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In this article we deal with calibration and Monte Carlo simulation of the Wishart Stochastic Volatility
model. Despite the analytical tractability of the considered model, being of a�ne type, the implementation
of Wishart-based stochastic volatility models poses non-trivial challenges from a numerical point of view.
The goal of this article is to overcome these problems providing e�cient numerical schemes for Monte
Carlo simulations. Moreover, a fast and accurate calibration procedure is proposed.
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1. Introduction

A Wishart process is a matrix valued continuous time stochastic process with a marginal Wishart
distribution, i.e., a generalization to multiple dimensions of the chi-squared distribution, or, in the
case of non-integer degrees of freedom, of the gamma distribution. The introduction of Wishart-
based Stochastic Volatility models in �nance is fully motivated by the need to describe the mul-
tidimensional structure of asset variances. There are, indeed, empirical evidences (see for example
Christo�ersen et al. (2009) and Cont and Da Fonseca (2002)) that the dynamics of the implied
volatility surface is driven by several factors. This causes the standard one-factor stochastic volatil-
ity models not to be �exible enough to consistently price plain vanilla options and forward volatility
sensitive derivatives (e.g. forward starting and cliquet options). It is well accepted that a multi-
factor approach would be necessary to take into account the variability of the skew. Further, the
pricing of derivatives written on more than a single underlying assets requires a sound modelling of
the multivariate dependence structure. A large part of existing literature considered vector-valued
stochastic processes to model the multidimensional stochastic evolution of asset(s) volatility. The
choice of Rd as state space for the volatility process, however, could lead to unsatisfactory depen-
dence structures among variance factors. This is particularly true if we restrict ourselves to the
case of a�ne processes. In the light of the above, it appears reasonable to consider more general
multidimensional processes: recently an increasing attention has been devoted to applications of
matrix-de�ned stochastic processes in derivatives pricing. In particular, stochastic processes de-
�ned on the cone of real positive semide�nite matrices S+

d (R) can be seen as natural candidates to
model the latent volatility factors.
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In our analysis we focus on the so-called Wishart processes introduced in Bru (1991) as a matrix
generalization of square-root processes. A remarkable feature is that the analytical tractability
is fully preserved since these processes belong to the class of a�ne processes. Given the strict
connection with the well-known CIR processes, Wishart processes have been used to de�ne multi-
factor (Da Fonseca et al. 2008) and multi-asset (Da Fonseca et al. 2007) extensions of the classic
Heston model.
Despite the analytical tractability, the implementation of Wishart-based stochastic volatility mod-

els poses non-trivial challenges from a numerical point of view. To overcome these numerical prob-
lems, we propose e�cient model approximations that alleviate the associated computational burden.
These approximation schemes permit us to introduce e�cient numerical schemes for Monte Carlo
simulations. More in details, as far as we know, the simulation schemes proposed in literature face
a severe trade-o� in terms of consistency and computational complexity. For example in Gauthier
and Possamaï (2012) several schemes are proposed as generalization of already existing schemes
for 1-factor models. While simple and easy to implement, they rely on parameters assumptions
hardly met in realistic market conditions. An exact simulation scheme is proposed in Kang and
Kang (2013): authors exploit the remarkable exact sampling method for the Wishart process de-
vised in Ahdida and Alfonsi (2013). Despite its accuracy, the approach is rather involved and time
consuming since it requires the computation of matrix-valued special functions to sample from the
conditional distribution of the log-price given the realization of the Wishart process. Our simula-
tion schemes embed the exact sampling scheme in Ahdida and Alfonsi (2013) and turn out to be
accurate and simple to implement.
Moreover, in this article we deal with the model calibration, highlighting the constraints that

need to be satis�ed in order to get a well-de�ned Wishart process and their impact on pricing
performances. In fact, as shown in Da Fonseca and Grasselli (2011), model calibration to market
data turns out to be a delicate task due to the high dimensionality of the optimization problem
to deal with. The issue is worsened by the fact that characteristic functions of log-asset prices,
even if known in closed formula, are computationally intensive since they involve the evaluation
of functions of matrix argument. As a consequence, standard calibration routines, that rely on
transform-based techniques to price vanilla options, are proven to be inadequate in realistic appli-
cations. Unfortunately, the existing approximations available in literature seem to deal just with
restrictive parameters settings (Gauthier and Possamaï 2011) or provide reliable results only for op-
tions with moneyness close to the at-the-money level (Da Fonseca and Grasselli 2011). By exploiting
the distributional properties of Wishart process, we construct e�cient model approximations that
mitigate the complexity of the calibration problem by replacing the Wishart-based characteristic
function with those of simpler a�ne models. More precisely, we show that both Heston (1993) and
the Bi-Heston of Christo�ersen et al. (2009) models may provide a reliable approximation of the
Wishart Stochastic Volatility model. We provide the analytical form of the gradient of calibration
problem objective function with respect to Wishart-based parameters allowing for a further reduc-
tion in the computational burden. This methodology extends the remarkable result provided in
Cui et al. (2017) where the gradient of a European call with respect to Heston model parameters
is derived explicitly. Additionally, a thorough analysis of calibration outputs is carried out. The
results, in line with other evidences in literature, show that optimal parameters do not satisfy the
conditions to have a well de�ned Wishart process. Enforcing such conditions could have a signi�-
cant impact on the pricing performance of these models. It seems, however, that the topic has not
been developed in literature so far. For the �rst time, then, we study the e�ects produced by such
constraints on the model induced implied volatility surfaces.
The article is organized as follows. In Section 2 we present the Wishart process and its basic

properties. Moreover, a new approximation of the process is presented, which is the starting point for
our main results. In Section 3 we deal with the Wishart Stochastic Volatility model, and we present
a fast and accurate calibration procedure, based on the approximation of the Wishart process with
a Bi-Heston process. Finally Section 4 presents two simulation schemes for the Wishart Stochastic
Volatility model: the Stochastic Integral Approximation, and the Gaussian Variable Approximation.
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2. De�nition of Wishart process and basic properties

Given the importance that Wishart process plays in the proposed framework, we start our work
with a brief review of its main properties.

Definition 1 (Wishart process) Let W (t) be a d × d Brownian motion (i.e. a matrix of d × d
independent scalar Brownian motions) and S+

d (R) the set of real d×d positive semide�nite matrices.
We de�ne the Wishart process as the solution on S+

d (R) of the following stochastic di�erential
equation (SDE):

dΣ(t) = (ΩΩ> +MΣ(t) + Σ(t)M>)dt+
√

Σ(t) dW (t)Q+Q> dW>(t)
√

Σ(t), (1)

Σ(0) = Σ0 ∈ S+
d (R),

with Ω, Q, M ∈Md(R) (the set of real d× d square matrices).1

In the most general framework we can think of each element of all matrices appearing in (1) to
be non null. In particular, in order to embed mean-reversion and stationarity, we consider matrix
M to have only eigenvalues with negative real part (Gnoatto and Grasselli 2014). Furthermore, we
relate the deterministic part of the drift in (1), ΩΩ>, to the expected long-term value of the process,
denoted with Σ∞, by means of the equation

−ΩΩ> = MΣ∞ + Σ∞M
>. (2)

From (1) and (2) we can easily sketch the close connection existing between Wishart and CIR pro-
cesses. Indeed, Wishart processes have been �rstly introduced in Bru (1991) as a multidimensional
extension of classic square root process: not surprisingly if we set d = 1 in (1), we end up with a
scalar CIR process de�ned by the SDE

dv(t) = κ(θ − v(t))dt+ η
√
v(t)dwv(t), v(0) = v0, (3)

with κ, θ, and η strictly positive parameters, v0 ≥ 0 and wv(t) a scalar Brownian motion.
A remarkable feature of Wishart process is that it entails a non-trivial dependence structure among
its elements. Indeed, it holds that

d [Σij(t),Σkl(t)] =
(
Σik(t)Q

∗
jl + Σil(t)Q

∗
jk + Σjk(t)Q

∗
il + Σjl(t)Q

∗
ik

)
dt, (4)

where the notation [·, ·] refers as usual to the quadratic covariation of two stochastic processes and
Q∗ = Q>Q. As we will see in the following, this property constitutes an unicuum among the a�ne
generalizations of (3).

2.1. Existence and uniqueness conditions

Wishart processes are a particular case of a�ne processes de�ned on the cone S+
d (R) for which

general results about existence and uniqueness of solutions are provided in Cuchiero et al. (2011)
and Mayerhofer et al. (2011). We report the main result (as formulated in Ahdida and Alfonsi
(2013)) since it plays a crucial role in our framework.

1We further use the notation Σi,j(t) to indicate the element in the i-th row and j−th column of Σ(t). If the time dependence
is omitted, we assume to refer to time t = 0, i.e., Σi,j = Σi,j(0).
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Proposition 2.1 (A�ne models in S+
d (R) Cuchiero et al. (2011), Mayerhofer et al. (2011)) Let

X(t) be a generic a�ne process with continuous trajectories de�ned in S+
d (R) by the following SDE

X(t) = X(0) +

∫ t

0
(DX + L [X(s)]) ds+

∫ t

0

(√
X(s) dW (s) CX + C>X dW>(s)

√
X(s)

)
, (5)

where X(0), DX ∈ S+
d (R), CX ∈ Md(R), L : S+

d (R) → S+
d (R) is a linear transformation. Such

process admits a unique weak solution in S+
d (R) if

a) DX − (d− 1)C>XCX ∈ S
+
d (R),

b) ∀P1, P2 ∈ S+
d (R) s.t. Tr [P1P2] = 0 ⇒ Tr [L(P1)P2] ≥ 0, where Tr [·] is the trace of a square

matrix (i.e., the sum of the elements on the main diagonal).

If X(0) is in the set of real positive de�nite matrices S++
d (R) and condition a) is replaced by the

stronger requirement

c) DX − (d+ 1)C>XCX ∈ S
+
d (R),

then there exist a unique strong solution to (5) in S++
d (R).

A direct comparison shows that we can get the Wishart SDE (1) from (5) by setting DX = ΩΩ>,
CX = Q, and L [P0] = MP0 + P0M

>. Moreover, if we assume a more restrictive parametrization
for the deterministic part of the drift

ΩΩ> = βQ>Q, (6)

conditions a) and c) of Proposition 2.1 are satis�ed as soon as

β ≥ d− 1, (7)

and

β ≥ d+ 1, (8)

respectively, where the real positive parameter β plays the role of Feller's condition in the univariate
case. Additionally if condition a) is not met the whole process is not well de�ned.
For the rest of the paper we consider a Wishart process de�ned by (1) and (6) as usually done in
�nancial literature. A signi�cant constraint has thus to be imposed on parameter β. In the case
d = 2, for example, we must require β ≥ 1. As we are going to see, this condition is not usually met
when we perform a straight calibration of Wishart-based pricing models to market prices of plain
vanilla options.

2.2. Distribution of Wishart process and related results

In this section we present more insights about the analogy between Wishart and CIR (Cox et al.
1985) processes by formalizing some distributional features of the Wishart process.
Exploiting the a�ne nature of the Wishart process, we have that its characteristic function is an
exponential a�ne transformation of the initial state as shown in the following proposition:

Proposition 2.2 (Characteristic function of Wishart process) Let Λ be a real symmetric d × d
matrix, t ≥ 0 and T − t = τ > 0. The (conditional) characteristic function of the Wishart process
de�ned by (1) and (6) is

φΣ(Λ, τ) = E [exp (ιTr [ΛΣ(T )]) |Σ(t)] = exp (Tr [AΣ(Λ, τ)Σ(t)] + bΣ(Λ, τ)) , (9)
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where ι is the imaginary unit (i.e. ι =
√
−1) and matrix AΣ(Λ, τ) and scalar function bΣ(Λ, τ) are

such that

Tr [AΣ(Λ, τ)Σ(t)] = Tr
[
ιΛ (Id − 2ιΘ(τ)Λ)−1 Γ(τ)

]
,

bΣ(Λ, τ) = −β
2

Tr
[
log
(

(Id − 2ιΘ(τ)Λ) exp
(
τM>

))
− τM

]
.

The additional matrix functions appearing in the above equations are given by

Γ(τ) = exp(τM)Σ(t) exp(τM>),

Θ(τ) =

τ∫
0

exp (uM)Q>Q exp
(
uM>

)
du.

Proof. Due to a�nity, it is possible to show that AΣ(Λ, τ) is solution of a matrix Riccati ODE and
bΣ(Λ, τ) is obtained by direct integration. We refer to Grasselli and Tebaldi (2008) for a general
discussion of the solving technique and Ahdida and Alfonsi (2013) for the explicit derivation of
the result. Here we simply prove that the matrix G = (Id − 2ιΘ(τ)Λ) is invertible, i.e. det [G] 6= 0.
Matrix Θ(τ) is trivially positive semi-de�nite1 (since it is the integral of a positive semi-de�nite
matrix) and let HH> = Θ(τ). We then have

det [G] = det
[
Id − 2ιHH>Λ

]
= det

[
Id − 2ιH>ΛH

]
= det

[
Id − 2ιPDP>

]
= det [Id − 2ιD] ,

where the second equality is a direct application of the Sylvester's determinant identity and the third
follows from the spectral theorem with D the diagonal matrix whose entries are the eigenvalues of
the symmetric real matrix H>ΛH = PDP>. By recognizing that det [Id − 2ιD] is the characteristic
polynomial of the diagonal imaginary matrix 2ιD evaluated at 1 we immediately get the invertibility
of G.

As a consequence of the analytical tractability of Wishart process and of the knowledge of its
characteristic function, we are able to present an additional result regarding the distribution of the
trace of the Wishart process, i.e. the process V(t) = Tr [Σ(t)]. In Da Fonseca et al. (2008) it is
shown that via direct application of Itö's lemma the dynamics of V(t) is given by

dV(t) =
(

Tr
[
β Q>Q

]
+ 2 Tr [MΣ(t)]

)
dt+ 2 Tr

[√
Σ(t)dW (t)Q

]
. (10)

The following result, �rstly appeared in Kourouklis and Moschopoulos (1985) for a generic non-
central Wishart distribution, allows to express the trace of Wishart process as a weighted sum of d
independent non-central chi-square random variables:

Corollary 2.3 (Distribution of the Trace of Wishart process) Let V(t) be the sum of the elements
of the main diagonal of Σ(t) and χ2

ν(δ) be a non-central chi-square random variable with ν degrees
of freedom and non-centrality parameter δ. For a �xed T > t, let Q be the orthogonal matrix that
diagonalizes Θ(τ), that is Q>Θ(τ)Q = E = diag [ε1, ε2, ..., εd]. Then V(T ) admits the representation

V(T ) =

d∑
i=1

εi χ
2
β

(
ζi
εi

)
(11)

1Furthermore, in the following we assume it to be non singular.
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where ζi is the i-th diagonal element of Q>Γ(τ)Q.

Proof. We propose a new simple proof of the result by exploiting the characteristic function of the
Wishart process. We use the fact that exp (Tr [log(G)]) = det [G] for any matrix invertible matrix1

G to write

exp (bΣ(Λ, τ)) = det
[
(Id − 2iΘ(τ)Λ) exp

(
τM>

)]− β
2

exp

(
β

2
Tr [M ] τ

)
= det [Id − 2iΘ(τ)Λ]−

β

2 ,

and (9) becomes

φΣ(Λ, τ) = det [Id − 2ιΘ(τ)Λ]−
β

2 exp
(

Tr
[
ιΛ (Id − 2ιΘ(τ)Λ)−1 Γ(τ)

])
. (12)

Let λ be a real variable, then by setting ΛV = λId, the characteristic function of V(T ) is

φV(λ, τ) = φΣ(ΛV , τ) = det [Id − 2ιλΘ(τ)]−
β

2 exp
(
ιλTr

[
(Id − 2ιλΘ(τ))−1 Γ(τ)

])
= det

[
Id − 2ιλQEQ>

]− β
2

exp

(
ιλTr

[(
Id − 2ιλQEQ>

)−1
Γ(τ)

])
= det [Id − 2ιλE ]−

β

2 exp
(
ιλTr

[
Q>Γ(τ)Q (Id − 2ιλE)−1

])
=

d∏
i=1

(1− 2ιλεi)
− β

2 exp

(
ιλζi

1− 2ιλεi

)
(13)

where the last equality comes from the properties of determinant and trace.

From the knowledge of the characteristic function, we can also easily compute the (conditional)
moments2 of VT :

E [V(T )|Σ(t)] = Tr [Γ(τ) + βΘ(τ)] , (14)

Var [V(T )|Σ(t)] = 2 Tr [(2Γ(τ) + βΘ(τ)) Θ(τ)] , (15)

and so on, with higher moments that get more and more involved.
The representation (11) allows to consider V(T ) in terms of non-negative de�nite quadratic forms
in non-central normal variables (see for example Imhof (1961) and Kotz et al. (1967)) typically
arising in statistical applications. As we will see in the next section, it could be convenient to
dispose of some approximations for the distribution of V(T ). A feasible tool is proposed in Liu
et al. (2009) where the distribution of a non-negative quadratic form is approximated by means of
an a�ne transformation of a non-central chi-square random variable. The unknown parameters are
then chosen so that the �rst three cumulants of the quadratic form are matched and the di�erence
in kurtosis is minimized. In our case this means that

Pr [V(T ) > % |Σ(t)] ≈ Pr
[
α1χ

2
ν∗ (δ∗) + α0 > %

]
(16)

1Here we exploit the invertibility of (Id − 2iΘ(τ)Λ) exp
(
τM>

)
which is given by the invertibility of both G (proved in the

previous Proposition) and exp
(
τM>

)
(by de�nition of matrix exponential).

2Let X be a random variable with characteristic function function φX (λ) = E [exp(ιλX )], the computation relies on the

standard formula E [Xn] = ι−nφ
(n)
X (0). Additionally, we exploit the fact that for a matrix U = U(λ) it holds that d

dλ
det[U ] =

det[U ] Tr
[
U−1 dU

dλ

]
and dU−1

dλ
= −U−1 dU

dλ
U−1. We leave the details of the computation to the reader.
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where ν∗ and δ∗ are, respectively, the optimal degrees of freedom and non-centrality parameters

while α1 =
√

Var[V(T )|Σ(t)]
2(ν∗+2δ∗) and α0 = E [V(T )|Σ(t)]− α1 (ν∗ + δ∗).

2.3. A new approximation of V(t)

Even if appealing from a theoretical point of view, the approximation (16) turns out to be inadequate
in those cases in which V(t) describes the instantaneous variance of an asset returns. We here
develop an alternative approximation inspired by the idea to exploit a non-central chi-square random
variable to approximate V(T ). Instead of considering an a�ne transformation, however, we just use
a scaled non-central chi-square random variable with parameters �tted to match (14) and (15).
In other words, we aim at approximating V with a scalar CIR process as given in the following
proposition:

Proposition 2.4 (Moment-matching CIR process approximation of V(T )) Let v(t) be a CIR
process de�ned by (3). For a �xed T > t, v(t) is a 2-moment matching approximation of V(T )
provided that

v(t) = V(t), (17)

θ = Tr [Σ∞] > 0, (18)

κ = −1

τ
log

(
E [V(T )|Σ(t)]− θ
V(t)− θ

)
, (19)

η2 =
κVar [V(T )|Σ(t)]

a
(
(1− a)V(t) + a

2θ
) , (20)

with a = (1− exp(−κτ)) and provided that V(t) 6= θ. A su�cient condition for κ to be well-de�ned
(i.e to be a positive real number) is to have the matrix

F := MΣ(t) + Σ(t)M> + βQ>Q

(positive or negative) de�nite.

Proof. Given the distributional properties of CIR process, the process ṽ(t) with parameters (17)-
(20) has the same �rst two T -conditional moments of V(T ). Furthermore, given the stability1 of
M , we have that θ ≥ 0, with the equality that holds only in the degenerate case Q = 0d (the zero
matrix of order d). Indeed, for M stable, the solution of the Lyapunov equation (2) admits the
integral representation

Σ∞ = β

∞∫
0

exp (uM)Q>Q exp
(
uM>

)
du,

which is positive semide�nite and then its trace is non-negative. Additionally it is possible to show
that Tr [Σ∞] = 0 if and only if Q = 0d. To see this, let us write

θ = β Tr

 ∞∫
0

exp (uM)Q>Q exp
(
uM>

)
du

 = β Tr

Q>Q ∞∫
0

exp (uM) exp
(
uM>

)
du

 .
1A square matrix is called stable if all its eigenvalues have strictly negative real part.
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We now have to prove that θ is strictly positive. The claim follows2 by using the fact that θ is
the trace of the product of positive semi-de�nite matrix βQ>Q and the positive de�nite matrix∫∞

0 exp (uM) exp
(
uM>

)
du.

From (19) we see that κ ∈ R>0 as soon as 0 < E[V(T )|Σ(t)]−θ
V(t)−θ < 1, with 2 possible cases:

- if V(t)− θ > 0, it must hold θ < Tr [Γ(τ) + βΘ(τ)] < V(t),
- otherwise θ > Tr [Γ(τ) + βΘ(τ)] > V(t) ≥ 0.

In order for the condition to be ful�lled for any T > t, we can require the function

g : τ 7→ Tr [Γ(τ) + βΘ(τ)]

to be monotone in [0,∞). We indeed have that V(t) = Tr [Γ(0) + βΘ(0)] and θ =
limτ→+∞Tr [Γ(τ) + βΘ(τ)]. It is easy to check that E(τ) = E [Σ(T )|Σ(t)] = Γ(τ) + βΘ(τ) is
solution of the �rst order, linear inhomogeneous matrix ODE

Ė(τ) = ME(τ) + E(τ)M> + βQ>Q (21)

with E(0) = Σ(t). Di�erentiating (21) we obtain

Ë(τ) = MĖ(τ) + Ė(τ)M>

with initial condition Ė(0) = MΣ(t) + Σ(t)M> + βQ>Q = F . Following standard variation of
constants arguments, we have

Ė(τ) = exp(τM)F exp(τM>). (22)

This in turns means that the derivative of function g can be written as

d

dτ
g(τ) = Tr

[
Ė(τ)

]
= Tr

[
F exp(τM>) exp(τM)

]
. (23)

As shown in Wang et al. (1986), for any real symmetric matrix A and B ∈ S+
d (R), the following

inequality holds

ad Tr[B] ≤ Tr[AB] ≤ a1 Tr[B]

where ai is the i-th largest eigenvalue of A. Applying this result to (23) we get the su�cient condition
for the monotonicity of g(τ) in terms of de�niteness of F . We see, indeed, that if F is (positive or
negative) de�nite, the derivative of g is bounded to be always positive or negative - depending on
the sign of the eigenvalues of F - on the interval [0,∞).

Unfortunately, since we deal with traces of matrix products, obtaining sharp conditions for the
monotonicity of g is not an easy task. We are able just to provide the su�cient condition claimed,
based on the known (loose) bounds for the trace of the product of two matrices. However, for a wide
range of realistic parameter values we could have that κ is still well-de�ned even if the condition

2Speci�cally, there is no nilpotent matrix (i.e. with all the eigenvalues equal to zero), except the zero matrix, that can be
obtained as the product of 2 non-negative matrices. Moreover we exploit the fact that if A and B are two non-zero square
matrices such that AB = 0, then both A and B must be singular. Given that

∫∞
0 exp (uM) exp

(
uM>

)
du is positive de�nite

(indeed, it is the integral of a positive de�nite matrix), we get the result.
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Figure 1.: Left panel: g(τ) in the interval [0, 4] (solid line). It departs from Tr [Σ0] (dotted line) for
τ = 0 and converges towards θ (dashed line) as τ → +∞. Right panel: derivative of g(τ) (solid
line) and its bounds.

on F is not ful�lled. As an example, we consider the parameters set:

β = 1.1, Σ0 =

[
0.0298 0.0119
0.0119 0.0108

]
,

M =

[
−1.2479 −0.8985
−0.0820 −1.1433

]
, Q =

[
0.3417 0.3493
0.1848 0.3090

]
. (24)

The parameters are taken from Da Fonseca and Grasselli (2011) with the exception of β that we set
higher than 1 in order to deal with a well-de�ned Wishart process. Interestingly, this is the same set
used in Kang and Kang (2013). As shown in Figure 1, the function g(τ) is monotonic even if F is
inde�nite (its eigenvalues are 0.3106 and −0.0278). From the rightmost panel of Figure 1, it is also
evident that for short time frames, the bounds for the trace of Ė(τ) are not really tight. For d = 2,
this means that if the non-dominant eigenvalue has di�erent sign with respect to the dominant one
but its value is enough close to zero, the sign of the derivative of g(τ) is likely not to change.
We now deal with the distribution of the square root of V(T ) that can be used, as shown in the
next section, to model the stochastic volatility in a multi-factor extension of the Heston model.
It is possible to recover the probability density of

√
V(T ) by applying the formula

p√V(T )
(x) = 2x pV(T )

(
x2
)
∀x ∈ R≥0,

where the probability density function of V(T ), pV(T ), can be obtained via FFT or quadrature
methods from (13). In Figure 2 we also consider the distribution induced by the two approxima-
tions taken into account. It is worth noting that for the a�ne transformation approach, there is a
discontinuity at the point

√
α0 such that for lower values the probability density is zero: the far

left tail of the exact distribution is unattainable and compensated by a corresponding peak in a
(positive) neighborhood of the discontinuity. Our moment-matching approximation, on the other
hand, does not su�er from this drawback by construction (since it has no displacement term) and it
is still capable of reproducing the distributional properties of

√
V(T ). In particular, our approach

gives an accurate approximation in the right tail of the distribution (comparable to the alternative
a�ne approximation) while for intermediate values it fails in some extent in reproducing correctly
the peak in the exact distribution. Considering, however, that this is an approximation based simply
on the matching of the �rst 2 moments of V(T ), a lack of accuracy is somehow expected. Finally, we

9
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Figure 2.: Comparison among exact probability density function of
√
V(T ) (solid line), approxima-

tion via a�ne transformation of non-central chi-square random variables (16) (dashed line) and our
moment-matching approximation (dotted line) for di�erent time horizons.

want to stress that the approximation proposed in Proposition 2.4 is not meant to strictly describe
the distribution of V(T ) but rather to provide a simple and reliable tool to map the parameters
that drive the trace of Σ(t) to those of a simpler scalar CIR process. In the next section we use
such mapping to develop e�cient numerical techniques for models that use

√
V(t) to describe the

multi-factor dynamics of asset volatility. Since our main concern in this paper is the pricing of
contingent claims, from now on we assume to operate under a risk-neutral measure as de�ned in
the standard way.

3. The Wishart Stochastic Volatility Model and its calibration

In order to overcome inherent limitations of 1-factor SV models in describing the term structure of
volatility skew, as documented for example in Christo�ersen et al. (2009) and Cont and Da Fonseca
(2002), a matrix generalization of Heston model is proposed in Da Fonseca et al. (2008). This is
the Wishart Stochastic Volatility model (WSVM) where the dynamics of the forward-price of an
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equity asset is given by

df(t) = f(t) Tr
[√

Σ(t) dB(t)
]
, f(0) > 0, (25)

where B(t) is a d-dimensional matrix Brownian such that

B(t) = W (t)R> + Z(t)
√
Id −RR>, (26)

with Z(t) another matrix of Brownian motions independent of W (t) and R ∈ Md(R) that ful�lls
the condition Id − RR> ∈ S+

d (R). This correlation structure is required in order to preserve the
analytical tractability of the model: the WSVM so de�ned, indeed, belongs to the class of a�ne
models in the sense of Du�e et al. (2003).
From now on we consider the WSVM dynamics (25) with the underling assumption of d = 2. This
is the most common parametrization appeared in literature and constitutes an adequate balance
between parsimony and �exibility.
In the original paper Christo�ersen et al. (2009), the authors show that the WSVM can be expressed
in a scalar form that, as we are going to see, turns out to be extremely useful in our framework.
Before stating this result, we recall an auxiliary Lemma:

Lemma 3.1 (Lemma 4.6 in Mayerhofer et al. (2011)) Let X(t) be a continuous stochastic process
on S+

d (R) and let h : Md(R) → Md(R). Then there exists a scalar Brownian motion wh(t) such
that

Tr

 T∫
0

h(X(u))dW (u)

 =

T∫
0

√
Tr [h(X(u))>h(X(u))]dwh(u)

holds true.

Proposition 3.2 (Scalar version of WSVM dynamics) Let y(t) = log (f(t)) be the asset log-price,
then its dynamics in the WSVM can be written as

dy(t) = −1

2
V(t)dt+

√
V(t) db(t), (27)

dV(t) =
(

Tr
[
β Q>Q

]
+ 2 Tr [MΣ(t)]

)
dt+ 2

√
Tr [Σ(t)Q>Q] dw(t), (28)

where b(t) and w(t) are two scalar Brownian motions with stochastic correlation given by

ρW (t) =
Tr [RQΣ(t)]√

Tr [Σ(t)]
√

Tr [Q>QΣ(t)]
. (29)

Proof. See (Da Fonseca et al. 2008, Appendix A). Notice that standard Itö's lemma immediately
implies that

dy(t) = −1

2
V(t)dt+ Tr

[√
Σ(t) dB(t)

]
, (30)

and applying Lemma 3.1 we get

Tr
[√

Σ(t) dB(t)
]

=
√

Tr [Σ(t)] db(t) =
√
V(t) db(t).

11
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This result highlights also the appealing property that, in the WSVM framework, the correlation
between stock returns and volatility is stochastic.
An important peculiarity of WSVM is that, di�erently than other multifactor extensions of the
Heston model, like the Bi-Heston model in Christo�ersen et al. (2009), matrix speci�cation of
volatility factors allows to separately manage and calibrate implied volatility levels and skew thanks
to the presence of non null o�-diagonal elements in Σ0. Let us suppose to �x the elements on the
diagonal of Σ0 to match the term structure of implied volatility. We still have the possibility to �t
the skew thanks to the residual elements in Σ0. This is also con�rmed by the analysis performed in
Da Fonseca and Grasselli (2011) where the expansion of model implied volatility for short times to
maturity is found to be

σ2
imp = Tr [Σ0] +

Tr [RQΣ0]

Tr [Σ0]
mf

+
mf2

(Tr [Σ0])2

(
1

3
Tr
[
Q>QΣ0

]
+

1

3
Tr
[
RQ(Q>R> +RQ)Σ0

]
− 5

4

(Tr [RQΣ0])2

Tr [Σ0]

)
(31)

where mf = log K
f(t) denotes the log-forward moneyness. From (31), we can appreciate that the

o�-diagonal element Σ12 does not a�ect the level of the smile but it has a relevant impact on the
slope of implied volatility.

3.1. Connection with Heston and Bi-Heston model

In this section we study the relationship between WSVM and other (simpler) a�ne stochastic
volatility models, namely the Heston (1993) and Bi-Heston of Christo�ersen et al. (2009) ones.
The idea comes from the distributional properties of the trace of Wishart process and its role
in describing the asset volatility. This will turn out to be extremely useful in devising e�cient
calibration algorithms. In Section 2 we propose to approximate the conditional distribution of V(T )
by means of a scaled non-central χ2 random variable and we derive the (T -speci�c) parameters
of the corresponding CIR process. For a �xed time horizon T , then, the WSVM dynamics can be
approximated by the Heston one

df(t) = f(t)
√
v(t) db(t)

dv(t) = κ(θ − v(t))dt+ η
√
v(t)dw(t), v(0) = v0 ≥ 0

with parameters v0, κ, θ and η de�ned in Proposition 2.4 (here we assume t = 0). The asset-
volatility correlation is driven by a constant parameter ρ (in the sense that db(t)dw(t) = ρdt) that
we set as

ρ =
Tr [RQΣ0]√

Tr [Σ0]
√

Tr [Q>QΣ0]
, (32)

where the right-hand side of (32) is the initial value of the process ρW (t). This means that given
a WSVM parameters set πW and a time horizon T , we can construct a model approximation
by mapping WSVM parameters into Heston ones. In other words, we de�ne a function gH−W :
RNW × R>0 → R5 with NW the number of parameters in the chosen con�guration of WSVM,1

1For example, by considering M , Q and R to be full matrices we have
πW = [β,Σ11,Σ12,Σ22,M11,M12,M21,M22, Q11, Q12, Q21, Q22, R11, R12, R21, R22]> and NW = 16.
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such that gH−W (πW , T ) = πH = [v0, κ, θ, η, ρ]>. We refer to function gH−W as the WSVM-Heston
mapping.

From Corollary 2.3 we know that the asset variance in WSVM is described by a linear combination
of 2 independent non-central χ2 random variables. This is the same distributional assumption
underlying the Bi-Heston model proposed in Christo�ersen et al. (2009), where the asset dynamics
is the following:

df(t) = f(t)
(√

v1(t)db1(t) +
√
v2(t)db2(t)

)
dv1(t) = κ1 (θ1 − v1(t)) dt+ η1

√
v1(t)dw1(t), v1(0) = v0,1 ≥ 0

dv2(t) = κ2 (θ2 − v2(t)) dt+ η2

√
v2(t)dw2(t), v2(0) = v0,2 ≥ 0

with dbi(t)dwi(t) = ρidt for i = 1, 2 and all other correlation are equal to zero to preserve the a�nity
of the model. As shown in Christo�ersen et al. (2009), in this model the variance of log-asset price
is the sum of the 2 independent CIR processes

Var [d log(f(t))] = (v1(t) + v2(t)) dt = vBH(t)dt. (33)

Furthermore, the model presents a stochastic asset-variance correlation given by

Corr [d log(f(t)), dvBH(t)] =
η1ρ1v1(t) + η2ρ2v2(t)√

η2
1v1(t) + η2

2v2(t)
√
v1(t) + v2(t)

dt. (34)

In the lights of the analogy between (11) and (33), it could be interesting to �nd a suitable param-
eters set for the Bi-Heston model such that it represents a close approximation of WSVM.
For a �xed T > 0, we propose to approximate the WSVM dynamics (25) by means of a Bi-Heston
model whose CIR processes parameters are (for i = 1, 2)

v0,i = ṽi, (35)

κi = − 1

T
log

(
ζi
v0,i

)
, ηi = 2

√
εiκi

(1− e−κiT )
, θi =

βη2
i

4κi
, (36)

where ṽi and ζi are, respectively, the i-th diagonal elements of matrices Q>Σ0Q and Q>Γ(T )Q.
Parameters κi, θi, and ηi directly follow from the representation of the distribution of V(T ) as
formulated in Corollary 2.3. Reasonably, we set the initial values of variance processes (35) to be
equal to the diagonal elements of the matrix Q>Σ0Q, i.e. the matrix obtained applying the change
of basis that diagonalizes Θ(T ).
The choice of coe�cients ρi is the most problematic. Not only because we want to "map" the e�ect
of the 2× 2 matrix R into just 2 parameters, but also because there seems not to be an immediate
way to link (29) and (34). In Da Fonseca et al. (2008) it is shown that the covariation between Σi

and log-asset price y induced by the WSVM is d [y(t),Σi(t)] = 2
2∑

k,h=1

Σih(t)QkiRhkdt = 2DyΣi(t)dt.

A tempting solution could be, then, to set ρi as the stochastic correlation between Σi and y valued
at t = 0:

ρi =
DyΣi(0)√

Tr [Σ0]
√

Σi Q∗ii

where we make use of (4) to obtain d [Σi(t),Σi(t)] = 4Σi(t)Q
∗
iidt. However, extensive numerical
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Figure 3.: Implied variance smiles for the WSVM (Exact), the second-order expansion in Gauthier
and Possamaï (2011) (GP), our Bi-Heston (BH) and Heston (H) approximations. Left panel a = 0,
right panel a = −0.5.

experiments provide evidences in favour of the following alternative formulation

ρi =
DyΣi(0)

Σi

√
Q∗ii

. (37)

As done for the Heston model, we can de�ne the WSVM-BiHeston mapping gBH−W (πW , T ) =
πBH = [v0,1, κ1, θ1, η1, ρ1, v0,2, κ2, θ2, η2, ρ2]>.

We now want to test the approximations proposed and assess their accuracy. In the �rst numerical
experiment, we compare the performance of our new methodologies with the second-order price
expansion developed in Gauthier and Possamaï (2011). The parameters are those considered in
Gauthier and Possamaï (2011):

β = 4, Σ0 =

[
0.4 0
0 0.35

]
, M =

[
−1 0
0 −0.8

]
, Q =

[
0.3 0
0 0.2

]
, R = aI2

for two di�erent choices of a: 0 and −0.5. The constraint of R to be a multiple of the identity matrix
is, indeed, a strict requirement for the derivation of Theorem 1 in Gauthier and Possamaï (2011).
The results corresponding to T = 1 and r = 3% are shown in Figure 3. In the simple case of zero
asset-volatility correlation (leftmost panel), all the methodologies considered work extremely well
for any level of moneyness. Introducing a negative correlation, though, we notice a deterioration in
the accuracy of the second-order expansion for deep in-the-money options (rightmost panel). On
the other hand, the Heston and Bi-Heston approximations are still hardly distinguishable from the
true values. Another advantage of the new approaches proposed is their extreme simplicity: we just
need to price options in well-known a�ne models, while the formula in Gauthier and Possamaï
(2011) requires to compute several integrals of (products of) exponential and hyperbolic functions
of matrix argument. Additionally, if used to tackle the calibration problem, our techniques lead
to the explicit computation of the gradient of the objective function. This topic will be further
extended in the next section. Moving towards more challenging parametrizations, we investigate
the dataset (24) coupled with matrix

R =

[
−0.2243 −0.1244
−0.2545 −0.7230

]
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Figure 4.: Implied variance smiles for the WSVM (Exact), Bi-Heston (BH) and Heston (H) approx-
imations for di�erent time horizons.

as originally calibrated in Da Fonseca and Grasselli (2011). In this case, the approximation in Gau-
thier and Possamaï (2011) is no longer applicable since R 6= aI2. On the contrary, our methodologies
do not su�er from this limitation and we report the results in Figure 4 for di�erent time horizons. As
we consider longer maturities, not surprisingly, we experience a worsening in the accuracy of both
approximations. The (full) matrix structure of WSVM parameters is too complex to be entirely
captured. Notwithstanding, the smile generated by the Bi-Heston approach is still reasonably in
line with the WSVM values: in the worst-performing case (T = 2 years) the mean absolute error in
volatility terms over the range of moneyness [40%− 140%] is 0.9%.

3.2. Characteristic function and calibration to market prices

Given the a�nity of WSVM, it is possible to express the characteristic function of log-prices y(T )
as the exponential of an a�ne combination of state variables y(t) and Σ(t). In particular the closed
formula for the characteristic function is derived in Da Fonseca et al. (2008) where the resulting
matrix Riccati equation is solved via linearization technique. Without entering into technical details
(for which we refer the interested reader to the original paper (Da Fonseca et al. 2008)) we focus
our attention on the formula as presented in the following proposition.
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Proposition 3.3 (Characteristic function of log-price in WSVM (Da Fonseca et al. 2008)) Let
the log-forward price y(t) be described by (30) and λ be an auxiliary real variable (di�erent from
those used above). Then for T > t, the WSVM (conditional) characteristic function of y(T ) admits
the following closed formula representation

φWy (λ, τ) = E [exp (ιλy(T )) |y(t)] = exp (ιλy(t) + Tr [Ay(τ)Σ(t)] + by(τ)) , (38)

with the deterministic matrix Ay(τ) and the scalar function by(τ) given by

Ay(τ) = A22(τ)−1 A21(τ), by(τ) = −β
2

Tr
[
log(A22(τ)) + τ(M + ιλQ>R>)

]
,

and [
A11(τ) A12(τ)
A21(τ) A22(τ)

]
= exp

(
τ

[
M + ιλQ>R> −2Q>Q

ιλ(ιλ−1)
2 Id −(M + ιλQ>R>)>

])
.

Given the availability of a closed formula for the characteristic function of y(T ), we can price plain
vanilla options through e�cient numerical techniques. However, from a computational point of view,
a direct application of (30) for calibration purposes could turn out to be highly cumbersome. Firstly
because we are required to compute several functions of matrix argument each time, and secondly
because the corresponding optimization problem would present a multiplicity of local minima and
a strong dependence on the starting point. It is also important to point out that, as stated in
Da Fonseca and Grasselli (2011), the use of existing approximations (both in terms of price and
implied volatility) is likely to be restricted to narrow ranges around the at-the-money level. In the
light of the above, then, e�cient calibration of WSVM is still an open problem that could severely
limit the real-world application of the model.
To overcome such limitations, we propose a fast and accurate calibration procedure that relies on
the model approximations developed in Section 3.1. We start by illustrating the properties of the
optimization problem. Let C(K,T ) be the market price of a call option struck at K with maturity
in T years and CModel(π,K, T ) be the corresponding price obtained via the chosen model with
(model-speci�c) parameters set π. We formulate the calibration problem as an inverse problem of
the form

min
π∈RNπ

1

2
fobj (π) (39)

where Nπ is the dimension of the parameters set and fobj is the so-called objective function, i.e. the
metric that de�nes the distance between market and model values. Several speci�cations for fobj
can be used and it is well understood that they can lead to quite di�erent results. In our approach
we follow Da Fonseca and Grasselli (2011) and de�ne

fobj(π) =

Ns∑
s=1

(
CModel (π,Ks, Ts)− C (Ks, Ts)

ωs

)2

, (40)

that is, we consider the sum of the square weighted di�erence between model and market values
over a set of Ns quoted instruments. The weights ωs can be chosen in order to put more emphasis
on a certain subset of options (in terms, for example, of liquidity, moneyness or time to maturity).
In the following we consider ωs to be the inverse of (squared) Black-Scholes vega computed with
respect to the s-th market option price. This choice of weights put more emphasis on short dated
OTM options that otherwise would have almost no in�uence in the calibration procedure.
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De�ning the (weighted) residuals r̃s(π) =
(
CModel (π,Ks, Ts)− C (Ks, Ts)

)
/ωs, the calibration

problem can be written as

min
π∈RNπ

1

2
fobj (π) = min

π∈RNπ
1

2
r̃(π)>r̃(π) (41)

with r̃(π) ∈ RNs . Furthermore, let JModel(π) = ∇r̃(π)> ∈ RNπ×Ns be the Jacobian matrix of the
residuals vector r̃(π) with elements

jr,s =
∂

∂πr
r̃s(π) =

1

ωs

∂

∂πr
CModel (π,Ks, Ts) , (42)

then the gradient of the objective function is given by ∇fobj = JModel(π) r̃(π). Usually, for many
�nancial models the gradient of fobj is computed numerically by, for example, �nite di�erences,
thus requiring a large number of function evaluations. There is, however, a noticeable exception:
Cui et al. (2017) exploit an alternative representation of the Heston model characteristic function
to obtain the analytical gradient of the price of a vanilla option with respect to model parameters
(with our notation, this means that JH(πH) can be computed explicitly, where H stands for Heston
model). The resulting calibration algorithm is extremely fast and robust.
We propose to combine the algorithm in Cui et al. (2017) with the model approximations devel-
oped in section 3.1. In other words, we transform, by parameters mapping, the WSVM calibration
problem in a simpler one for which we are able to compute the gradient of the objective function in
closed formula. The resulting procedure has two inherent advantages from a computational point
of view: �rstly we replace the WSVM characteristic function with a less computational demanding
one; secondly we reduce the number of function evaluations (we do not need to approximate the
gradient via �nite di�erences). More importantly, by letting the exact gradient to drive the opti-
mization routine, we are able to rapidly identify a suitable parameters set in the (high dimensional)
search space.
We show how to compute the gradient of the objective function. Let us consider �rstly the WSVM-
Heston case: the (transformed or approximated) calibration problem can be written as

min
πW∈RNW

1

2
fobj (πW ) = min

πW∈RNW

1

2
r̃(gH−W (πW ))> r̃(gH−W (πW )),

where, for simplicity, we suppress the time dependency.1 By chain rule, we have that the Jacobian
matrix of residuals with respect to WSVM parameters is given by

JW (πW ) = JH−W (πW )JH(gH−W (πW )), (43)

where JH is known thanks to Cui et al. (2017). The matrix JH−W (πW ) = ∇gH−W (πW ) ∈ RNW×5

is the Jacobian matrix of function gH−W with respect to WSVM parameters, with elements

jH−Wq,r =
∂

∂πW,q
gH−Wr (πW ), (44)

that, as shown in Appendix A.2, can be computed in closed formula. Analogously to the general
case, �nally, it holds that ∇fobj = JW (πW )r̃(gH−W (πW )).

Straightforwardly, we can apply the same methodology in conjunction with the Bi-Heston approxi-
mation. In Appendix A.3 we show how to extend the approach in Cui et al. (2017) to compute the

1We remark, however, that the computation of function h must be performed for any maturity in the calibration basket.
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Table 1.: Calibration on February, 3 2016 with
the WSVM over a full set of DAX European call
options.

Parameter
β ≥ 0 β ≥ 1

1st step 2nd step 1st step 2nd step

β 0.3612 0.3287 1.0403 1.0405
Σ11 0.0639 0.0653 0.0789 0.0794
Σ12 0 0.0105 0.0056 0.0038
Σ22 0.0237 0.0213 0.0004 0.0003
M11 -0.9879 -1.0793 -0.6561 -0.7020
M12 0 -0.8468 0.0904 0.0893
M22 -1.3541 -1.4760 -0.9001 -0.9895
Q11 0.4639 0.4060 0.2647 0.2703
Q12 0 0.1623 -0.0220 -0.0198
Q21 0 0.4097 0.0351 0.0317
Q22 0.4590 0.4763 0.0976 0.0879
R11 -0.6618 -0.7280 -0.7267 -0.7056
R12 0 -0.1718 -0.0082 -0.0090
R21 0 0.6232 -0.0308 -0.0277
R22 -0.6272 -0.5645 -0.5881 -0.5293

Error Price 4.52E-06 2.45E-06 6.34E-06 3.19E-06
Error Vol 6.16E-05 2.85E-05 2.32E-04 2.14E-04
Time (s) 1.93 24.33 3.01 13.42

As in Da Fonseca and Grasselli (2011) Error Price stands for
the Mean Squared Error (MSE) in price normalized by the for-
ward price and Error Vol denotes the MSE in implied volatility.
The part β ≥ 0 shows calibrated parameters for the case with
no constraints on parameter β, while the part β ≥ 1 reports
values of parameters obtained imposing the condition of exis-
tence and uniqueness of a weak solution to SDE (1). Columns
�1st step� refer to intermediate results obtained via Bi-Heston
approximation, while columns �2nd step� report the �nal out-
put of calibration routine computed via WSVM characteristic
function.

gradient of Bi-Heston call options with respect to model parameters.2We then couple the matrix
JBH with the map gBH−W to write, as in the previous case:

JW (πW ) = JBH−W (πW )JBH(gBH−W (πW , T )), (45)

where, once more, JBH−W can be obtained in closed formula (see Appendix A.4).
In the light of the evidences shown in the previous section, we decide to implement the Bi-Heston

approximation when it comes to calibrate WSVM to market data. Nonetheless, we are con�dent that
both methodologies can be helpful in understanding the role of WSVM parameters and performing
models comparisons in the spirit of Da Fonseca and Grasselli (2011). We devise a 2 steps calibration
procedure: initially we make use of WSVM-BiHeston mapping to tackle the simpli�ed calibration
problem and obtain a robust guess of the optimal parameters. In the second step, we consider this
parameters set as the starting point of the standard calibration algorithm based on the pricing of
vanilla options via WSVM characteristic function (38). This can be interpreted as the ��ne-tuning�
phase in order to further improve the accuracy achieved. By starting from a robust initial guess,
we expect the algorithm to converge after few function evaluations. In this step, we implement the
so-called COS method (Fang and Oosterlee 2008). This approach basically exploits the relation
between the characteristic function and the coe�cients of the Fourier cosine series expansion of the
corresponding probability density function.
In Table 1 we test the proposed algorithm on the calibration of WSVM parameters to market prices
of 182 European call options written on DAX index as of February 3, 2016. We here consider matrix

2As far as we know, this is the �rst time that such a result is derived. It provides an e�cient tool to calibrate Bi-Heston
parameters to market data.
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Figure 5.: Calibration results for WSVM. Resulting value for parameter β is 0.3287. Implied volatil-
ity surface obtained with the set of calibrated parameters (left) and comparison with market implied
volatility for selected tenors (right).

M to be symmetric: this choice is motivated from the fact that the resulting WSVM model embeds
an higher degree of tractability. As shown in Gauthier and Possamaï (2011), for example, in this
setting it is possible to compute explicitly the expected value of integrated variance, thus opening
the way to consistent pricing of volatility derivatives.
Calibrated parameters are shown in Table 1 - case β > 0. As we can see, the Bi-Heston step takes
less than 2 seconds.1 It is worthwhile noting that the resulting parameters matrices are all diagonal.
This is, however, not the standard case. In the second step, the �ne-tuning e�ect is quite relevant:
the diagonal elements are very close to those found with the Bi-Heston mapping while the o�-
diagonal ones are set so that the accuracy is signi�cantly improved (both mean squared errors in
price and volatility terms are roughly halved). The e�ciency of the overall procedure can be also
inferred from the fact that the second step takes only 24.33 seconds. In comparison, the calibration
procedure fully based on the WSVM characteristic function would take roughly 250 seconds. Figure
5 shows results of calibration procedure in terms of corresponding implied volatility surface and
absolute error with respect to market values.
We see that apart from very short dated far from the money options the WSVM can �t the market

surface quite well. According to the evidences in Da Fonseca and Grasselli (2011) the resulting
value of parameter β is strictly lower than 1. In light of what we have shown in Proposition 2.1 the
conditions for the existence and uniqueness of solution to SDE (1) are consequently not satis�ed.
This is a crucial restriction speci�cally when we use calibrated WSVM to price derivatives for which
we need to rely on simulation methods (which is of course the main interest for a structuring team
dealing with realistic applications). Even if we use an unbiased (or yet exact) method to simulate
the Wishart process, we would not have any chance to consider the corresponding process as an
approximation of the original SDE (1).
If our goal is to use WSVM in a Monte Carlo framework, then, we need to impose at least condition
(7) that in the case d = 2 corresponds to β ≥ 1. We then perform the calibration of WSVM over
the same market set with the additional constraint on parameter β. As far as we know this is the
�rst attempt to deal with such a constrained problem in a real market context. Once more, we
implement the two steps procedure described above. The conclusions about the algorithm e�ciency
are the same: the combined approach signi�cantly reduces the computational time required: the
overall procedure takes now just 16 seconds. The mechanics is also very similar: the �rst step fastly

1The algorithms are implemented via Matlab code on a laptop PC with an Intel Core i7 CPU and 8 GB RAM.
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Figure 6.: Calibration results for WSVM when β ≥ 1. Resulting value for parameter β is 1.0405.
Implied volatility surface obtained with the set of calibrated parameters (left) and comparison with
market implied volatility for selected tenors (right).

produce a robust guess while the �nal step act as a targeted adjustment devoted to the enhancement
of calibration accuracy. Also in this case, indeed, the calibrated parameters are very close to the
outcomes of the �rst step. The output of the calibration routine is shown in Figure 6. By a direct
comparison with Figure 5 we can easily see that the additional constraint on parameter β has not
negligible impact. In particular the accuracy for short dated far-from-the-money options is quite
worsened.

4. New simulation schemes for the WSVM

In this section we propose two new simulation algorithms for the WSVM. The basic idea of our new
schemes is to exploit the exact simulation method for the Wishart process developed in Ahdida
and Alfonsi (2013) to sample the WSVM log-price process (25). From now on, indeed, we assume
to have a collection of N simulated trajectories of the Wishart process over the time grid 0 = t0 <
t1 < ... < tMT

= T obtained via the exact scheme in Ahdida and Alfonsi (2013). For simplicity, we
also consider a uniform time step ∆ = T/MT = tm+1− tm for m = 0, 1, ...,MT −1. The extension of
such a scheme to the WSVM case is not however a trivial task since there is not an immediate way
to reconstruct the correlation structure between the Wishart process and the asset price. We are not
able then to substitute (26) into (25). This is a direct consequence of how the sampling procedure
works: rather than simulating directly the desired Wishart process, the procedure is based on a
sort of "bottom-up" approach. Basically the in�nitesimal generator of a canonical Wishart process
is found to be given by the sum of commuting operators associated to simple SDEs. Then any
admissible Wishart process is linked to the canonical one through a law identity. This means that
we need to simulate just the SDEs whose generators are linked to the one of the canonical Wishart

process. As a consequence, we do not have a matrix of Gaussian variables Ŵ + used in (26) to
discretize the trajectory of the asset price.
A method to circumvent this problem is proposed in Kang and Kang (2013) where the Wishart
process is sampled exactly with the aforementioned technique and then the log-price is sampled from
the conditional distribution Fy(T )|Σ(T )(y; s) = Pr [y(T ) ≤ y|Σ(T ) = s] that is retrieved numerically
from the conditional characteristic function of y. However, even if formally correct, this approach
turns out to be unfeasible in our case and in general when the construction of an entire path of y
is needed. It requires, indeed, the evaluation of special functions of matrix argument at each step
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of the sampling scheme.
We instead start form the intuition that the dynamics of V(t) itself can be used to link (25) and
(1) in a proper way. Let us combine (27) and (29) to rewrite the scalar dynamics of y(t) as

dy(t) = −1

2
V(t)dt+

√
V(t)

(
ρW (t)dw(t) +

√
1− ρ2

W (t)dz(t)

)
(46)

with z(t) a scalar Brownian motion independent on w(t). This will be the starting point of the two
new simulation schemes we propose.

4.1. Stochastic Integral Approximation

For the �rst approach, that we call the Stochastic Integral Approximation (SIA) scheme, we focus
on the integral form of (46),

y(t+ ∆) = y(t)− 1

2

∫ t+∆

t
V(s)ds+

∫ t+∆

t
ρW (s)

√
V(s)dw(s)

+

∫ t+∆

t

√
(1− ρ2

W (s))V(s)dz(s). (47)

In the discretization of (47), the time integral that involves V can be approximated as in Andersen
(2008) by

∫ t+∆

t
V(s)ds ≈ ∆ (µ1V(t) + µ2V(t+ ∆))

where we can set, for example, µ1 = µ2 = 0.5. By Itö's isometry we also have

∫ t+∆

t

√
(1− ρ2

W (s))V(s)dz(s) ∼ N
(

0,

∫ t+∆

t
(1− ρ2

W (s))V(s)ds

)
(48)

where the variance of the Gaussian random variable can be approximated as above. The only
non-trivial term in (47) is the stochastic integral with respect to w. Unfortunately, there is no
possible way to formulate this integral in terms of the dynamics of V. This is due to the fact that
the stochastic component in (28) involves the trace of a matrix product of Σ(t) that cannot be
decomposed as the product of the traces. However we can make use of the CIR approximation we
devised in the previous section: if we write

dV(t) ≈ κ(θ − V(t))dt+ η
√
V(t)dw(t) (49)

with parameters κ, θ and η given in Proposition 2.4, we obtain

∫ t+∆

t

√
V(s)dw(s) ≈ 1

η

(
V(t+ ∆)− V(t)− κθ∆ + κ

∫ t+∆

t
V(s)ds

)
. (50)

Let V̂(t) and V̂(t + ∆) be the realizations of the trace of Wishart process for two adjacent time
points as sampled with the scheme devised in Ahdida and Alfonsi (2013), we propose the following
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Algorithm 1 The Stochastic Integral Approximation (SIA) scheme for the WSVM

1: Set T > 0, compute parameters κ, θ and η as in Proposition 2.4 conditionally on Σ
with τ = T

2: for each simulation trial n, n = 1, ..., N do

3: Initialize Σ̂(0) = Σ0

4: Initialize ŷ(0) = log (f(0))
5: for each time-step tm, m = 0, ...,MT − 1 do

6: Compute ρ̂W (tm) as given by (26)

7: Sample the Wishart process for a time step of ∆ with initial state Σ̂(tm)
using the scheme in Ahdida and Alfonsi (2013)

8: Compute ρ̂W (tm + ∆) as given by (26)
9: Compute coe�cients K0 (tm) , ...,K4 (tm) as in (53)-(57)
10: Draw ẑ ∼ N(0, 1)
11: Discretize (47) by means of (52)
12: end for

13: end for

discretization scheme for the log-price in WSVM:

ŷ(t+ ∆) = ŷ(t) +K0 (t) +K1 (t) V̂(t) +K2 (t) V̂(t+ ∆) (51)

+

√
K3 (t) V̂(t) +K4 (t) V̂(t+ ∆)ẑ (52)

with ẑ a random number sampled from a N(0, 1) and coe�cients

K0(t) = −κθ∆
η

ρ̂W (t), (53)

K1(t) = µ1∆

(
κ

η
ρ̂W (t)− 1

2

)
− ρ̂W (t)

η
, (54)

K2(t) = µ2∆

(
κ

η
ρ̂W (t)− 1

2

)
+
ρ̂W (t)

η
, (55)

K3(t) = µ1∆
(
1− ρ̂ 2

W (t)
)
, (56)

K4(t) = µ2∆
(
1− ρ̂ 2

W (t+ ∆)
)
, (57)

where we perform the freezing of ρW (s) to write

∫ t+∆

t
ρW (s)

√
V(s)dw(s) ≈ ρW (t)

∫ t+∆

t

√
V(s)dw(s). (58)

This can be justi�ed, as we will see, from the fact that the proposed scheme is mainly devoted to
sampling the trajectories of y over �ne time grids. The complete scheme is illustrated in Algorithm
1.

4.2. Gaussian Variable Approximation

We also present a simpler simulation technique, indicated as Gaussian Variable Approximation
(GVA) scheme, for the discretization of (46). Given a discrete trajectory of V, the Euler approxi-
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Algorithm 2 The Gaussian Variable Approximation (GVA) scheme for the WSVM

1: for each simulation trial n, n = 1, ..., N do

2: Initialize Σ̂(0) = Σ0

3: Initialize ŷ(0) = log (f(0))
4: for each time-step tm, m = 0, ...,MT − 1 do

5: Compute ρ̂W (tm) as given by (26)

6: Sample the Wishart process for a time step of ∆ with initial state Σ̂ (tm)
using the scheme in Ahdida and Alfonsi (2013)

7: Approximate the Gaussian random variable w̃ by means of (60)
8: Draw z̃ ∼ N(0,∆)
9: Discretize (46) by means of (59)
10: end for

11: end for

mation of (46) reads

ŷ(t+ ∆) = ŷ(t)− 1

2
V̂(t)∆ + ρ̂W (t)

√
V̂(t)w̃ +

√(
1− ρ̂ 2

W (t)
)
V̂(t)z̃ (59)

where w̃ is the Gaussian random variable that would drive the discretization of (28) and z̃ is a
Gaussian random variable with variance ∆ and independent on w̃. By exploiting the sampling
technique in Ahdida and Alfonsi (2013) to get Σ̂(t) and Σ̂(t + ∆), we can use (28) to obtain an
approximation of w̃. Indeed, it holds that

V̂(t+ ∆)− V̂(t) ≈
(

Tr
[
β Q>Q

]
+ 2 Tr

[
M Σ̂(t)

])
∆ + 2

√
Tr
[
Σ̂(t)Q>Q

]
w̃, (60)

from which we can easily retrieve the value of w̃. Finally we can plug w̃ into (59) to discretize the
path of y. The complete procedure is summarized in Algorithm 2.
The resulting scheme is easy to implement and well suited for any application that requires to

discretize the price process over a tiny time grid.1 The two schemes proposed share the remarkable
property that, thanks to the scalar representation, we can avoid the generation of d2− 1 additional
random variables for the dynamics of y with an evident reduction of complexity burden.

4.3. Numerical comparison

We perform extensive numerical tests using the set of calibrated parameters obtained imposing
β ≥ 1 and reported in the rightmost column of Table 1. The exercise considered is the pricing
of European call options with moneyness in the range {70%, 100%, 130%} and maturities varying
from 6 months up to 3 years. Additional data: spot price equal to 100 and r = q = 0. In Tables 2-4
we report the prices of European call options obtained with the new simulation schemes proposed
for the WSVM. We set the number of simulations to 2× 105 and we exploit the antithetic variates
as a variance reduction technique. Reference values are computed via COS method. The asterisk
means that the corresponding reference value lies outside of the 95% con�dence interval.
Despite the limited number of simulated trajectories, the proposed algorithms generate estimates

in strict accordance with true prices. The only noticeable inconsistencies concern the SIA scheme
for long-dated options (T = 3). We would like to stress that the SIA scheme exploits the CIR
approximation (49), therefore it is not an exact simulation scheme.

1As for example exotic options embedded in structured products with daily (or continuous) monitoring of underlying asset
price.
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Table 2.: SIA and GVA schemes, T = 0.5

Strike
Reference No. of MC Con�dence Interval

Error
Value time steps estimates (95%)

SIA

K = 70 30.6457

5 30.6724 30.6229 - 30.7218 0.09%
10 30.6646 30.6149 - 30.7142 0.06%
50 30.6662 30.6167 - 30.7158 0.07%
100 30.6590 30.6094 - 30.7086 0.04%

K = 100 7.1533

5 7.1378 7.1130 - 7.1626 -0.22%
10 7.1431 7.1182 - 7.1679 -0.14%
50 7.1468 7.1220 - 7.1716 -0.09%
100 7.1384 7.1135 - 7.1632 -0.21%

K = 130 0.1879

5 0.1934* 0.1885 - 0.1984 2.94%
10 0.1932* 0.1883 - 0.1982 2.83%
50 0.1928 0.1878 - 0.1976 2.63%
100 0.1902 0.1853 - 0.1951 1.22%

GVA

K = 70 30.6457

5 30.3723* 30.3245 - 30.4201 -0.89%
10 30.4949* 30.4460 - 30.5438 -0.49%
50 30.6256 30.5759 - 30.6752 -0.07%
100 30.6425 30.5928 - 30.6922 -0.01%

K = 100 7.1533

5 6.9397* 6.9149 - 6.9646 -2.99%
10 7.0432* 7.0182 - 7.0682 -1.54%
50 7.1290 7.1039 - 7.1541 -0.34%
100 7.1449 7.1198 - 7.1701 -0.12%

K = 130 0.1879

5 0.2211* 0.2158 - 0.2264 17.66%
10 0.2069* 0.2018 - 0.2119 10.09%
50 0.1955* 0.1906 - 0.2005 4.03%
100 0.1919 0.1869 - 0.1968 2.12%

Table 3.: SIA and GVA schemes, T = 1

Strike
Reference No. of MC Con�dence Interval

Error
Value time steps estimates (95%)

SIA

K = 70 31.7060

5 31.6804 31.6207 - 31.7401 -0.08%
10 31.6918 31.6319 - 31.7518 -0.04%
100 31.7411 31.6811 - 31.8011 0.11%
200 31.7176 31.6575 - 31.7776 0.04%

K = 100 9.5468

5 9.4650* 9.4318 - 9.4981 -0.86%
10 9.4833* 9.4499 - 9.5166 -0.67%
100 9.5265 9.4930 - 9.5598 -0.21%
200 9.5170 9.4835 - 9.5504 -0.31%

K = 130 0.8632

5 0.8633 0.8508 - 0.8756 0.01%
10 0.8600 0.8476 - 0.8724 -0.37%
100 0.8670 0.8546 - 0.8794 0.44%
200 0.8667 0.8542 - 0.8791 0.40%

GVA

K = 70 31.7060

5 31.0741* 31.0163 - 31.1319 -1.99%
10 31.4158* 31.3564 - 31.4753 -0.92%
100 31.6605 31.6000 - 31.7209 -0.14%
200 31.7077 31.6472 - 31.7682 0.01%

K = 100 9.5468

5 9.1286* 9.0950 - 9.1621 -4.38%
10 9.3591* 9.3252 - 9.3929 -1.97%
100 9.4983* 9.4644 - 9.5321 -0.51%
200 9.5413 9.5074 - 9.5751 -0.06%

K = 130 0.8632

5 0.9294* 0.9163 - 0.9425 7.66%
10 0.9113* 0.8984 - 0.9241 5.57%
100 0.8677 0.8553 - 0.8801 0.52%
200 0.8726 0.8602 - 0.8850 1.09%

By comparing the accuracy of the schemes, two facts clearly arise: when we consider coarse time
grids, the SIA scheme signi�cantly outperforms the GVA scheme. This is particularly true for shorter
time horizons (i.e., the 6 months and 1 year case). On the other hand, as we shrink the temporal
mesh size, the latter converges faster to the true price, especially for in-the-money and at-the-money
options. In the lights of these evidences, the choice of the optimal scheme should be made by taking
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Table 4.: SIA and GVA schemes, T = 3

Strike
Reference No. of MC Con�dence Interval

Error
Value time steps estimates (95%)

SIA

K = 70 34.8315

10 34.6550* 34.5661 - 34.7438 -0.51%
50 34.6935* 34.6042 - 34.7827 -0.40%
100 34.6752* 34.5858 - 34.7645 -0.45%
300 34.7400* 34.6505 - 34.8294 -0.26%

K = 100 15.5618

10 15.3455* 15.2837 - 15.4074 -1.39%
50 15.3723* 15.3103 - 15.4342 -1.22%
100 15.3645* 15.3026 - 15.4264 -1.27%
300 15.4141* 15.3521 - 15.4761 -0.95%

K = 130 5.0151

10 4.8924* 4.8531 - 4.9317 -2.45%
50 4.8928* 4.8538 - 4.9319 -2.44%
100 4.8828* 4.8439 - 4.9217 -2.64%
300 4.9053* 4.8663 - 4.9442 -2.19%

GVA

K = 70 34.8315

10 34.3504* 34.2595 - 34.4414 -1.38%
50 34.7785 34.6872 - 34.8697 -0.15%
100 34.7414 34.6502 - 34.8326 -0.26%
300 34.8476 34.7564 - 34.9387 0.05%

K = 100 15.5618

10 15.2894* 15.2255 - 15.3534 -1.75%
50 15.5349 15.4713 - 15.5986 -0.17%
100 15.5441 15.4809 - 15.6073 -0.11%
300 15.5508 15.4875 - 15.6141 -0.07%

K = 130 5.0151

10 5.0217 4.9814 - 5.0619 0.13%
50 5.0407 5.0009 - 5.0804 0.51%
100 4.9960 4.9567 - 5.0353 -0.38%
300 5.0144 4.9750 - 5.0538 -0.01%

Table 5.: Average computational time as func-
tion of the number of time steps.

Time steps 5 10 50 100 200 300

SIA (s) 1.02 1.96 10.45 21.01 42.24 63.77
GVA (s) 0.79 1.57 8.50 16.99 35.01 51.39

The number of simulated paths is �xed to 2× 105.

into account also the designated time framework (both in terms of overall horizon and step width).
From a computational point of view, both schemes allow to deal with the discretization of WSVM
asset price very e�ciently: as shown in Table 5, for example, we are able to simulate 2× 105 price
trajectories with a time step of T/100 in no more than 21 seconds.2 With such a time frame we
get an error lower than 1% in all but 4 cases. A comparison between the two rows of Table 5 also
reveals that the SIA scheme is, on average, 20%− 30% slower than the GVA one.
To conclude, both SIA and GVA schemes turn out to be e�cient, fast, and simple to implement.

Thanks to the underlying Wishart process sampling Ahdida and Alfonsi (2013), moreover, they do
not pose any restriction on variance process parameters. Therefore these simulation schemes can
be consider to price, as an example, European and exotic derivatives via Monte Carlo simulation
in the WSVM framework.

5. Concluding Remarks

The matrix structure of Wishart-based stochastic volatility models provides a remarkable degree
of �exibility in describing the evolution of asset(s) volatility. Realistic implementations, though,

2All tests have been carried out on a laptop PC with an Intel Core i7 CPU and 8 GB RAM. Algorithms are written in Matlab
code and then compiled as MEX �les to achieve better performances.
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require the development of speci�c numerical techniques in order to deal with the inherent level
of complexity. In this article we have shown, leveraging on a thorough analysis of distributional
properties of Wishart process, some possible solutions intended to make this class of model more
suitable for real market applications. Accordingly, we hope that our contribution will increase the
interest of researchers and practitioners towards matrix-variate stochastic volatility dynamics.
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Appendix A: Heston and Bi-Heston approximation of WSVM

In this section we present the auxiliary results needed to obtain the (semi-)analytic formulation of
the gradient of call option prices when the WSVM is approximated by the Heston or the Bi-Heston
model.

A.1. The Heston model case: the approach of Cui et al. Cui et al. (2017)

The characteristic function of log-asset in the Heston model with parameters set πH =
[v0, κ, θ, σ, ρ]> is known to be (as originally derived in Heston (1993))

φHy (λ, T ) = exp

(
ιλy(0) +

κθ

σ2

(
(eH + dH) T − 2 log

(
1− lH edHT

1− lH

))
+
v0

σ2
(eH + dH)

1− edHT

1− lH edHT

)
, (A1)

where we set, for simplicity, interest rates and dividends to zero. Further, we have y(0) = log (f(0))
and

eH = κ− σριλ, dH =
√
e2
H + σ2(λ2 + ιλ), lH =

eH + dH
eH − dH

. (A2)

In Cui et al. (2017), the authors show that (A1) can be written as

φHy (λ, T ) = exp

(
ιλy(0)− κθρ

σ
ιλT − v0A+

2κθ

σ2
D

)
(A3)

with

A =
A1

A2
, A1 = (λ2 + ιλ) sinh

(
dHT

2

)
, A2 = dH cosh

(
dHT

2

)
+ eT sinh

(
dH T

2

)
,

B =
dHe

κT

2

A2
, D = log (B) .

The main advantage of the new representation, apart from the improved stability and lack of discon-
tinuities with respect to alternative formulations, is that it is easily di�erentiable. In particular, it is
possible to compute (semi-)analitycally the derivatives of call options model prices CH(πH ,K, T )
with respect to model parameters. Let ∇CH(πH ,K, T ) be the gradient of CH(πH ,K, T ) with
respect to πH , then the following holds

∇CH(πH ,K, T ) =
1

π

(∫ ∞
0
<
(
K−ιλ

ιλ
∇φHy (λ− ι, T )

)
dλ−K

∫ ∞
0
<
(
K−ιλ

ιλ
∇φHy (λ, T )

)
dλ

)
(A4)
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where ∇φHy (λ, T ) = φHy (λ, T )h(λ), h(λ) = [h1(λ), ..., h5(λ)]> with elements

h1(λ) = −A, (A5)

h2(λ) =
v0

σιλ

∂A

∂ρ
+

2θ

σ2
D +

2κθ

σ2B

∂B

∂κ
− θριλT

σ
, (A6)

h3(λ) =
2κ

σ2
D − κριλT

σ
, (A7)

h4(λ) = −v0
∂A

∂σ
− 4κθ

σ3
D +

2κθ

σ2dH

(
∂dH
∂σ
− dH
A2

∂A2

∂σ

)
+
κθριλT

σ2
, (A8)

h5(λ) = −v0
∂A

∂ρ
+

2κθ

σ2dH

(
∂dH
∂ρ
− dH
A2

∂A2

∂ρ

)
− κθιλT

σ
. (A9)

The derivatives appearing in (A5)-(A9) can be easily obtained from the de�nition of involved
quantities. We refer to the original paper (Cui et al. 2017) for their exact formulation.

A.2. Jacobian matrix of mapping between WSVM and Heston parameters

Let gH−W (πW , T ) be the mapping presented in Section 3.1 between the WSVM and Heston pa-
rameters. Without loss of generality we consider d = 2 and assume matrix M to be symmetric. For
a �xed T > 0 we have (from Proposition 2.4 and (32)):

v0 = Tr [Σ0] , θ = −β
2

Tr
[
M−1Q>Q

]
, κ = −1

τ
log

(
E [V(T )|Σ(t)]− θ
V(t)− θ

)
,

η =

√
Var [V(T )|Σ(t)]

a κ
(
(1− a)V(t) + a

2θ
) , ρ =

Tr [RQΣ0]√
Tr [Σ0]

√
Tr [Q>QΣ0]

,

where we simplify the formula for θ by exploiting the cyclic property of the trace, the symmetry of
M and the fact that 1

αM
−1eαsM is a primitive of eαsM .

We now show how to compute the elements of matrix JH−W (πW ) de�ned by (44). Firstly, we recall
a useful Lemma about the di�erentiation of matrix exponentials with respect to scalar parameters:

Lemma A.1 (Wilcox's formula (Wilcox 1967)) Let A = (αi,j) be a square matrix of arbitrary order
whose elements are functions of (at least) one scalar parameter p. It holds that

∂

∂p
exp(τA) =

∫ τ

0
exp((τ − u)A)A′p exp(uA)du (A10)

where A′p =
(
∂αi,j
∂p

)
.

From Van Loan (1978), we know that integrals like (A10) can be computed via matrix exponentia-

tion: let C be the block matrix C =
(
A A′p
0 A

)
and D = exp(τC) =

(
D1,1 D1,2

0 D2,2

)
, then integral in (A10)

is given by D1,2.

Let us now consider the matrices AW =
(
−M Q>Q

0 M>

)
and BW = exp(τAW ) =

(
B1,1 B1,2

0 B2,2

)
. From

Van Loan (1978), it holds that Γ(τ) = B>2,2 ΣB2,2 and Θ(τ) = B>2,2B1,2. For the q-th parameter in

πW we set CW =
(
AW

∂AW
∂πW,q

0 AW

)
and DW = exp(τCW ) =

(
DW

1,1 D
W
1,2

0 DW
2,2

)
, then from (A10) and Van Loan
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(1978), we have that

∂

∂p
exp(τAW ) = DW

1,2 =

 ∂B1,1

∂πW,q

∂B1,2

∂πW,q

0 ∂B2,2

∂πW,q

 . (A11)

Let ei,j = (1k=i,`=j)1≤k,`≤d for 1 ≤ i, j ≤ d form the standard basis ofMd(R). We can �nally write

∂Γ(τ)

∂Σi,j
= B>2,2 ei,j B2,2,

∂Γ(τ)

∂Mi,j
=
∂B>2,2
∂Mi,j

ΣB2,2 +B>2,2 Σ
∂B2,2

∂Mi,j
,

∂Θ(τ)

∂Mi,j
=
∂B>2,2
∂Mi,j

B1,2 +B>2,2
∂B>1,2
∂Mi,j

,
∂Θ(τ)

∂Qi,j
= B>2,2

∂B>1,2
∂Qi,j

,

since B>2,2 = exp(τM>).

Let δij be the Knonecker's delta, after some algebraic manipulations, the elements of JH−W (πW )
can be computed as follows:

∂v0

∂Σi,j
= δi,j ,

∂θ

∂β
= −1

2
Tr
[
M−1Q>Q

]
,

∂θ

∂Mi,j
=
β

2
Tr
[
M−1 ei,jM

−1Q>Q
]
,

∂θ

∂Qi,j
= −β

2
Tr
[
M−1

(
ej,iQ+Q> ei,j

)]
,
∂κ

∂β
= −

d0 Tr [Θ(τ)] + d1
∂θ
∂β

d0d2τ
,

∂κ

∂Σi,j
= −

d0 Tr
[
∂Γ(τ)
∂Σi,j

]
− d2 δij

d0d2τ
,

∂κ

∂Mi,j
= −

d0 Tr
[
∂Γ(τ)
∂Mi,j

+ β ∂Θ(τ)
∂Mi,j

]
+ d1

∂θ
∂Mi,j

d0d2τ
,

∂κ

∂Qi,j
= −

β d0 Tr
[
∂Θ(τ)
∂Qi,j

]
+ d1

∂θ
∂Qi,j

d0d2τ
,

∂η

∂β
=

2āTr
[
Θ2(τ)

]
−Var [V(T )|Σ(t)] ∂ā∂β
2ηā2

,
∂η

∂Σi,j
=

4āTr
[
∂Γ(τ)
∂Σi,j

Θ(τ)
]
−Var [V(T )|Σ(t)] ∂ā

∂Σi,j

2ηā2
,

∂η

∂Mi,j
=

4āTr
[
(Γ(τ) + βΘ(τ))∂Θ(τ)

∂Mi,j
+ Θ(τ)∂Γ(τ)

∂Mi,j

]
−Var [V(T )|Σ(t)] ∂ā

∂Mi,j

2ηā2
,

∂η

∂Qi,j
=

4āTr
[
(Γ(τ) + βΘ(τ))∂Θ(τ)

∂Qi,j

]
−Var [V(T )|Σ(t)] ∂ā

∂Qi,j

2ηā2
,

∂ρ

∂Σi,j
=

(
Tr [RQei,j ]

Tr [RQΣ]
−

Tr [Σ] Tr
[
Q>Qei,j

]
+ Tr

[
Q>QΣ

]
δi,j

2 Tr [Σ] Tr [Q>QΣ]

)
ρ,

∂ρ

∂Qi,j
=

Tr [Rei,jΣ]

Tr [Σ] Tr [Q>QΣ]
−

Tr [RQΣ] Tr
[
Q>ei,jΣ

]
√

Tr [Σ]

√
Tr [Q>QΣ]

3

∂ρ

∂Ri,j
=

Tr [ei,jQΣ]

Tr [RQΣ]
ρ,

with

d0 = V(0)− θ, d1 = E [V(T )|Σ]− V(0), d2 = E [V(T )|Σ]− θ, ā =
a
(
(1− a)V(t) + a

2θ
)

κ
.

All the missing elements of JH−W (πW ) are equal to zero.
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A.3. The Bi-Heston model case: new formulation of log-asset characteristic function

We now extend the approach in Cui et al. (2017) to the Bi-Heston model (Christo�ersen et al.

2009) with parameters πBH = [π1,π2]> and πi = [v0,i, κi, θi, σi, ρi] for i = 1, 2. We simply need to
recognize that the Bi-Heston characteristic function corresponds to

φBHy (λ, T ) = exp

(
ιλy(0) +

2∑
i=1

κiθi
σ2
i

(
(eH,i + dH,i)T − 2 log

(
1− lH,iedH,iT

1− lH,i

))
+

2∑
i=1

v0,i

σ2
i

(eH,i + dH,i)
1− edH,iT

1− lH,iedH,iT

)
(A12)

where the terms in (A12) are de�ned in (A2) provided that we use the corresponding i-th subset
πi. Similarly to the Heston model, then, we can write φBHy as following:

φBHy (λ, T ) = exp

(
ιλy(0)−

2∑
i=1

κiθiρi
σi

ιλT − v0,iAi +
2κiθi
σ2
i

Di

)
(A13)

where, once more, all the terms involved are de�ned as in the Heston case for a proper choice of πi.
The last step, namely the computation of ∇CBH(πBH ,K, T ), follows straightforwardly by noting
that each component of the summation in (A13) does not depend on subset πj for j 6= i. Following
Cui et al. (2017), we have

∇CBH(πBH ,K, T ) =
1

π

(∫ ∞
0
<
(
K−ιλ

ιλ
∇φBHy (λ− ι, T )

)
dλ

−K
∫ ∞

0
<
(
K−ιλ

ιλ
∇φBHy (λ, T )

)
dλ

)
(A14)

where ∇φBHy (λ, T ) = φBHy (λ, T )h(λ), h(λ) = [h1(λ),h2(λ)]>, with hi(λ) = [h1,i(λ), ..., h5,i(λ)]
de�ned in (A5)-(A9) for i = 1, 2.

A.4. Jacobian matrix of mapping between WSVM and Bi-Heston parameters

Let gBH−W (πW , T ) be the mapping presented in presented in Section 3.1 between the WSVM
and Bi-Heston parameters. Here we show how to compute explicitly the elements of matrix
JBH−W (πW ).
As done for the Heston case, we consider d = 2 and assume matrix M to be symmetric. For a
�xed T , Bi-Heston parameters are given in (35)-(37). Further, let Q be the orthogonal matrix that
diagonalizes Θ(T ), that is Q>Θ(T )Q = E = diag [ε1, ε2] with ε1 ≥ ε2 (i.e. with eigenvalues sorted
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in descending order). By direct computation the following holds for i, j, k = 1, 2:

∂ζi
∂Σj,k

= Tr

[
Q> ∂Γ(τ)

∂Σj,k
Q ei,i

]
,

∂ζi
∂Mj,k

= Tr

[(
∂Q>

∂Mj,k
Γ(τ)Q+Q> ∂Γ(τ)

∂Mj,k
Q+Q> Γ(τ)

∂Q
∂Mj,k

)
ei,i

]
,

∂ζi
∂Qj,k

= Tr

[(
∂Q>

∂Qj,k
Γ(τ)Q+Q> Γ(τ)

∂Q
∂Qj,k

)
ei,i

]
,

∂v0,i

∂Σj,k
= Tr

[
Q> ej,k Q ei,i

]
,

∂v0,i

∂Mj,k
= Tr

[(
∂Q>

∂Mj,k
Σ0 Q+Q> Σ0

∂Q
∂Mj,k

)
ei,i

]
,

∂v0,i

∂Qj,k
= Tr

[(
∂Q>

∂Qj,k
Σ0 Q+Q> Σ0

∂Q
∂Qj,k

)
ei,i

]
,

∂κi
∂Σj,k

=
1

t

(
1

v0,i

∂v0,i

∂Σj,k
− 1

ζi

∂ζi
∂Σj,k

)
,

∂κi
∂Mj,k

=
1

t

(
1

v0,i

∂v0,i

∂Mj,k
− 1

ζi

∂ζi
∂Mj,k

)
,

∂κi
∂Qj,k

=
1

t

(
1

v0,i

∂v0,i

∂Qj,k
− 1

ζi

∂ζi
∂Qj,k

)
,

∂ηi
∂Σj,k

=
ηi
(
1 + tκi − etκi

)
2κi (1− etκi)

∂κi
∂Σj,k

,

∂ηi
∂Mj,k

=
ηi
2

(
1

εi

∂εi
∂Mj,k

+

(
1

κi
+

t

1− etκi

)
∂κi
∂Mj,k

)
,

∂ηi
∂Qj,k

=
ηi
2

(
1

εi

∂εi
∂Qj,k

+

(
1

κi
+

t

1− etκi

)
∂κi
∂Qj,k

)
,

∂θi
∂Σj,k

=
θi
ηiκi

(
2κi

∂ηi
∂Σj,k

− ηi
∂κi
∂Σj,k

)
,
∂θi
∂β

=
θi
β
,

∂θi
∂Mj,k

=
θi
κiηi

(
2κi

∂ηi
∂Mj,k

− ηi
∂κi
∂Mi,j

)
,

∂θi
∂Qj,k

=
θi
κiηi

(
2κi

∂ηi
∂Qj,k

− ηi
∂κi
∂Qi,j

)
,

∂ρ1

∂Σ1,1
= −(Q1,1R2,1 +Q2,1R2,2) Σ1,2√

Q2
1,1 +Q2

2,1 Σ2
1,1

,
∂ρ2

∂Σ2,2
= −(Q1,2R1,1 +Q2,2R1,2) Σ1,2√

Q2
1,2 +Q2

2,2 Σ2
2,2

,

∂ρi
∂Σ1,2

=
Σi,i

Σ1,2

∂ρi
∂Σi,i

,
∂ρ1

∂Q1,1
=
Q2,1 (Q2,1 (R1,1Σ1,1 +R2,1Σ1,2)−Q1,1 (R1,2Σ1,1 +R2,2Σ1,2))(

Q2
1,1 +Q2

2,1

)3/2
Σ1,1

,

∂ρ1

∂Q2,1
=
Q1,1 (Q1,1 (R1,2Σ1,1 +R2,2Σ1,2)−Q2,1 (R1,1Σ1,1 +R2,1Σ1,2))(

Q2
1,1 +Q2

2,1

)3/2
Σ1,1

,

∂ρ2

∂Q1,2
=
Q2,2 (Q2,2 (R1,1Σ1,2 +R2,1Σ2,2)−Q1,2 (R1,2Σ1,2 +R2,2Σ2,2))(

Q2
1,2 +Q2

2,2

)3/2
Σ2,2

,

∂ρ2

∂Q2,2
=
Q1,2 (Q1,2 (R1,2Σ1,2 +R2,2Σ2,2)−Q2,2 (R1,1Σ1,2 +R2,1Σ2,2))(

Q2
1,2 +Q2

2,2

)3/2
Σ2,2

,
∂ρi
∂Rj,k

=
Qk,i Σi,j√

Q2
1,i +Q2

2,i Σi,i

.

For the sake of simplicity, we left unspeci�ed the derivatives of matrices E and Q with respect to
WSVM parameters. These quantities can be easily computed from the de�nition of the matrices
involved with the help of a computer algebra system like, for example, Mathematica. Even in this
case, missing elements of JBH−W (πW ) are equal to zero.
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