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ABSTRACT 

This paper describes a new method for estimating the modal mass associated to mode shapes found 

through operational modal analysis. The knowledge of the modal mass is a key information for 

estimating the frequency response function of the structure/system under analysis. The newly 

proposed method is based on the use of mono-harmonic excitation tests at frequency values at (or 

close to) resonances. The method allows for simpler and cheaper experimental set-ups, compared to 

the other methods already available in the literature. Furthermore, it does not require any assumption 

on the structure/system considered. The paper presents the theory behind the method and then 

validates it by means of experimental tests. 

 

 

1. INTRODUCTION 

The Operational Modal Analysis (OMA) is a well-known technique for estimating the modal 

properties of systems and structures without the need of measuring the forces exciting the 

structure/system (thus, often exploiting the natural environmental excitation). This is a key tool in all 

those cases where measuring/providing excitations is complicated, such as the case of huge civil 

structures. OMA provides estimates of the eigenfrequency and non-dimensional damping ratio values. 

Mode shapes can be also estimated, but they are non-scaled, which in turn means that they are 

associated to an unknown modal mass. This implies that it is not possible to reconstruct the dynamic 

response of the considered system/structure to a given excitation [1]. 

There are different methods in the literature to evaluate the scaling of the mode shapes estimated by 

means of OMA. They can rely on different approaches; among them, it is possible to use additional 

masses to be placed on the structure (e.g. [2–5]), to employ measured broad-band exogenous forces 

(e.g. [6]), to couple the system under analysis with known dynamic systems [7] and to use accurate 

finite element models [8]. These approaches have some drawbacks: they are based on rather elaborate 

experimental procedures/set-ups, or they rely on the accuracy of a computational model, which latter 

must be based on assumptions, making any uncertainty larger, as the measurement uncertainties 

combine with the model approximation. The aim of this paper is to present a new approach for 

estimating modal masses, and thus scaling the OMA mode shapes, employing a readily applicable and 

fast experimental procedure based on the employment of relatively inexpensive and general-purpose 

actuators as well as simple signal processing, thus without the need of any structure modifications 

and/or models. The next two sections describe the basic procedure to be followed for applying the 

proposed method. Then, Section 4 explains in detail the advantages of this technique and Section 5 

shows an experimental campaign allowing for the validation of the method. 

 

2. THE NEW METHOD FOR SCALING THE OMA MODES 

The new method here proposed relies on the use of small actuators which are employed to excite the 

structure with mono-harmonic force profiles at frequency values equal to (or close to) the 

eigenfrequency values of the modes that have to be scaled. The whole procedure for applying the 

newly proposed method can be summarized as follows: 

 



1) Carry out an OMA. With the data coming from the OMA, a modal extraction can be performed. 

This allows the estimation of the poles sr (where r indicated the order of the pole) and the 

associated non-scaled eigenvector ψr. The poles assume the following expression: 

 

sr = - ωr ξr + j ωr (1- ξr
2)1/2 (1) 

Where ωr is the r-th eigenfrequency and ξr is the associated non-dimensional damping ratio. 

The symbol j represents the imaginary unit. 

 

2) Perform the tests with the mono-modal force profiles at frequency values equal to (or close to) 

the eigenfrequency values of the modes which have to be scaled. In these tests, it is essential 

that the points where the structural response is measured and where the force is applied are 

points where the ψr were computed with the OMA. 

 

3) The frequency response functions (FRFs) at the selected frequency values can be then estimated 

by using simple digital signal processing tools (see Section 3). 

 

4) The knowledge of these FRF samples is the base of the whole method presented herein. The 

theoretical expression of these FRF values, in case of proportional damping, is [9]: 

 

Hp,q (jωex) = Σ[ψr
p ψr

q /(mr (jωex - sr) (jωex - sr
*) )] + Dpq + (Cpq / ωex

2) (2) 

The summation must be carried out from r=h and r=h+g-1, where h is the index of the first 

mode to be scaled, and g is the number of modes to be scaled. ωex is the frequency at which the 

excitation is provided, p and q are the points where the response of the structure is collected and 

input force is applied, respectively. Furthermore, Dpq and Cpq are constants which allow to take 

into account the influence of out-of-band modes (Dpq for higher modes and Cpq for lower 

modes); mr is the r-th unknown modal mass and * represents complex conjugation. 

The knowledge of many FRF samples allows to build a system of equations where the 

unknowns are the modal masses and residual terms accounting for the influence of out-of-band 

modes. The other parameters in Eq. (2) are set by the user (i.e. the excitation frequency ωex that 

must be set equal to, or close to, the eigenfrequency values), or estimated by OMA tests (i.e. ψr 

and sr), or known from the harmonic tests (i.e. Hp,q (jωex)). With few of the mentioned mono-

harmonic tests, it is possible to write a system of equations to be solved, characterized by many 

equations. Thus, it is easy to make the system overdetermined. Therefore, the estimation of the 

unknowns requires the use of a least square approach or of the pseudo-inverse matrix. The use 

of many equations leads to an increased accuracy of the results (modal mass values) because it 

allows to filter out all the random effects affecting the estimated non-scaled mode components 

ψr coming from OMA. 

As an example, if there are five modal masses to be estimated (g=5) and two forcing points 

must be used because there are no points where all the five modes under analysis show a 

significant eigenmode component, one has to build the mentioned system of equations by 

choosing, at first, the number of points where the structural response must/can be measured 

during the harmonic tests. The higher the number of these points is, the more effective the 

filtering of the random effects affecting the estimated values of ψr is. On the other hand, this 

makes the experimental set-up more complicated and expensive. Let us suppose to set this 

quantity equal to six. Once the number of response points has been set, the number of excitation 

frequencies ωex must be set. This depends on the number of unknowns that must be estimated. 

In this example, then unknowns are 29 (5 modal masses and the terms Dpq and Cpq for 12 

FRFs). Therefore, more than (or at least) 29 equations must be written. Supposing to use 

different ωex values in the two different excitation points, at least 5 ωex values must be 

employed (5 different ωex values allow to write 30 equations because, at each ωex value, six 

FRFs can be written). 

 



Before discussing the advantages of the newly proposed method, it is worth highlighting two points. 

First, the mathematical approach, that implies a least square minimization or the use of the pseudo-

inverse, must guarantee the avoidance of ill-conditioned solutions. This aspect has already been 

treated in [10], where it is shown that the mathematical solution is guaranteed, provided to have, for 

each mode considered, at least one FRF sample characterized by a high eigenmode component in both 

the excitation and response points, which is readily accomplished. The second point to be faced 

regards the possible random and bias effects in the results of the proposed method, that could be 

introduced by the method itself. To investigate this point, different simulations were carried out 

considering a practical case which is of high complexity: a system with axis-symmetry where twin 

(repeated) modes appear, nominally at the same frequency, but with mode shapes rotated with respect 

to each other, so that the maximum of one of the twin modes lies on the nodal line of the other mode. 

As an example, if we consider a disc, twin modes like those in Figure 1 will be encountered. In 

theory, the two modes at a particular frequency for the circular disc are undetermined in space, i.e. 

any linear combination of the two orthogonal modes are modes of the plate. This will mean that 

applying only one shaker will excite one of the modes, whereas the other mode will not be excited at 

all. In cases where a non-perfect axis-symmetry exists, which is a common case in practical 

applications, the two modes will be fixed in space and their eigenfrequencies will be slightly 

different. This case is taken into consideration here, because it is of high complexity due to the 

extreme modal superimposition between the two modes. Therefore, this case is fine for testing the 

proposed method. 

 

 
 

Figure 1: Twin modes of an axis-symmetric structure 

 

The usual practice in experimental modal analysis (EMA) with modes like those in Figure 1 is to use 

a multiple–reference approach. The optimal choice of the reference DOFs in EMA would be to use 

DOF 1 as reference for identifying mode 1A (it is noticed that DOF 1 is a node for mode 1B) and 

DOF 3 for mode 1B (it is noticed that DOF 3 is a node for mode 1A), allowing to have response 

measurements with perfectly decoupled modes. However, any other choice of the reference DOFs is 

valid. Something similar can be done with the method presented here for scaling the modal model 

found with OMA. The reference modal parameters chosen here for modes 1A and 1B are: ω1 =5.00 

Hz, ω2 =5.02 Hz, ξ1= ξ2=0.50%. The eigenvector components are described by cosine functions with 

unitary amplitude. 

Two different types of simulations were carried out: exciting the structure in DOFs 1 and 3 (mode 

responses completely decoupled, best case) and then in DOFs 2 and 4 (mode responses completely 

coupled, worst case with very high modal coupling). For both the cases (thus, even in case of 



excitation in DOFs 2 and 4 and high modal coupling in the responses), the first numerical test was 

performed by considering the modal parameters (eigenfrequencies, non-dimensional damping ratios 

and non-scaled eigenmodes) coming from OMA as unaffected by any error. The estimated modal 

mass values for the two modes were always so close to the actual values that the differences could be 

considered as negligible. This means that the numerical procedure of the method does not introduce 

any bias or random effects in the results and it is numerically well-conditioned, even in case of very 

high modal superimposition. 

Then, errors between the actual modal parameters of the structure and the values supposed to be 

estimated by means of OMA and then used for finding the modal masses were imposed. Different 

error configurations were considered. Here, just one is presented for the sake of conciseness. The 

errors on the modal parameters were imposed by extracting from given probability density functions 

the value of the errors for the different modal parameters. The error configuration taken into 

consideration here was characterized by: 

• errors on the two eigenfrequency values characterized by Gaussian distribution with null 

mean value and a standard deviation of 0.05% of the eigenfrequency values; 

• for the non-dimensional damping ratios, the mean value of the error was still null and the 

standard deviation was 10% of their values (Gaussian distribution); 

• finally, for the non-scaled eigenvector components, the mean value of the error was still 

null and the standard deviation was 5% of their values (Gaussian distribution). 

The distributions described in the previous list are more than reasonable in practical cases. 2000 

simulations exciting in DOFs 1 and and 3 and exciting in DOFs 2 and 4 were carried out, and in each 

of them the errors imposed on the values of the modal parameters estimated with OMA were 

randomly extracted according to the distributions described previously. Figure 2 shows the results in 

terms of µ (mean value of the resulting modal masses of the 2000 simulations) and µ±2σ (where σ is 

the standard deviation of the resulting modal masses of the 2000 simulations). The resulting 

distribution were almost Gaussian. The results are similar in both the cases: exciting the system in 

DOFs 1 and 3 and in DOFs 2 and 4. This evidences that possible random and bias effects on the 

estimations of the method are directly due to random and bias effects on the OMA estimates and they 

are not due to the method itself. 

 
Figure 2: µ (circles) and µ±2σ (squares) for the 2000 simulations with excitations in DOFs 1 and 3 (left) 

and in DOFs 2 and 4 (right). The dashed lines show the reference values of the modal masses (i.e. 1) 

 

 

3. THE ESTIMATION OF THE FRF AT SELECTED FREQUANCY VALUES 

In point 3 of the numbered list in Section 2, it was mentioned that it is necessary to estimate one or 

more FRFs at the excitation frequencies when carrying out the mono-harmonic test. To estimate the 

FRF, it is necessary to estimate the complex amplitude of the of the exciting force and of the 

structural response. These complex amplitudes have been estimated in two different ways in this 

work. One approach is the sine fit in the time domain, while the other is the use of the Fourier 

transform (thus, in the frequency domain). 



The former technique has been widely studied in the past. More specifically, closed formulations 

show that the complex amplitude estimation improves by increasing the number of samples used for 

the estimation itself [11,12].  

Something similar occurs when working in the frequency domain. Indeed, the harmonic signals do 

not change their amplitude increasing the acquisition time, while the random disturbance (e.g. 

electrical noise, response to traffic and wind) show a decrease of their amplitudes increasing the 

acquisition time [9] and thus decreasing the frequency resolution. This implies that the connect 

related to the harmonic components becomes more and more evident and easy to estimate when 

increasing the acquisition time. 

As mentioned, both the methods were applied, and they provided similar results. 

 

4. ADVANTAGES OF THE METHOD 

Once described the procedure behind the method proposed, it is possible to evidence its strengths and 

advantages. First, the signal processing approaches to be applied for deriving the FRFs when exciting 

the structure with mono-harmonic forces are simple (see Section 3). They can be both in the 

frequency and in the time domain, and it can be demonstrated that they work properly even with low 

signal-to-noise ratio (SNR), provided that the acquisition time of the input and output data is 

increased enough. Furthermore, since the method requires to excite the structure just at (or close to) 

resonances, small (and thus not expensive) actuators and easy set-ups can be used to obtain responses 

with enough SNR. According to the previous points, the forces that must be applied to the structure 

under analysis are low, compared to the techniques based on exogenous excitation usually adopted to 

scale OMA modes. In general, the procedure for performing the proposed method is much easier and 

cheaper compared to the other methods available in the literature. Furthermore, no models and 

assumptions on the structure/system are needed. In addition, the method is general and can be applied 

also in case that more than one excitation point is needed (e.g. because there are no points where all 

the modes to be scaled show a significant response). 

 

5. EXPERIMENTAL VALIDATION 

Different test campaigns were conducted in order to validate the proposed method. Here, an example 

is provided to evidence the reliability of the new approach. In this case, the dynamic tests were 

carried out on a staircase located at the Bovisa campus of Politecnico di Milano (see Figure 3). At 

first, an OMA was performed, evidencing that the first two modes of the structure are characterised 

by the following modal parameters: ω1 =7.84 Hz, ω2 =8.88 Hz, ξ1=0.22%, ξ2=0.39%. The first mode 

is a pure bending, while the second shows bending coupled to torsion. Then, the mono-harmonic tests 

were conducted according to the procedure described in Section 2. This allowed to estimate the modal 

masses. The OMA tests together with the mono-harmonic excitation tests thus allowed to estimate all 

the modal parameters for the first modes of the structure, making it possible to reconstruct the FRFs 

of the structure in the frequency range of these modes. These reconstructed FRFs were then compared 

to FRFs found experimentally by exciting the structure with a random force profile. This comparison, 

shown in Figure 4, highlights a good agreement, especially at the resonances, and confirms (as well as 

many other tests not shown here for the sake of conciseness) the reliability of the proposed method. 



 
 

Figure 3: The staircase used for the experimental tests 

 

 
 

Figure 4: FRF amplitudes for two different response locations (left and right) 
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