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Abstract We analyze the asset management problem when the manager is
remunerated through a scheme based on the performance of the fund with
respect to a benchmark and his/her choices are driven by a power utility
function. We show that it is not the asymmetric-fulcrum type feature of the
scheme that makes the difference in preventing excessive risk taking in case of
a poor performance. To prevent gambling when the performance deteriorates,
it is important not to provide a fixed fee to the asset manager, and that
remuneration is sensitive to a very poor relative performance as in the case of
a capital stake or of a management fee with flow funds. We provide empirical
evidence on the mutual fund industry showing excessive risk taking in case of a
very poor performance and limited risk taking in case of overperformance with
respect to the benchmark. These results agree with a remuneration scheme
including a fixed fee and a cap.
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1 Introduction

The performance of a fund with respect to a benchmark (relative perfor-
mance) affects the asset management through two different channels: the
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remuneration scheme of the manager, and the flow of funds which is typi-
cally a convex increasing function of the relative performance of the fund, see
[Sirri and Tufano(1998),Chevalier and Ellison(1997)]. In this paper we inves-
tigate how remuneration schemes based on the relative performance affect the
asset management of the fund providing incentives to take risk in excess with
respect to the benchmark.1 We contribute to the debate on asset managers’ re-
muneration which is centered on two main issues: asset- vs. performance-based
remuneration, asymmetric vs. fulcrum type fees.

To preserve tractability, we follow [Chen and Pennacchi(2009)] and we con-
sider a class of remuneration schemes designed as a nonlinear function of the
relative performance. The relative performance affects the remuneration either
directly, through a performance fee which depends on the relative performance
of the fund, or indirectly through the flow of funds in case of a remunera-
tion provided by a management fee multiplying the assets under management
(AUM). We provide conditions for unbounded excess risk taking when the
relative performance tends to zero (gambling) and we characterize the invest-
ment strategy as the structure of the relative performance scheme varies. Our
results suggest that the key point to prevent gambling is not the shape of
a performance-based remuneration scheme (asymmetric vs. fulcrum fee) but
rather the fact that manager’s remuneration is sensitive to the relative perfor-
mance in case of a very poor performance.

The possibility that a remuneration scheme may induce the asset manager
to take risk in excess is a highly debated issue (see, for instance, [Gordon and Baptista(2010)]
and references therein). The regulation of the mutual fund industry in US
constrains the remuneration scheme of asset managers to be of fulcrum type
(centered around an index with increases in fees for a performance above the
index matched by decreases in fees for a performance below the index) un-
der the assumption that an asymmetric convex remuneration scheme (call
option on the performance upside) would induce the manager to take risk
in excess. The claim was theoretically confirmed by two classical contributi-
ons: [Grinblatt and Titman(1989)], considering a risk neutral manager, and
[Carpenter(2000)], in case of a risk averse manager. In the latter, it is shown
that if the manager is remunerated through a call option then he/she tends
to take unbounded risk with respect to the benchmark when the performance
deteriorates significantly, whereas the tracking error is limited when the per-
formance is above the strike.

A second generation of contributions casts doubts on this conclusion. Con-
sidering a remuneration scheme that is a nonlinear function of the relative per-
formance, [Chen and Pennacchi(2009),Basak et al.(2007),Basak et al.(2008)] show
that a remuneration scheme with downside risk (non bounded from below pay,
liquidation risk, personal capital investment) may induce the asset manager to
take less risk (smaller tracking error) when the relative performance tends to

1 We concentrate our attention on a partial equilibrium analysis (we take the remune-
ration contract as given), for a general equilibrium/principal-agent analysis of the remu-
neration of the asset manager we refer among the others to [Admati and Pfledeirer(1997),
Das and Sundaram(2002),Lynch and Musto(1997),Ou-Yang(2003)].
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zero with risk shifting incentives in a finite range (when the performance of the
fund is below but not too far away from the benchmark).2 The result has been
confirmed by [Buraschi et al.(2014),Hodder and Jackwerth(2007),Dai and Sundaresan(2009)]
assuming an absolute performance remuneration scheme. Also the empirical
evidence is mixed: [Brown et al.(1996)] provide evidence that funds with poor
performance are also characterized by higher variance of returns, [Busse(2001),
Basak et al.(2007)] find no evidence. Finally, [Massa and Patgiri(2009)] show
that convexity induces the manager to take more risk.

As in [Chen and Pennacchi(2009)], we consider remuneration schemes that
include management/performance fees that are functions of the relative perfor-
mance of the fund. We analyze various types of schemes: linear, convex, collar,
convex-concave, concave-convex. We build upon a claim of [Basak et al.(2007)]:
considering a particular class of remuneration schemes, they suggest that ex-
cess risk taking over a finite range occurs when the manager always incurs
a penalty if the performance deteriorates and does not enjoy a fixed safety
net independent of the fund value. We show two main results. First of all,
considering a large class of remuneration schemes we qualify the above claim
showing that the manager takes limited risk in excess when the relative per-
formance of the fund tends to zero in case there is not a fixed fee and the
remuneration is sensitive to the relative performance in a neighborhood of the
origin. Second, differently from what is claimed by the regulation of mutual
funds and by [Grinblatt and Titman(1989)], there is no significant difference
between an asymmetric and a fulcrum type remuneration scheme with a fixed
fee when the performance is poor, as a matter of fact the manager always tends
to take risk in excess; however a difference is observed in case of a positive
performance: in the first case the optimal strategy converges to the Merton
solution, in the second case to the benchmark. Playing with the convexity and
the concavity of the remuneration scheme, we show different shapes of the
portfolio strategy, e.g. it can be either decreasing in the relative performance,
increasing and then decreasing or decreasing, increasing and then decreasing.
Note that these results hold true also considering an absolute performance fee
(independent on the benchmark) as analyzed in [Grinblatt and Titman(1989),
Carpenter(2000)].

We conclude our analysis with an empirical investigation on the mutual
funds industry. Remember that managers of mutual funds are usually remu-
nerated through a fixed fee and a management fee proportional to AUM, see
[Golec(2003)]. Coherently with our analysis, and differently from [Basak et al.(2007)],

2 In the above papers, the remuneration is a function of the relative performance either
through the flow of funds or directly through the remuneration scheme. In the first case,
[Basak et al.(2007)] assume that the manager is remunerated through a coefficient (manage-
ment fee) which applies to the AUM, the coefficient being a nonlinear function of the relative
performance of the fund with respect to the benchmark. Using our notation -introduced in
Section 2- the remuneration is of the form F (T )P (X(T )). See also [Nicolosi et al.(2017)].
[Chen and Pennacchi(2009)] directly consider that the AUM are a smooth concave incre-
asing function of the relative performance of the fund, see also [Cuoco and Kaniel(2011),
Koijen(2014)].
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we show that there is a tendency to gambling with excess risk taking when
the performance deteriorates significantly.

Our results show that unbounded (excess) risk taking does not occur when
the relative performance tends to zero, if two conditions are met: the asset
manager is not endowed with a fixed fee and the fee is sensitive to a very poor
relative performance. This result agrees with [Ross(2004)], where the Author
observes “to make agents more willing to take risks there should be more of
a focus on offering downside protection than on offering them upside poten-
tial”. Therefore, to prevent the manager to take risk in excess, a remuneration
scheme based on a management fee proportional to the AUM or on a stake of
the fund seems to perform better than a fixed fee and an incentive (symme-
tric or asymmetric) fee. Note that these results agree with empirical results
obtained in [Aragon and Nanda(2014),Golec and Starks(2004)].

The paper is organized as follows. In Section 2 we introduce our setting. In
Section 3 we analyze several different relative performance remuneration sche-
mes, we derive the optimal portfolio solutions in closed form, and we compare
the portfolio strategies. Finally, in Section 4 we present an empirical analysis
on US equity mutual funds. All the proofs are postponed to the appendix.

2 The model

We consider a continuous time economy. There are two assets: the risk-free
asset with a constant instantaneous interest rate r and a risky asset. The risky
asset price S(t) evolves as

dS(t) = S(t) (µdt+ σdZ(t)) , S(0) = S0 > 0, (1)

where µ is the constant drift of the risky asset price, σ is the constant volatility,
and Z(t) is a one-dimensional Brownian motion on a complete probability
space (Ω,F , P ). We denote by F = Ft the P -augmentation of the filtration
generated by Z(t).

The manager is remunerated evaluating his/her performance against a ben-
chmark Y (t) which is a portfolio with a fraction β invested in the stock market
and (1− β) in the risk-free asset:

dY (t) = [(1− β)r + βµ]Y (t)dt+ βσY (t)dZ(t), Y (0) = Y0 > 0.

Given an adapted portfolio process θ(t), the performance of the fund is

dF (t) = [(1− θ(t))r + θ(t)µ]F (t)dt+ θ(t)σF (t)dZ(t), F (0) = F0 > 0;

we assume F0 = Y0. To have a well-defined problem, we require∫ T

0

(θ(t)F (t))
2
dt < +∞ for any T > 0.
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We consider the relative performance of the fund with respect to the ben-
chmark

X(t) :=
F (t)

Y (t)
,

which evolves as

dX(t) = X(t)
[
δ(t)(µ− r − σ2β)dt+ δ(t)σdZ(t)

]
, X(0) = 1, (2)

with δ(t) = θ(t)− β denoting the tracking error.

In the following we assume that the remuneration of the manager is defined
over a finite horizon T and that it depends on the terminal relative performance

X(T ) := F (T )
Y (T ) . The manager defines the investment strategy θ(t) in order to

maximize the expected utility of the remuneration. The utility function is of
power type, i.e.

u(x) =
xa

a
, a < 1.

Note that 1− a represents the coefficient of relative risk aversion. The remu-
neration at time T of the asset manager depends on the scheme which is a
function of the relative performance at time T : P (X(T )).

3 Relative Performance Remuneration Schemes

We consider several types of remuneration schemes: linear, convex, collar,
convex-concave, concave-convex. In detail we have the following schemes:

1. Linear: P (X(T )) = K + mX(T ), K ≥ 0, m > 0. The case K = 0 cor-
responds to a remuneration which linearly depends only on the relative
performance of the fund with respect to the benchmark and m represents
the sensitivity of the remuneration to the extra performance with respect
to the benchmark. K represents the fixed fee.

2. Convex (or incentive, or call option): P (X(T )) = K+(X(T )−1)+, K ≥ 0.
The manager receives a fixed fee (K) and a variable component only in case
the fund outperforms the benchmark at time T (X(T ) ≥ 1).

3. Collar type (or capped call option): P (X(T )) = K+(X(T )−1)+−(X(T )−
H)+, K ≥ 0, H > 1. The manager receives a fixed fee K and a variable
component if the performance of the fund outperforms the benchmark
(X(T ) > 1) with a cap at X(T ) = H > 1 (the maximum remuneration is
K +H− 1).

4. Convex-concave: P (X(T )) = K + mX(T ) + p(X(T ) − 1)+ − c(X(T ) −
H)+, K, p, c ≥ 0, m > 0, m+p−c > 0, H > 1. The scheme is a combination
of the linear and of the collar one. It is piecewise linear, the sensitivity of
remuneration to the relative performance is low for a poor and for an
outstanding performance compared to an intermediate performance (1 ≤
X(T ) ≤ H).
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Fig. 1 Remuneration schemes

5. Concave-convex: P (X(T )) = K + mX(T ) + p(X(T ) − H1)+ − c(H2 −
X(T ))+, K, p, c,m ≥ 0, min{m+ p,m+ c} > 0, H1 > H2 > 0, K − cH2 ≥
0. The scheme is specular to the convex-concave. It is piecewise linear,
the sensitivity of remuneration to the relative performance is high for a
poor and for an outstanding performance compared to an intermediate
performance.

The payoffs of the remuneration schemes are depicted in Figure 1. Note
that the last two schemes are similar to those analyzed in [Basak et al.(2007),
Basak et al.(2008)] but are not included in their framework. The analysis de-
veloped below holds true also in case the above remuneration schemes are
defined on the absolute performance F (T ).

3.1 Linear scheme

The manager aims at solving the following problem:

max
θ
E[u(K +mX(T ))],

for any admissible strategy θ(t), where the process (X(t))t≥0 is defined in
Equation (2). The above problem is related to the following value function

V (t, x) = max
δ
E [u(K +mX(T ))|X(t) = x] ,

where we maximize over the tracking error δ = θ − β. This problem can be
solved via the martingale technique, obtaining a closed form solution.

Theorem 1 Assuming K > 0, the optimal tracking error is

δ∗(t) =
ϑ

σ(1− a)

[
1 +

K

m

N(d1(t))

X∗(t)

]
, (3)

where X∗(t) denotes the optimal relative performance which evolves as

X∗(t) =
K

m

(
N ′(d1(t))

N ′(d2(t))
N(d2(t))−N(d1(t))

)
, (4)
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Fig. 2 Optimal tracking error δ∗ for the linear scheme. Parameters: T = 2; t = 1; µ−r=0.03;
σ = 0.2; a = 0.5; β = 0.25; m = 1; K = 1.

with

ϑ =
µ− r − σ2β

σ
,

and N(·) being the standard cumulative normal distribution (all the other coef-
ficients are defined in the appendix).

Figure 2 (right) shows the optimal strategy varying K.
If K = 0, we go back to the classical Merton problem with terminal utility,

and we obtain the constant optimal tracking error (Merton solution):

δ∗ =
µ− r − βσ2

(1− a)σ2
, (5)

i.e. Equation (3) with K = 0. We observe that in case µ− r − βσ2 > 0 (< 0)
the optimal investment strategy θ∗ = β + δ∗ is overinvested (underinvested)
in the risky asset with respect to the benchmark. In what follows, we always
assume parameter values such that µ− r − βσ2 > 0.

A fixed fee K > 0 induces the manager to take excess (unbounded) risk
when the relative performance of the fund deteriorates: the investment strategy
is decreasing in X, it becomes unbounded as X → 0, with the same sign as
µ − r − βσ2, and the tracking error converges to the one obtained for K = 0
(δ∗ = ϑ/(σ(1−a))) as X →∞. As K increases, the tracking error increases, i.e.
a higher floor induces the manager to take more risk. Figure 2 (left) shows the
optimal strategies varying a: the tracking error δ∗ explodes as the manager’s
risk tolerance increases (a → 1) and it converges to zero in case risk aversion
increases (a→ −∞), the result agrees with the analysis in [Koijen(2014)].

3.2 Convex scheme

As in [Grinblatt and Titman(1989)] and [Carpenter(2000)], we assume that
the manager receives a fixed fee (K) and a variable component only in case
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Fig. 3 Optimal tracking error δ∗ for the linear, convex (option type) and capped (collar
type) scheme. Parameters: T = 2; t = 1; µ − r=0.03; σ = 0.2; a = 0.5; β = 0.25. For the
linear scheme we set m = 1, K = 0. For the other schemes we set K = 0 (left), K = 0.2
(right), H = 4.

the fund performance outperforms the benchmark at time T (X(T ) ≥ 1). We
model this component through a call option on X(T ) with strike price 1.

The asset manager aims at solving the following problem

max
θ
E[u((X(T )− 1)+ +K)],

subject to (2). Notice that K ≥ 0, however, the additional condition a ∈
(0, 1) is required if K = 0. The problem is similar to the one analyzed in
[Carpenter(2000)] and the following result holds true.

Theorem 2 The optimal tracking error is

δ∗(t) =
ϑ

σX∗(t)

[
X∗(t)

1− a
+
x̂N ′(d1(t))

|ϑ|
√
T − t

− (1−K)
N(d1(t))

1− a

]
, (6)

where

X∗(t) = (1−K)N(d1(t)) + (x̂− 1 +K)
N ′(d1(t))

N ′(d2(t))
N(d2(t)) (7)

(all the other coefficients are defined in the appendix).

The optimal tracking error is depicted in Figures 3 and 4 (dotted curve)
and is similar to the one obtained in [Carpenter(2000)]. Notice that as X → 0,
|δ∗| converges to infinity with a sign in agreement with the one of µ− r−βσ2.
On the other hand, for large values of X the optimal strategy approaches
the constant strategy obtained in case of a linear scheme with K = 0. The
rationale of this shape is that for X large enough the remuneration is well
approximated by the linear scheme (m = 1, K = 0). Confirming what we have
observed for the linear case, in Figure 3 we show that the higher is the fixed
fee K the higher is the risk exposure. Risk exposure is also decreasing in risk
aversion, see Figure 4.
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Fig. 4 Optimal tracking error δ∗ for the linear, convex (option type) and capped (collar
type) scheme. Parameters: T = 2; t = 1; µ − r=0.03; σ = 0.2; β = 0.25; a = 0.5 (left),
a = −0.5 (right). For the linear scheme we set m = 1, K = 0. For the other schemes we set
K = 0.3, H = 4.

3.3 Collar type scheme

We follow [Grinblatt and Titman(1989)] considering a collar type remunera-
tion scheme as the simplest fulcrum fee. The manager aims at solving the
following problem

max
θ
E[u((X(T )− 1)+ − (X(T )−H)+ +K)],

subject to (2), assuming H > 1. Without loss of generality, we assume a
hurdle at 1. Again, the additional condition a ∈ (0, 1) is required if K = 0.
The following result holds true.

Theorem 3 Assume H > x̂ > 1, then, for any t ∈ (0, T ] such that

max
s∈[0,t)

X∗(s) < H, (8)

the optimal tracking error is

δ∗(t)=
ϑ

σX∗(t)

[
X∗(t)

1− a
+
x̂N ′(d3(t))

|ϑ|
√
T−t

−(1−K)
N(d3(t))

1− a
−(H−1+K)

N(d1(t))

1− a

]
,

where

X∗(t) = (1−K)N(d3(t)) + (x̂−1+K)
N ′(d3(t))

N ′(d4(t))
N(d4(t))

+ (H−1+K)

[
N(d1(t))−N

′(d1(t))

N ′(d2(t))
N(d2(t))

]
(9)

(all coefficients are defined in the appendix).
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Condition (8) is due to the fact that if there exists a time instant t ∈ [0, T ]
such that X∗(t) = H, then the optimal strategy is trivial: for any s ∈ [t, T ],
X∗(s) = H, δ∗(s) = 0.

In Figures 3 and 4 we plot the optimal tracking error δ∗ considering the
three remuneration schemes analyzed above. Note that the optimal tracking
errors for the convex and for the collar type remuneration scheme are similar in
case of a poor performance (flat fee) and in the interval with a remuneration
linear in the relative performance (1 ≤ X∗(t) ≤ H): the shape is decrea-
sing with unlimited exposure in case the relative performance approaches 0.
Instead, they look different when the cap is reached: the optimal strategy for
a collar scheme exhibits a zero tracking error, the optimal strategy for a call
option converges to the one obtained in case of a linear scheme. The ratio-
nale is very simple: if the manager reaches the cap to its remuneration, then
he/she sticks to the benchmark. As for a convex scheme, in case of a collar type
scheme risk exposure goes up with the safety net K and as the risk aversion
decreases.

Although the relative performance remuneration scheme is similar to the
one considered in [Basak et al.(2007)], the optimal strategy looks quite dif-
ferent. In [Basak et al.(2007)] the expected utility is a function of the AUM
that are obtained by multiplying (according to our notation) P (X(T )) by
F (T ) (asset-based fee). In that framework, excess risk taking is observed over
a finite range, there is no unlimited risk exposure in case of a very poor per-
formance, and when the relative performance reaches the cap the optimal
strategy tends to the Merton solution. The fact that the nonlinear relative
performance function multiplies the funds (linear term) drives the results: in
[Basak et al.(2007)] the remuneration is always sensitive to the fund perfor-
mance, whereas in our setting it is flat in case of a poor and of an outstanding
performance.

We can conclude that when a fulcrum type remuneration scheme of the rela-
tive performance is considered there is an incentive to gambling in a neighbor-
hood of the origin. This result is at odds with the analysis of [Grinblatt and Titman(1989)]
and with the insights of the regulation of the mutual fund industry.

3.4 Convex-concave scheme

We assume that the manager aims at solving the following problem

max
θ
E[u((X(T )− 1)+ − (X(T )−H)+ +mX(T ) +K)],

subject to (2). Without loss of generality we have set p = c = 1. Note that
remuneration is piecewise linear in the relative performance and the sensitivity
of the remuneration is m for X(T ) < 1 and for X(T ) > H and is m + 1 for
1 < X(T ) < H,3 i.e. sensitivity is higher just above the benchmark. Note

3 In the general case, the sensitivity of the remuneration is m for X(T ) < 1, m+ p− c for
X(T ) > H and is m+ p for 1 < X(T ) < H
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Fig. 5 Concavification. H = 5, a = K = 0.5, m = 0.4 (left), m = 1 (right)

that the shape of the remuneration scheme is convex and then concave in the
relative performance.

In order to obtain the unique concavification, two assumptions should be
considered. Notice that they can not be satisfied together.

Assumption 1 There exists x̂u ∈ (1,H] such that:

Ô U ′(x̂u) = U(x̂u)−U(0)
x̂u

;

Ô U(x) ≤ U(x̂u)−U(0)
x̂u

x+ U(0) for any x ∈ [0, x̂u];

being K > 0 if a is negative, i.e. U(0) is well-defined.

Assumption 2 There exist 0 < x̂d < 1 < x̂u ≤ H such that:

Ô U ′(x̂u) = U ′(x̂d) = U(x̂u)−U(x̂d)
x̂u−x̂d

;

Ô U(x) ≤ U(x̂u)−U(x̂d)
x̂u−x̂d

(x− x̂d) + U(x̂d) for any x ∈ [x̂d, x̂u].

The two assumptions are related to the two cases depicted in Figure 5.
The following results hold true.

Theorem 4 Let us assume that Assumption 1 holds true. Then the optimal
tracking error is

δ∗(t)=
ϑ

σX∗(t)

(
X∗(t)

1− a
+x̂u

N ′(d5(t))

|ϑ|
√
T−t

− 1−K
1+m

N(d5(t))−N(d3(t))

1− a

− HN(d3(t))−N(d1(t))

1− a
− 1−K−H

m

N(d1(t))

1− a

)
,

with

X∗(t)=
x̂u(1+m)+K−1

1 +m

N ′(d5(t))

N ′(d6(t))
N(d6(t))−H(1+m)+K−1

1 +m

N ′(d3(t))

N ′(d4(t))
N(d4(t))

+
1−K
1+m

(N(d5(t))−N(d3(t)))+H (N(d3(t))−N(d1(t)))

+
H(1+m)+K−1

m

N ′(d1(t))

N ′(d2(t))
N(d2(t))+

1−K−H
m

N(d1(t)) (10)

(all coefficients are defined in the appendix).
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Theorem 5 Let us assume that Assumption 2 holds true and K > 0. Then
the optimal tracking error is

δ∗(t)=
ϑ

σX∗(t)

(
X∗(t)

1− a
+(x̂u−x̂d)

N ′(d5(t))

|ϑ|
√
T−t

+
K

m

(N(d7(t))−N(d5(t)))

1− a

− 1−K
1+m

N(d5(t))−N(d3(t))

1− a
−HN(d3(t))−N(d1(t))

1− a
− 1−K−H

m

N(d1(t))

1− a

)
,

with

X∗(t)=
K

m

N ′(d7(t))

N ′(d8(t))
N(d8(t))−mx̂d+K

m

N ′(d5(t))

N ′(d6(t))
N(d6(t))−K

m
(N(d7(t))−N(d5(t)))

+
x̂u(1+m)+K−1

1 +m

N ′(d5(t))

N ′(d6(t))
N(d6(t))−H(1+m)+K−1

1 +m

N ′(d3(t))

N ′(d4(t))
N(d4(t))

+
1−K
1+m

(N(d5(t))−N(d3(t)))+H (N(d3(t))−N(d1(t)))

+
H(1+m)+K−1

m

N ′(d1(t))

N ′(d2(t))
N(d2(t))+

1−K−H
m

N(d1(t)) (11)

(all coefficients are defined in the appendix).

Remark 1 If K = 0, Theorem 5 holds true with Equation (11) replaced by

X∗(t) =
1

m

(
λξ(t)

m

)1/(a−1)

e
aϑ2

2(1−a)2
(T−t) − x̂d

N ′(d5(t))

N ′(d6(t))
N(d6(t))

+
x̂u(1 +m)− 1

1 +m

N ′(d5(t))

N ′(d6(t))
N(d6(t))− H(1 +m)− 1

1 +m

N ′(d3(t))

N ′(d4(t))
N(d4(t))

+
1

1 +m
(N(d5(t))−N(d3(t))) +H (N(d3(t))−N(d1(t)))

+
H(1 +m)− 1

m

N ′(d1(t))

N ′(d2(t))
N(d2(t)) +

1−H
m

N(d1(t)).

Notice that the above equation and Equation (11) are related, since

lim
K→0

K
N ′(d7(t))

N ′(d8(t))
N(d8(t)) =

(
λξ(t)

m

)1/(a−1)

e
aϑ2

2(1−a)2
(T−t)

.

In Figure 6 we plot the optimal tracking error for the collar and the convex-
concave scheme considering two different values of K. These figures highlight
the role of a linear component (m 6= 0), which is absent in the convex and
in the collar type scheme, and of a fixed floor (K ≥ 0). We recall that the
collar type fee corresponds to the convex-concave case with m = 0 and K ≥ 0.
We concentrate our attention on a performance smaller than H. If K > 0
and m 6= 0, for all set of parameters (including the cases p, c 6= 1), then the
optimal tracking error is decreasing in the performance and tends to become
unbounded as X → 0, yielding excessive risk taking. Instead, if K = 0 and
m 6= 0, then the optimal tracking error is hump shaped and converges to the
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Fig. 6 Optimal tracking error δ∗ for the collar and convex-concave remuneration scheme.
Parameters: T = 2; t = 1; µ − r=0.03; σ = 0.2; β = 0.25; H = 4; a = 0.5; K = 0.3 (left)
K = 0 (right).

Merton solution (5) as X → 0. Note that the analysis of the collar scheme
shows that the first shape of the optimal strategy is also obtained with K ≥ 0
and m = 0, instead the shape of the optimal strategy obtained for K = 0
and m 6= 0 is the one of [Basak et al.(2007)]. These results confirm that the
presence of a strictly positive safety net K > 0 induces the manager to take
unlimited risk when the relative performance tends to zero.

3.5 Concave-convex remuneration scheme

We consider the payoff analyzed in [Buraschi et al.(2014)] for an absolute per-
formance fee, moved to our framework: the manager aims at solving the follo-
wing problem

max
θ
E[u(p(X(T )−H1)+ +mX(T )− c(H2 −X(T ))+ +K)],

with H1 > H2 > 0 and K − cH2 ≥ 0. Again, in this case, two assumptions
should be considered.4

Assumption 3 There exists x̂u > H1 such that:

Ô U ′(x̂u) = U(x̂u)−U(0)
x̂u

;

Ô U(x) ≤ U(x̂u)−U(0)
x̂u

x+ U(0) for any x ∈ [0, x̂u],

being K − cH2 > 0 if a is negative, i.e. U(0) is well-defined.

Assumption 4 There exist 0 < x̂d < H2 < H1 < x̂u such that:

4 As an example, Assumption 3 holds true if a = −0.5; m = 0.02; K = 0.5; c = 0.02; H1 =
5; H2 = 3; p = 0.2. If K = 0.2 Assumption 4 holds true (other parameters as above).
Moreover, if K = 0.08 none of the two assumptions hold true: in this case a concavification
is still possible in the sense of Assumption 4, with x̂d = H2, and with a concavified utility
function with a first order derivative not well defined in H2 (see [Buraschi et al.(2014)] for
further details).
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Ô U ′(x̂u) = U ′(x̂d) = U(x̂u)−U(x̂d)
x̂u−x̂d

;

Ô U(x) ≤ U(x̂u)−U(x̂d)
x̂u−x̂d

(x− x̂d) + U(x̂d) for any x ∈ [x̂d, x̂u].

The following results hold true.

Theorem 6 Let us assume that Assumption 3 holds true. Then the optimal
tracking error is

δ∗(t)=
ϑ

σX∗(t)

(
X∗(t)

1− a
+
x̂uN

′(d1(t))

|ϑ|
√
T−t

− pH1−K
m+p

N(d1(t))

1− a

)
,

with

X∗(t)=
pH1−K
m+p

N(d1(t))+
x̂u(m+p)+K−pH1

m+ p

N ′(d1(t))

N ′(d2(t))
N(d2(t)) (12)

(all coefficients are defined in the appendix).

Theorem 7 Let us assume that Assumption 4 holds true and K − cH2 > 0.
Then the optimal tracking error is

δ∗(t)=
ϑ

σX∗(t)

(
(x̂u−x̂d)

N ′(d1(t))

|ϑ|
√
T−t

+
X∗(t)

1− a
− pH1−K

m+p

N(d1(t))

1− a
− cH2−K

m+c

N(d3(t))−N(d1(t))

1− a

)
,

with

X∗(t)=
x̂u(m+p)+K −pH1

m+p

N ′(d1(t))

N ′(d2(t))
N(d2(t)) +

pH1−K
m+p

N(d1(t))

+
1

m+c

(
(K−cH2)

N ′(d3(t))

N ′(d4(t))
N(d4(t))−((m+c)x̂d+K−cH2)

N ′(d1(t))

N ′(d2(t))
N(d2(t))

)
+
cH2−K
m+c

(N(d3(t))−N(d1(t))) (13)

(all coefficients are defined in the appendix).

Remark 2 If K = cH2, Theorem 7 holds true with Equation (13) replaced by

X∗(t)=
x̂u(m+ p)− pH1

m+ p

N ′(d1(t))

N ′(d2(t))
N(d2(t)) +

pH1

m+ p
N(d1(t))

+
1

m+c

((
λξ(t)

m+ c

) 1
a−1

e
aϑ2

2(1−a)2
(T−t)− ((m+c)x̂d−cH2)

N ′(d1(t))

N ′(d2(t))
N(d2(t))

)

+
cH2

m+c
(N(d3(t))−N(d1(t))) .
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Fig. 7 Optimal tracking error δ∗ for the concave-convex remuneration scheme, varying m
and H1. Parameters: T = 2; t = 1; µ− r=0.03; σ = 0.2; β = 0.25; a = 0.5; c = 0.02; H1 =
4; H2 = 1; p = 0.75; m = 0.3 and K = 0.2.

We start by assuming K − cH2 > 0. Note that this corresponds to the
hypothesis of a strictly positive floor. In Figure 7 we plot the optimal invest-
ment strategy varying m, H1, c and K. We would like to stress that Assump-
tion 3 holds true only in the first figure (up-left), whereas Assumption 4 is
satisfied in the other three cases. We observe that, as for the other remune-
ration schemes, the optimal tracking error converges to ∞ when the relative
performance converges to zero, whereas the strategy converges to the optimal
strategy obtained in the linear case for a relative performance high enough.
In the transition, the shape can be either decreasing or decreasing-increasing-
decreasing with a relative minimum and a relative maximum (hump shaped).

The non monotonic shape is due to the fact that the scheme is concave for
a low relative performance. If this feature plays a relevant role, then the asset
manager may take a limited risk exposure in case of a poor (but not extremely
poor) performance. This interpretation is confirmed by the comparative statics
analysis. If m or H1 are small enough, or K is large enough, then the optimal
strategy is decreasing as in the case of a convex scheme, otherwise the optimal
strategy exhibits a local minimum and a local maximum. The interpretation
is as follows. When the second kink at H1 inducing convexity is high enough,
we may observe a limited risk exposure for a poor performance (the concave
part of the scheme plays a role). As far as the fixed fee K is concerned, we
confirm that a large fixed fee induces the manager to take a significant risk
exposure and this effect is likely to induce a monotonic decreasing shape.
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Fig. 8 Optimal tracking error δ∗ for the concave-convex remuneration scheme. Parameters:
T = 2; t = 1; µ − r=0.03; σ = 0.2; β = 0.25; a = 0.5; c = 0.02; H1 = 4; H2 = 1; p = 0.75;
and K = cH2 (left), K = cH2 + 0.1 (right).

The shape of the optimal strategy changes significantly in case K−cH2 = 0
(zero floor). As shown in Figure 8, if the floor is null (left panel) then the
optimal strategy is characterized by excess risk taking over a finite interval
(hump shaped strategy); instead if there is a strictly positive floor to the
remuneration (right panel) then the asset manager takes an unlimited risk
exposure as the relative performance tends to zero.

4 Empirical Analysis

The above theoretical analysis provides us with a research question that is
worthwhile to investigate: Do relative performance remuneration schemes pro-
vide an incentive to take unbounded risk (gambling) when the relative perfor-
mance deteriorates (Hp0), as suggested by [Carpenter(2000)], or to take risk
in excess only over a finite range as suggested by [Basak et al.(2007)] (Hp1)?

We address this question analyzing the performance of mutual funds re-
plicating the analysis developed in [Basak et al.(2007)]. We focus our analysis
on US equity mutual funds and in particular we select the funds active in
the period 1995− 2017 more exposed to equity-based active management, i.e.
those classified as Capital Appreciation, Growth and Income or Growth Funds
within the Lipper Funds Classification.

Starting from this list of funds, we construct a database of daily observed
funds’ Net Asset Values as available from the data provider Thomson Reuters
Datastream. Funds with less than 250 observations are excluded from the sam-
ple. As standard practice in literature, we use the S&P500 index as benchmark
for all funds and the interest rate on 3 months T-bills as proxy of risk-free rate.

For each year we restrict our analysis to those funds with beta higher
than one. In [Christoffersen and Simutin(2016)], authors show that funds more
susceptible to benchmarking pressures increase their demand for high beta
stocks reducing their exposure to low-beta ones. This observation suggests to
restrict our attention to funds with a beta higher than one. For each year in
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the sample, then, we discriminate the funds accordingly to the beta estimated
using daily observations of risk-free rate, funds and benchmark returns. For
the sake of completeness, along with the results for the subset of funds with
beta higher than one, we also present the evidence obtained for the full sample
of funds.

Note that in the mutual fund industry the remuneration scheme usually
consists in a fixed fee and in a management fee proportional to AUM, see
[Golec(2003)]. According to our analysis we should find evidence in favor of
Hp0. We want to analyze how different levels of relative performance affect
the manager’s risk-shifting incentives.

We first focus on underperforming funds (Table 1). At a monthly level we
split the range of underperformance with respect to the benchmark into mutu-
ally exclusive intervals delimited by the reference levelsB = {0%, 5%, 10%, 15%, 20%}.
That is, we associate, for example, a 6.5% monthly underperformance to the
5%-interval. The last interval, i.e. the one bounded from above by −20%, con-
tains all funds with monthly underperformance equal to or smaller than −20%.
For each interval we create a corresponding dummy variable UNDER(b)i,m
which is equal to one if the fund’s relative performance in the preceding month
is in the b-interval and zero otherwise.

Under Hp0 we expect that the farther a fund falls behind the benchmark,
the higher is the incentive for the manager to take risk in excess, i.e. the larger
is the stake in the benchmark and therefore the higher is the sensitivity of
the fund with respect to the benchmark. As shown in Section 3, this effect
is obtained for all the remuneration schemes, except in case there is no fixed
fee and the remuneration is sensitive to the performance in a neighborhood
of the origin. In the latter case, risk exposure is likely to be hump shaped:
limited exposure when the relative performance is significantly poor, significant
exposure for intermediate poor relative performance, again limited exposure
when the performance falls behind the benchmark but not too much.

To test the two hypotheses, we regress the daily fund’s excess returns
RFi,t − rt on the S&P500 index’s daily excess returns RBt − rt interacted with
the UNDER indicators defined above. Performing this regression we impli-
citly assume that the benchmark of the funds is related to the S&P500 index.
Here rt denotes the risk-free rate observed on day t. We also include year
and month fixed effects to address the seasonality in betas, see for example
[Lewellen and Nagel(2006)]. Regression results are shown in Table 1. In both
cases (i.e. full sample and funds with beta higher than one), estimated coeffi-
cients are all positive and increasing in the magnitude of underperformance:
funds falling far below the benchmark at the end of a month tend to take excess
risk in the subsequent month by increasing their investment in the risky assets
and this leads to an increase in its sensitivity with respect to the benchmark
compared to funds with better relative performance. This evidence is in favour
of the unbounded risk taking incentive hypothesis5 Hp0. Indeed, gambling in-

5 For the sake of completeness, we point out that these results are not directly comparable
to those obtained in [Basak et al.(2007)] where the findings support the hypothesis Hp1.
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Dependent Variable: RFi,t − rt
Full Sample Funds with β > 1

UNDER(0%)i,m × (RBt − rt) 0.0315 0.0164
(29.05) (16.53)

UNDER(5%)i,m × (RBt − rt) 0.0956 0.0970
(21.31) (21.41)

UNDER(10%)i,m × (RBt − rt) 0.1564 0.1269
(14.98) (13.82)

UNDER(15%)i,m × (RBt − rt) 0.1928 0.1725
(7.58) (6.28)

UNDER(20%)i,m × (RBt − rt) 0.2328 0.2914
(5.03) (5.24)

Month fixed effects Yes Yes
Year fixed effects Yes Yes
R2 0.7903 0.8112

Wald Test 0.00 0.00

N. of obs 10258456 5021742

Table 1 Regression of daily funds’ excess returns on S&P500 index’s daily excess returns
interacted with UNDER indicators. The fixed effects variables are interacted with (RBt −rt).
Numbers in parenthesis correspond to t-statistics computed with robust and clustered stan-
dard errors. The row Wald Test displays p-values for the null hypothesis that the coefficients
in the corresponding regression are jointly equal.

centives become more and more relevant as relative performance deteriorates
(increasing coefficients of UNDER(b)i,m × (RBt − rt) in the magnitude of the
underperformance), leading underperforming managers to further increase the
riskiness of their portfolio.

We complete our analysis by looking at the investment strategy of over-
performing funds (Table 2). The analysis developed in Section 3 is not fully
conclusive. As a matter of fact, in case of a collar type remuneration scheme
we have that the investment strategy is monotonic and converges to the ben-
chmark. Instead, in case of the other remuneration schemes we have that the
optimal investment strategy converges to the one adopted in case of a linear
remuneration scheme. The strategy foresees an investment in the risky asset
in excess with respect to the benchmark if and only if µ − r − βσ2 > 0, ot-
herwise the manager invests in the risky asset less than the benchmark. In
the first case we expect a null exposure to the benchmark (decreasing in the
overperformance of the fund), in the other cases the tracking error should be
constant.

We have performed a regression analysis similar to the one developed for
the case of underperforming funds. Analyzing the results exhibited in Table 2,
we note a main difference between the two cases (full sample, funds with β > 1)
: for moderate levels of overperformance, the case of funds with beta higher
than one shows positive coefficients that increase with the level of relative

Indeed, [Basak et al.(2007)] concentrate their analysis on funds with managers with a high
risk aversion coefficient.
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Dependent Variable: RFi,t − rt
Full Sample Funds with β > 1

OV ER(0%)i,m × (RBt − rt) -0.0343 -0.0286
(-30.09) (-25.32)

OV ER(5%)i,m × (RBt − rt) -0.1367 0.0547
(-16.39) (6.66)

OV ER(10%)i,m × (RBt − rt) -0.1060 0.0908
(-2.93) (2.72)

OV ER(15%)i,m × (RBt − rt) -0.2604 -0.0460
(-2.95) (-0.71)

OV ER(20%)i,m × (RBt − rt) -0.1011 -0.2131
(-0.89) (-2.87)

Month fixed effects Yes Yes
Year fixed effects Yes Yes
R2 0.7902 0.8109

Wald Test 0.00 0.00

N. of obs 10258456 5021742

Table 2 Regression of daily funds’ excess returns on S&P500 index’s daily excess returns
interacted with OVER indicators. The fixed effects variables are interacted with (RBt − rt).
Numbers in parenthesis correspond to t-statistics computed with robust and clustered stan-
dard errors. The row Wald Test displays p-values for the null hypothesis that the coefficients
in the corresponding regression are jointly equal.

performance. Then, as soon as overperformance is higher than 15%, coefficients
become negative. On the other hand, estimated coefficients are always negative
when the full set of data is used. This seems to suggest that the managers risk
attitude plays a relevant role in the definition of the risk incentives in case of
overperformance with respect to the benchmark. Indeed, fund managers who
are less risk averse tend to further increase their risk profile in case of moderate
levels of overperformance. This gambling incentive, then, becomes weaker and
weaker (till disappearing) as the performance further increases. These results
agree with a collar type remuneration scheme and may suggest that the asset
managers are capped in their remuneration yielding a lower exposure to the
benchmark.

5 Conclusions

The debate on the misalignment between the behavior of the asset mana-
ger and the investors’ interests is intense and non conclusive. The main issue
concerns the incentives to take excessive risk by the manager. The debate
mainly regards two features: asset- vs. performance-based remuneration sche-
mes, asymmetric vs. fulcrum type fees.

There is a well established claim that asymmetric fees based on the perfor-
mance induce the asset manager to take risk in excess whereas a fulcrum type
fee should prevent it. On the other hand, asset-based fees should perform bet-
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ter than performance-based fees in preventing excessive risk taking but may
not be efficient in aligning interests of asset managers and of investors.

Concentrating our attention on remuneration schemes related to the per-
formance of the fund with respect to a benchmark, we have shown that it is
not the asymmetric-fulcrum type feature that makes the difference in preven-
ting excessive risk taking in case of a poor performance. To prevent gambling
when the performance deteriorates, it is important that the asset manager is
not endowed with a fixed fee and that his/her remuneration is sensitive to a
very poor relative performance.

A Proofs

To prove the theorems, let us consider an economy with zero risk-free rate (r∗ = 0), a risky
asset with drift µ∗ = µ − r − βσ2 and volatility σ. Therefore the evolution of the relative
performance process X(t) in (2) is fully described by

dX(t) = X(t) [δ(t)µ∗dt+ δ(t)σdZ(t)]

= X(t) [(r∗ + δ(t)(µ∗ − r∗))dt+ δ(t)σdZ(t)] ,

and thus in this new economy X is the process which describes the portfolio value (if the
agent can invest in both the risky and the risk-free asset) and δ is the amount of wealth (in
percentage) invested in the risky asset.

In this framework the state price density is given by

ξ(t) = e−(r∗+|ϑ|2/2)t−ϑZ(t) = e−|ϑ|
2/2t−ϑZ(t)

with ϑ = µ∗−r∗
σ

= µ−r−σ2β
σ

.
The outline of all the proofs is the following, see [Karatzas and Shreve(1998)] for details:

once an extended concave utility function Ũ is defined, we compute its set-valued first
order derivative Ũ ′ as well as the function I, which is the inverse of Ũ ′ in the sense that
z ∈ Ũ ′(I(z)).

The starting problem is equivalent to the following:

max
X(T )

E
[
Ũ(X(T ))

]
such that E[ξ(T )X(T )] ≤ X(0) and X(T ) ≥ 0.

Therefore the martingale approach considered, for example, in [Carpenter(2000)] can be
extended to solve our problems, with X∗(T ) = I(λξ(T ))), and with λ, the Lagrangian
multiplier, solution of

E[ξ(T )I(λξ(T ))] = X(0) = 1. (14)

We would like to stress that the function Ξ(λ) = E[ξ(T )I(λξ(T ))] is continuous and strictly
decreasing. Furthermore limλ→+∞ Ξ(λ) = 0 and limλ→0 Ξ(λ) = +∞. Therefore a solution
of Equation (14) always exists.

The optimal process X∗ is then computed for any t ∈ [0, T ] as

X∗(t) = Et

[
ξ(T )

ξ(t)
X∗(T )

]
= Et

[
ξ(T )

ξ(t)
I(λξ(T )))

]
. (15)

Notice that the process X∗ is the optimal process also for the initial problem (with non-
concave utility function U) due to [Carpenter(2000), Equations (A5)-(A8)].
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To deal with the optimal allocation process, let us now define M(t) = ξ(t)X∗(t); being
M a martingale [Karatzas and Shreve(1998)], there exists a function ϕ such that dM(t) =
ϕ(t)dZ(t). Once ϕ is computed, due to [Karatzas and Shreve(1998), Theorem 3.7.3], we have

δ∗ =
1

σ

(
ϑ+

ϕ(t)

M(t)

)
. (16)

In the following, we also denote with i is the inverse of the first order derivative of u,
i.e. i(z) = (u′)−1(z) = z1/(a−1).

A.1 Proof of Theorem 1

Let us define the extended utility function

Ũ(x) =

{
U(x) := (mx+K)a/a if x ≥ 0,
−∞ if x < 0,

If m = 1 and K = 0 we obtain the classical Merton problem with terminal utility. The
utility function Ũ is not differentiable in 0, therefore we can define a set-valued function
Ũ ′ : [0,+∞)→ (0,+∞) by

Ũ ′(x) =

{
{U ′(x)} if x > 0,
[U ′(0),+∞) if x = 0,

and its inverse

I(z) =
1

m

(
i
( z
m

)
−K

)
1z<U′(0).

Equation (15) implies

X∗(t) = −
K

m
Et

[
ξ(T )

ξ(t)
1ξ(T )<γ

]
+

1

m
Et

[
ξ(T )

ξ(t)
i

(
λξ(T )

m

)
1ξ(T )<γ

]

with γ = U ′(0)/λ, i.e. Equation (4), since

Et

[
ξ(T )

ξ(t)
1ξ(T )<γ

]
= N(d1(t))

with d1(t) =
(
ln(γ/ξ(t))− |ϑ|2(T − t)/2

)
/
(
|ϑ|
√
T − t

)
, and

Et

[
ξ(T )

ξ(t)
i

(
λξ(T )

m

)
1ξ(T )<γ

]
= K

N ′(d1(t))

N ′(d2(t))
N(d2(t)),

with d2(t) = d1(t) + |ϑ|
√
T − t/(1− a).

Finally, computations lead to

ϕ(t) = ϑξ(t)

(
a

1− a
X∗(t) +

K

m

N(d1(t))

1− a

)
,

and therefore Equation (16) gives Equation (3).
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A.2 Proof of Theorem 2

This result follows directly from [Carpenter(2000)]. More precisely, (6) and (7) correspond to
[Carpenter(2000), Equation (26)] and [Carpenter(2000), Equation (25)], respectively. More
precisely, in [Carpenter(2000)] the author solves the optimization problem

max
X(T )

E[u(α(X(T )−B0e
r∗T )+ +K)]

which corresponds to our problem (in the new economy) setting α = 1, and B0 = 1. Notice
that in [Carpenter(2000)] K should be positive: however the results can be easily extended
to the case K = 0, assuming a ∈ (0, 1).

More precisely, since the utility function U(x) := u((x− 1)+ +K) is not concave in x,
we define the new concavified utility function

Ũ(x) =

U(x) if x > x̂,
U(0) + U ′(x̂)x if 0 ≤ x ≤ x̂,
−∞ if x < 0,

(17)

Let us consider the case K = 0: in order to have a continuous concavified utility function Ũ
it must be x̂ = 1/(1− a), which is greater than 1 since a ∈ (0, 1) (moreover, if K = 0 and a
is negative, U(0) = −∞). For the case K > 0 a similar result holds true with the existence
(and uniqueness) of x̂ > 1 such that U(x̂) = U(0) + U ′(x̂)x̂, thanks to [Carpenter(2000),
Lemma 1].

The concavified utility function Ũ is not differentiable in 0, therefore we can define a
set-valued function Ũ ′ : [0,+∞)→ (0,+∞) by

Ũ ′(x) =

 {U
′(x)} if x > x̂,

{U ′(x̂)} if 0 < x ≤ x̂,
[U ′(x̂),+∞) if x = 0.

See [Carpenter(2000), Appendix]. We can also define the inverse for the function Ũ ′ given
by

I(z) = (i(z) + 1−K)1z<U′(x̂)

where I is necessary to compute λ exploiting Equation (14), and thus to get the coefficients
in (6) and (7)

d1(t) =
(
ln(γ/ξ(t))− |ϑ|2(T − t)/2

)
/
(
|ϑ|
√
T − t

)
,

d2(t) = d1(t) + |ϑ|
√
T − t/(1− a),

being γ = u′(x̂− 1 +K)/λ.

A.3 Proof of Theorem 3

Since the utility function U(x) := u((x−1)+−(x−H)++K) is not concave in x, we compute

its concavification as in Equation (17). The concavified utility function Ũ is not differentiable

in 0 and H, therefore we can define a set-valued function Ũ ′ : [0,+∞)→ (0,+∞) by

Ũ ′(x) =


[0, U ′(H−)) if x ≥ H,
{U ′(x)} if x̂ < x < H,
{U ′(x̂)} if 0 < x ≤ x̂,
[U ′(x̂),+∞) if x = 0,

where x̂ is as in A.2. We can also define an inverse for the function Ũ ′ given by

I(z) = (i(z) + 1−K)1U′(H−)≤z<U′(x̂) +H1z<U′(H−).
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Let us define γ1 = U ′(H−)/λ, and γ2 = U ′(x̂)/λ, Equation (15) implies

X∗(t) = HEt
[
ξ(T )

ξ(t)
1ξ(T )<γ1

]
+ (1−K)Et

[
ξ(T )

ξ(t)
1γ1≤ξ(T )<γ2

]
+Et

[
i(λξ(T ))

ξ(T )

ξ(t)
1γ1≤ξ(T )<γ2

]
,

i.e. Equation (9) with

d1(t) =
(
ln(γ1/ξ(t))− |ϑ|2(T − t)/2

)
/
(
|ϑ|
√
T − t

)
,

d2(t) = d1(t) + |ϑ|
√
T − t/(1− a),

d3(t) =
(
ln(γ2/ξ(t))− |ϑ|2(T − t)/2

)
/
(
|ϑ|
√
T − t

)
,

d4(t) = d3(t) + |ϑ|
√
T − t/(1− a).

since

Et

[
ξ(T )

ξ(t)
1ξ(T )<γ1

]
= N(d1(t)), Et

[
ξ(T )

ξ(t)
1ξ(T )<γ2

]
= N(d3(t)),

Et

[
ξ(T )

ξ(t)
i

(
λξ(T )

1 +m

)
1ξ(T )<γ1

]
= (H+K − 1)

N ′(d1(t))

N ′(d2(t))
N(d2(t)),

Et

[
ξ(T )

ξ(t)
i

(
λξ(T )

1 +m

)
1ξ(T )<γ2

]
= (x̂+K − 1)

N ′(d3(t))

N ′(d4(t))
N(d4(t)).

The optimal strategy δ∗ is computed as in A.1, exploiting Equation (16).

A.4 Proof of Theorem 4

In this case U(x) := u((x− 1)+ − (x−H)+ +mx+K) and the concavified utility function

Ũ(x) =

U(x) if x > x̂u,
U(0) + U ′(x̂u)x if 0 ≤ x ≤ x̂u,
−∞ if x < 0,

(18)

is not differentiable in 0 and H, therefore we can define a set-valued function Ũ ′ as

Ũ ′(x) =


{U ′(x)} if x > H,[
U ′(H+), U ′(H−)

]
if x = H

{U ′(x)} if x̂u < x < H,
{U ′(x̂u)} if 0 < x ≤ x̂u,
[U ′(x̂u),+∞) if x = 0.

We can also define an inverse for the function Ũ ′ given by

I(z) =
1

1 +m

(
i

(
z

1 +m

)
+ 1−K

)
1U′(H−)<z<U′(x̂u) +H1U′(H+)≤z≤U′(H−)

+
1

m

(
i
( z
m

)
+ 1−K −H

)
1z<U′(H+).

Let us define γ1 = U ′(H+)/λ, γ2 = U ′(H−)/λ, and γ3 = U ′(x̂u)/λ, then

X∗(t) =
1

1 +m
Et

[
ξ(T )

ξ(t)
i

(
λξ(T )

1 +m

)
1γ2<ξ(T )<γ3

]
+

1−K
1 +m

Et

[
ξ(T )

ξ(t)
1γ2<ξ(T )<γ3

]
+ HEt

[
ξ(T )

ξ(t)
1γ1<ξ(T )<γ2

]
+

1

m
Et

[
ξ(T )

ξ(t)
i

(
λξ(T )

m

)
1ξ(T )<γ1

]
+

1−K −H
m

Et

[
ξ(T )

ξ(t)
1ξ(T )<γ1

]
,
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i.e. Equation (10) with

d1(t) =
(
ln(γ1/ξ(t))− |ϑ|2(T − t)/2

)
/
(
|ϑ|
√
T − t

)
,

d2(t) = d1(t) + |ϑ|
√
T − t/(1− a),

d3(t) =
(
ln(γ2/ξ(t))− |ϑ|2(T − t)/2

)
/
(
|ϑ|
√
T − t

)
,

d4(t) = d3(t) + |ϑ|
√
T − t/(1− a),

d5(t) =
(
ln(γ3/ξ(t))− |ϑ|2(T − t)/2

)
/
(
|ϑ|
√
T − t

)
,

d6(t) = d5(t) + |ϑ|
√
T − t/(1− a).

The optimal strategy δ∗ is computed as in A.1, exploiting Equation (16).

A.5 Proof of Theorem 5

In this case U(x) := u((x− 1)+ − (x−H)+ +mx+K) and the concavified utility function
is given by

Ũ(x) =

U(x) if 0 ≤ x < x̂d or x > x̂u,
U(xd) + U ′(x̂u)(x− xd) if x̂d ≤ x ≤ x̂u,
−∞ if x < 0;

(19)

since Ũ is not differentiable in 0 and H, we can define a set-valued function Ũ ′ as

Ũ ′(x) =


{U ′(x)} if x > H, x̂u < x < H, or 0 < x < x̂d,[
U ′(H+), U ′(H−)

]
if x = H,

{U ′(x̂u)} if x̂d ≤ x ≤ x̂u,
[U ′(x̂u),+∞) if x = 0.

The inverse for the function Ũ ′ is given by

I(z) =
1

m

(
i
( z
m

)
−K

)
1U′(x̂u)<z<U′(0) + x̂u1z=U′(x̂u)

+
1

1 +m

(
i

(
z

1 +m

)
+ 1−K

)
1U′(H−)<z<U′(x̂u) +H1U′(H+)≤z≤U′(H−)

+
1

m

(
i
( z
m

)
+ 1−K −H

)
1z<U′(H+).

Let us define γ1 = U ′(H+)/λ, γ2 = U ′(H−)/λ, γ3 = U ′(x̂u)/λ, and γ4 = U ′(0)/λ, then

X∗(t) =
1

m
Et

[
ξ(T )

ξ(t)
i

(
λξ(T )

m

)
1γ3<ξ(T )<γ4

]
−
K

m
Et

[
ξ(T )

ξ(t)
1γ3<ξ(T )<γ4

]
+

1

1 +m
Et

[
ξ(T )

ξ(t)
i

(
λξ(T )

1 +m

)
1γ2<ξ(T )<γ3

]
+

1−K
1 +m

Et

[
ξ(T )

ξ(t)
1γ2<ξ(T )<γ3

]
+ HEt

[
ξ(T )

ξ(t)
1γ1<ξ(T )<γ2

]
+

1

m
Et

[
ξ(T )

ξ(t)
i

(
λξ(T )

m

)
1ξ(T )<γ1

]
+

1−K −H
m

Et

[
ξ(T )

ξ(t)
1ξ(T )<γ1

]
,
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i.e. Equation (11) with

d1(t) =
(
ln(γ1/ξ(t))− |ϑ|2(T − t)/2

)
/
(
|ϑ|
√
T − t

)
,

d2(t) = d1(t) + |ϑ|
√
T − t/(1− a),

d3(t) =
(
ln(γ2/ξ(t))− |ϑ|2(T − t)/2

)
/
(
|ϑ|
√
T − t

)
,

d4(t) = d3(t) + |ϑ|
√
T − t/(1− a),

d5(t) =
(
ln(γ3/ξ(t))− |ϑ|2(T − t)/2

)
/
(
|ϑ|
√
T − t

)
,

d6(t) = d5(t) + |ϑ|
√
T − t/(1− a),

d7(t) =
(
ln(γ4/ξ(t))− |ϑ|2(T − t)/2

)
/
(
|ϑ|
√
T − t

)
,

d8(t) = d7(t) + |ϑ|
√
T − t/(1− a).

The optimal strategy δ∗ is computed as in A.1, exploiting Equation (16).

A.6 Proof of Theorem 6

In this case U(x) := u(p(x − H1)+ + mx − c(H2 − x)+ + K) and the concavified utility
function is defined as in (18) and is not differentiable in 0, therefore we define its first order
derivative as

Ũ ′(x) =

 {U
′(x)} if x > x̂u,

{U ′(x̂u)} if 0 < x ≤ x̂u,
[U ′(x̂u),+∞) if x = 0.

(20)

Its inverse is given by

I(z) =
1

m+ p

(
i

(
z

m+ p

)
−K + pH1

)
1z<U′(x̂u).

Therefore

X∗(t) =
pH1 −K
m+ p

Et

[
ξ(T )

ξ(t)
1ξ(T )<γ

]
+

1

m+ p
Et

[
ξ(T )

ξ(t)
i

(
λξ(T )

m+ p

)
1ξ(T )<γ

]
,

with γ = U ′(x̂u)/λ, i.e. Equation (12) with

d1(t) =
(
ln(γ/ξ(t))− |ϑ|2(T − t)/2

)
/
(
|ϑ|
√
T − t

)
,

d2(t) = d1(t) + |ϑ|
√
T − t/(1− a).

The optimal strategy δ∗ is computed as in A.1, exploiting Equation (16).

A.7 Proof of Theorem 7

In this case U(x) := u(p(x − H1)+ + mx − c(H2 − x)+ + K) and the concavified utility
function is defined as in (19) and is not differentiable in 0, therefore we define its first order
derivative

Ũ ′(x) =

 {U
′(x)} if 0 < x < x̂d or x > x̂u,

{U ′(x̂u)} if x̂d ≤ x ≤ x̂u,
[U ′(0),+∞) if x = 0.

(21)
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In this case the inverse for the function Ũ ′ is given by

I(z) =
1

m+ p

(
i

(
z

m+ p

)
+ pH1 −K

)
1z<U′(x̂u) + x̂u1z=U′(x̂u)

+
1

m+ c

(
i

(
z

m+ c

)
+ cH2 −K

)
1U′(x̂u)<z<U′(0).

Therefore we have

X∗(t) =
1

m+ p
Et

[
ξ(T )

ξ(t)
i

(
λξ(T )

m+ p

)
1ξ(T )<γ1

]
+
pH1 −K
m+ p

Et

[
ξ(T )

ξ(t)
1ξ(T )<γ1

]
+

1

m+ c
Et

[
ξ(T )

ξ(t)
i

(
λξ(T )

m+ c

)
1γ1<ξ(T )<γ2

]
+
cH2 −K
m+ c

Et

[
ξ(T )

ξ(t)
1γ1<ξ(T )<γ2

]
,

with γ1 = U ′(x̂u)/λ = U ′(x̂d)/λ, and γ2 = U ′(0)/λ, i.e. Equation (13) with

d1(t) =
(
ln(γ1/ξ(t))− |ϑ|2(T − t)/2

)
/
(
|ϑ|
√
T − t

)
,

d2(t) = d1(t) + |ϑ|
√
T − t/(1− a),

d3(t) =
(
ln(γ2/ξ(t))− |ϑ|2(T − t)/2

)
/
(
|ϑ|
√
T − t

)
,

d4(t) = d3(t) + |ϑ|
√
T − t/(1− a).

The optimal strategy δ∗ is computed as in A.1, exploiting Equation (16).
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