadratic
altitude and velocity tracking control algorithm for the
longitudinal model of a generic air-breathing hypersonic
flight vehicle. In [10], the authors deal with the adap-
tive model reference sliding output tracking control for
AHVs. Although a lot of results have been obtained, the
complex and challenging control problem for AHVs has
not been fully investigated, especially when possible faults
exist.

Owing to the requirements of precise control and the com-
plexity of modern engineering systems, the reliability of the
designed controller becomes very important. Unfortunately,
similar to other airplanes and space vehicles, possible fail-
ures are unavoidable in AHVs. Hence, the stability of a
system in which a fault occurs is very important, which
motivates the research of fault tolerant control (FTC). The
FTC of AHVs has been studied in recent years. In [11], a ref-
erence output tracking controller design method is proposed
for AHVs with actuator delay and uncertainty, the existence
conditions of such controllers are proposed in terms of liner
matrix inequalities; in [12], a reliable control for AHVs with
both sensor and actuator failures is studied by utilising T–S
fuzzy modelling technology. Most of the proposed methods
are based on the linear model or the nominal linear model of
AHVs, which limits the applicability of these methods. For
a complex non-linear system, it is better to design a non-
linear fault tolerant controller directly, but to the best of our
knowledge, this problem has not been well discussed.

Non-linear tracking control methods have been widely
studied [13, 14], but non-linear fault tolerant control (NFTC)



is still in progress, much work should be done. For NFTC, 
the faults are treated as additive actuator faults [15, 16] at  
first, and the non-linear regulation theory is used to solve the 
NFTC problem; a Lyapunov reconstruction technique, which 
based on the a priori knowledge of a stabilising feedback for 
the nominal safe model and the knowledge of the associ-
ated Lyapunov function, is used to solve NFTC problem in 
[17]. In [18], a model predictive control (MPC)-based online 
reference reshaping and controller reconstruction method 
is presented. The proposed method has two main stages. 
Firstly, the reference command of the faulty system is 
reshaped online with respect to system faults; secondly, 
based on a non-linear MPC strategy, the control of the plant 
is reallocated according to the new reference command. 
Although the mentioned method needs real-time calculation, 
it provides an efficient way to the NFTC.

Motivated by the above discussions, in this paper, an 
NFTC strategy for AHVs will be proposed. After presenting 
the non-linear dynamics of AHVs, the fault model and the 
control objective of the paper are discussed. Since the fault 
model considered in this paper is a general form, and the 
dynamics of AHVs are really complex, we propose an MPC-
based FTC strategy. The reference command is reshaped 
with respect to the faults, firstly. Then an optimal prob-
lem is obtained by MPC, and through solving the optimal 
problem online, the input of the plant can be obtained in 
real time. A simulation analysis is provided to confirm the 
effectiveness of the proposed control design approach. From 
the simulation results we can see that the proposed control 
strategy can guarantee a good tracking performance in the 
existence of faults. The main contributions of the paper can 
be summarised as follows:

(1) A non-linear FTC method is proposed for AHVs. Via
reshaping the reference command online and reconstructing
the input of the plant real timely, the FTC of AHVs can be
solved.
(2) The proposed method can deal with not only the FTC
problem, but also the input saturation of non-linear system.
(3) Though need real-time calculation, the proposed method
is easily to be carried out in practice.

The rest of this paper is organised as follows. The non-
linear model of AHVs, the fault model and the control 
objective of this paper are presented in Section 2. Section 3 
gives the main results of the paper, the reference reshaping 
method and the MPC-based FTC strategy. In Section 4, a 
numeric simulation is given and we conclude this paper in 
Section 5.

Notation: The notations used throughout the paper are fairly 
standard. The superscript ‘T’ denotes matrix transposition; 
Rn denotes the n-dimensional Euclidean space; and diag{. . .} 
stands for a block-diagonal matrix. Matrices are assumed to 
be compatible for algebraic operations if their dimensions 
are not explicitly stated.

2 Problem formulation

2.1 Non-linear model of AHVs

The rigid-body equation of motion for AHVs considered in 
this paper is developed by NASA Langley Research Center
[19]. The non-linear equations are described as follows⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

V̇ = (T cos α − D)/m − μ sin γ /r2

γ̇ = (L + T sin α)/mV − (μ − V 2r) cos γ /V r2

ḣ = V sin γ

α̇ = q − γ̇

q̇ = Myy/Iyy

(1)

and the engine dynamics can be written as a second-order
system

β̈ = −2ξωnβ̇ − ωn
2β + ωn

2βc (2)

where h and V represent the flight altitude and velocity of
AHVs, respectively; α is the angle of attack of the vehicle,
γ is the flight path angle and q represents the pitch rate. T ,
L, D and Myy are the thrust, lift, drag and pitching moment,
respectively. Iyy is the moment of inertia. Equation (2) rep-
resents the dynamics of the actuator, where ξ is the damping
ratio of the actuator dynamics, ωn is the natural frequency
and βc is the throttle setting.

The expressions of L, D, T and Myy are modelled as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L = 1

2
ρV 2SCL

D = 1

2
ρV 2SCD

T = 1

2
ρV 2SCT

Myy = 1

2
ρV 2Sc̄[CM (α) + CM (δe) + CM (q)]

r = h + RE

(3)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CL = 0.6203α

CD = 0.6450α2 + 0.0043378α + 0.003772

CT =
{

0.02576β, β < 1
0.0224 + 0.00336β, β > 1

CM (α) = −0.035α2 + 0.036617α + 5.3216 × 10−6

CM (δe) = ce(δe − α)

CM (q) = (c̄/2V )q(−6.796α2 + 0.3015α − 0.2289)

(4)

c̄ represents mean aerodynamic chord and δe means elevator
deflection of AHVs. This non-linear model is composed of
five rigid-body state variables x = [V , γ , α, β, h]T, the output
to be controlled is selected as the velocity V and the altitude
h, then y = [V , h]T. The control input u = [βc, δe]T does not
appear explicitly in the equations. For a simple description,
the following equations are used to represent the non-linear
dynamics of AHVs in this paper

{
ẋ = f (x, �, u)

y = h(x)

where � is a family of parameters included in (2)–(4).

2.2 FTC objective

Faults are inevitable, and may influence stability of AHVs.
Faults may locate in the actuators, the components or the
elevators of AHVs and may be caused by partial damage of



the component or loss effectiveness of actuator fault. When
faults occur, the faulty system can be described as

{
ẋ = fF(xF , �F , uF(t))
y = h(x)

�F means that the aerodynamic coefficient drift from the
nominal model and fF(·) represents the component faults of
the vehicle. The actuator fault uF(t) may have many forms,
such as

uFi(t) = λiu(t) (5)

where 0 < λi ≤ 1, i = (βc,δe), and (5) represents loss of
actuator effectiveness.

Besides, both of the control inputs are supposed to be
constrained by a saturation value, expressed by

ui min ≤ uFi(t) ≤ ui max (6)

which means that each of the inputs has a separate saturation
limit. The saturation function sat(uFi(t)) is defined as

sat(uFi(t)) =
⎧⎨
⎩

ui max, ui max > uFi(t)
uFi(t), ui min < uFi(t) < ui max

ui min, uFi(t) < ui min

Remark 1: The upper bound and the lower bound of the
saturation function, ui max and ui min are not constrained to be
symmetric [20], which is different from most of the linear
anti-windup controller design methods.

Remark 2: ui max and ui min may not equal to the real limita-
tion of the vehicle, since actuator may be locked in a small
area. Then the upper bound and the lower bound will change
according to the real situation.

Remark 3: From the above description we can see that the
type of faults considering in this paper is a general case.

The control objective of AHVs is to track a command
velocity and altitude vector ycom(t) = [Vcom(t), hcom(t)]T,
such that the output tracking error achieves zero, that is

lim
t→∞(y(t) − ycom(t)) = 0 (7)

With respect to the mentioned faults and actuator saturation,
the tracking problem of FAHVs can be stated as follows:
finding a bounded controller, such that

• the closed-loop system is robustly stable;
• the output of the system can track a command vector
ycom = [Vcom(t), hcom(t)]T without steady error;
• in the event of possible faults, the stability and the
tracking performance of the system can still be guaranteed.

3 Main results

3.1 Robust non-linear control design

The non-linear equations (1) do not give direct relation-
ships between inputs and outputs, so it is difficult to design 
a controller. Input/output linearisation uses full-state feed-
back to globally linearise the non-linear dynamics, and a
nominal linear system can be constructed [21]. The classi-
cal linear controller design methods can then be utilised to
regulate the closed-loop dynamics. As described in [5, 7],
the nominal linearised model can be developed by repeated
differentiation of V and h as⎧⎨

⎩
V̇ = (T cos α − D)/m − μ sin γ /r2

V̈ = ω1ẋ/m
...
V = (ω1ẍ + ẋT
2ẋ)/m

(8)

and⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ḣ = V sin γ

ḧ = V̇ sin γ + V γ̇ cos γ...
h = V̈ sin γ + 2V̇ γ̇ cos γ − V γ̇ 2 sin γ + V γ̈ cos γ

h(4) = ...
V sin γ + 3V̈ γ̇ cos γ − 3V̇ γ̇ 2 sin γ + 3V̇ γ̈ cos γ

−3V γ̇ γ̈ sin γ − V γ̇ 3 cos γ + V
...
γ cos γ

(9)

where {
γ̈ = π1ẋ
...
γ = π1ẍ + ẋT�2ẋ

The expressions of ω1, 
2 and π1 can be found in [5, 7].
Defining⎧⎨

⎩α̈0 = 1

2
ρV 2Sc̄[CM (α) + CM (δe) − ceα]/Iyy − γ̈

β̈0 = −2ξωnβ̇ − ωn
2β

Then the expressions of α̈ and β̈ can be viewed as two parts,
control-independent and control-dependent⎧⎪⎨

⎪⎩
α̈ = α̈0 +

(
ceρV 2Sc̄

2Iyy

)
δe

β̈ = β̈0 + ωn
2βc

(10)

From (10), the input u = [βc, δe]T has been separate
from the non-linear dynamics. Defining ẍ0 = [V̈ , γ̈ , α̈0,
β̈0, ḧ], then the non-linear equation (1) can be written as{...

V = fV + [b11 b12]u
h(4) = fh + [b21 b22]u (11)

where⎧⎪⎨
⎪⎩

fV = (ω1ẍ0 + ẋT
ẋ)/m

fh = 3V̈ γ̇ cos γ − 3V̇ γ̇ 2 sin γ + 3V̇ γ̈ cos γ

−3V γ̇ γ̈ sin γ − V γ̇ 3 cos γ + V
...
γ cos γ + fV

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b11 = ρV 2Scβw2
n

2m
cos(α)

b12 = −ceρV 2Sc̄

2mIyy

(
T sin α + ∂D

∂α

)

b21 = ρV 2Scβw2
n

2m
sin(α + γ )

b22 = ceρV 2Sc̄

2mIyy

(
T cos(α + γ ) + ∂L

∂α
cos γ − ∂D

∂α
sin γ

)

The details of the diffeomorphism coordinate transform can
be found in [5, 7]. By defining the tracking errors of the



output as

eV = V − Vcom(t) (12)

eh = h − hcom(t) (13)

and two virtual controls

vV = fV +[b11 b12]u (14)

vh = fh+[b21 b22]u (15)

a nominal linear system can be constructed{
χ̇V = AV χV + BV (vV − ...

V com(t))

χ̇h = Ahχh + Bh(vh − h(4)
com(t))

(16)

where

χV = [eV ėV ëV ]T

χh = [eh ėh ëh
...
e h]T

AV =
[

0 1 0
0 0 1
0 0 0

]
, BV =

[
0
0
1

]

Ah =
⎡
⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎦ , Bh =

⎡
⎢⎣

0
0
0
1

⎤
⎥⎦

Then the linear controller design methods can be utilised
here to design the virtual controllers (vV , vh)

vV = ...
V com(t) + KV χV (17)

vh = h(4)
com(t) + Khχh (18)

where KV and Kh are controller gain matrices. After get-
ting the virtual controllers, the real inputs of AHVs can be
obtained through the following transformation

u =
[

b11 b12

b21 b22

]−1 ([
vV

vh

]
−

[
fV

fh

])
(19)

3.2 Optimal trajectory reconfiguration

The virtual control (14) and (15) of AHVs are functions
of ycom(t) and its derivative, which are given or known.
But in the existence of system faults or the actuator sat-
uration, the controlled output may not track the command
in real time, or even fail to track ycom(t). Then the con-
troller needs to be designed with respect to the system faults
and the actuator saturation. It is a challenging task, espe-
cially for complex non-linear system. Since the controller is
the function of ycom(t) and its derivative, the controller can
be changed to satisfy the constraints by adjusting the refer-
ence command. The reconstruction of the optimal reference
command, marked as yd(t), will be discussed here.

The reconstruction method can be describe by the follow-
ing minimising problem

min J1 =
∫ t2

t1

(yd(t)−ycom(t))TQ(yd(t)−ycom(t)) dt

where Q ∈ R2×2 is a positive definite weighting matrix, t1 is 
the initial interpolation time and t2 is the final interpolation
time. On the other hand, with respect to the actuator fault,
a control weighting matrix R is defined and the minimising
index can be written as

min J2 =
∫ t2

t1

uT(t)Ru(t) dt

where R ∈ R2×2 is a positive definite weighting matrix.
Then the optimal trajectory reconfiguration problem can be
transformed into the following optimal problem

min J = min(J1 + J2)

=
∫ t2

t1

[(yd(t)−ycom(t))TQ(yd(t)−ycom(t))

+ uT(t)Ru(t)] dt (20)

When solving the above optimal problem, the following
constraints should be considered

ẋ = fF(x, �F , uF) (21)

yd(t) = h(x) (22)

y(k)

dj (tF) = y(k)
comj(tcom), j = (V , h), k = 0, 1, . . . , r (23)

ui min ≤ uFi(t) ≤ ui max (24)

t2 ≥ tcom (25)

where t2 is the final motion time of the faulty system and
tcom is the final motion time for the reference command. r
is the relative degree of the non-linear system.

Remark 4: The constraints (21) and (22) correspond to the
faulty system equations; the constraint (23) means that the
optimal trajectory should be the same as the reference com-
mand at the beginning and end time; then the constraint (24)
is the saturation limit of the plant and the running time of the
faulty system could be longer than the ordinary one, which
is given in constraint (25).

For solving the above optimal problem, we make the
following assumption:

Assumption 1: The optimal trajectory can be written in the
canonical polynomial basis

ydj(t) =
i=l+1∑

i=1

aij

(
t − t1

t2 − t1

)(i−1)

, j = (V , h) (26)

where l is the order of the polynomial, and aij are the
interpolation coefficients.

Remark 5: With sufficient order, any smooth function can
be approximated by a polynomial, so the above assumption
always holds.

Remark 6: Through writing the output trajectories into
canonical polynomial basis, the complexities of reference
reconfiguration and MPC-based controller reconfiguration
can be greatly reduced.



By considering the following equation

ud =
[

b11 b12

b21 b22

]−1
([ ...

V d(t)

h(4)

d (t)

]
−

[
fV

fh

])
(27)

Then the optimal problem (20) can be rewritten as

min J (aij, t2) (28)

with the constraints

ui min ≤ uFi(t) ≤ ui max

t2 ≥ tcom

then the non-linear constrained optimisation is reduced to a
more simple optimal problem of (aij, t2).

3.3 MPC-based fault tolerant controller design

After getting the optimal trajectory of the reference com-
mand, the controller u should be reconfigurated. In equations
(17) and (18), the expression of virtual control has been
obtained. By replacing ycom(t) with yd(t), a new virtual
control can be constructed

v̂V = ...
V com(t) + KV χ̂V (29)

v̂h = h(4)
com(t) + Khχ̂h (30)

where

χ̂V = [V − Vd(t) V̇ − V̇d(t) V̈ − V̈d(t)]T

χ̂h = [h − hd(t) ḣ − ḣd(t) ḧ − ḧd(t)
...
h − ...

h d(t)]T

Then we reallocate the control u(t) for the faulty system.
To obtain a tracking performance of AHVs, the following
MPC-based optimal problem is proposed (see (31))

where QF ∈ R2×2 is a positive definite weight matrix and
tH is a finite integration time. Since 0 < ρ < 1, the tracking
error will achieve zero.

3.4 Stability analysis

Owing to the contractive constraints on the tracking errors in
the optimisation problems (31), the stability analysis of the
above method is straightforward. This type of contractive
constraints has already been used [22, 23]. Following [22,
23], we can drive the same stability conclusion when dealing
with the MPC-based output tracking problem.

Before proceeding, we present the following lemma.

Lemma 1: If there exist constants ε1 and ε2, for
all y(t0) ∈ {y(t0) ∈ Rn, ‖y(t0) − yd(t0)‖ ≤ ε1}, and ‖y(t) −
yd(t)‖ ≤ ε2‖y(tk) − yd(tk)‖, the optimal problems (31) have
a solution, then the MPC-based fault tolerant controller
design algorithm implies an exponential convergence of
tracking error to be zero.

Owing to the page limit we omitted the proof, and the
detailed proof can be found in [18].

From the above lemma, we can easily see that, for the
above MPC-based optimal problem, the constants ε1 and ε2

always exist. So the MPC-based fault tolerant controller can
guarantee global stability and the tracking performance of
the closed-loop system.

4 Simulation results

In this section, some simulations are provided to evaluate the
effectiveness of the proposed controller (31). In simulation,
a climbing manoeuvre for altitude is considered, and the
expressions are listed as follows (see (32))

where the final motion time tcom = 60 s. The virtual con-
troller gains KV and Kh of (17) and (18) are chosen as,
respectively

KV = [20 145 25]
Kh = [2.25 5.5 6.3 308]

First, a normal tracking problem (without faults) is proposed
to evaluate the MPC-based controller. The optimal problem
is solved with tH = 0.5, ρ = 0.9 and

QF =
[

20 0
0 20

]

The simulation results are listed in Figs. 1 and 2, where
Fig. 1 is the responses of velocity and altitude with respect
to (32), and Fig. 2 gives the control input of the plant. From
these figures we can see that the proposed control method
can provide a good tracking performance for the system
without faults.
Pro(tk , uF(t))

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∫ tk +tH

tk

[
fV + [b11 b12]uF(t) − v̂V

fh + [b21 b22]uF(t) − v̂h

]T

QF

[
fV + [b11 b12]uF(t) − v̂V

fh + [b21 b22]uF(t) − v̂h

]
dt

...
V = fV + [b11 b12]uF(t)
h(4) = fh + [b21 b22]uF(t)
ui min ≤ uFi(t) ≤ ui max

‖y(tk) − yd(tk)‖ ≤ ρ‖y(tk + 1) − yd(tk + 1)‖, tk + 1 = tk + T
T > 0, 0 < ρ < 1, k = 0, 1 . . .

(31)

Vcom(t) = 0

hcom(t) =
{

1000(6 (t/tcom)5 − 15 (t/tcom)4 + 10 (t/tcom)3), 0 ≤ t ≤ tcom

1000, t > tcom
(32)



Fig. 1 Tracking performance of normal case

Fig. 2 Input of normal case

Then we assume that a fault occurs at the initial time
t1 = 0. The fault is a loss of effectiveness in the actuator,
which can be modelled by a multiplicative coefficient as
follows

uFi(t) = 0.5ui(t)

what is more, we assume that the actuators of the plant suf-
fer from saturation, and the upper bound, together with the
lower bound of the saturation function is given as

0 ≤ T ≤ 4 × 105

−4◦ ≤ δe ≤ 4◦

Then the viable input of the plant will be much smaller than
the fault-free one.

Solving the non-linear optimal problem (31) by the MAT-
LAB solver ‘fmincon’, a feasible solution can be obtained
with the following optimal values (see equations at the
bottom of the page)

The normal command and the optimal one are all listed
in Fig. 3. Then by solving the MPC-based optimal problem
Fig. 3 New command hd(t) and normal command hcom(t)

Fig. 4 Tracking performance of fault case

Fig. 5 Input of fault case

(31), the optimal controller can be obtained in real time. The
simulation results are reported in Figs. 4 and 5.

5 Conclusion

In this paper, the non-linear FTC of AHVs has been
addresses and a MPC-based online optimal method has been
discussed. The AHVs are supposed to suffer from failures
t2 = 61.3 s

Vd(t) = 0

hd(t) =
{

1000(6(t/t2)
5 − 15(t/t2)

4 + 10(t/t2)
3 − 0.0005(t/t2)

6), 0 ≤ t ≤ t2

1000, t > t2



and then the reference command has been reshaped with
respect to the faulty system. An MPC-based optimal control
strategy has been proposed. The input of AHVs is computed
online, according to the reshaped reference command. Simu-
lation results have validated that the present control strategy
can deal with the failures and saturation.
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