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Passive Portfolio Management over a Finite Horizon with a Taget
Liquidation Value under Transaction Costs and Solvency Consaints

Stefano Baccarin & Daniele Marazzing 1

We consider a passive investor who divides his capital between twisasseisk-free money market
instrument and an index fund, or ETF, tracking a broad market indfiéx.model the evolution of the
market index by a lognormal diffusion. The agent faces both fixel@pportional transaction costs
and solvency constraints. The objective is to maximize the expected utilitytfre portfolio liquidation
at a fixed horizon but if the portfolio reaches a pre-set target value ttiee position in the risky asset
is liquidated. The model is formulated as a parabolic impulse control probled we characterize the
value function as the unique constrained viscosity solution of the assodiaasdvariational inequality.
We show the existence of an impulse policy which is arbitrarily close to the olptingaby reducing the
model to a sequence of iterated optimal stopping problems. The valggdurand the quasi-optimal
policy are computed numerically by an iterative finite element discretizatmigue. We present ex-
tended numerical results in the case of a CRRA utility function, showing thestasionary shape of
the optimal strategy and how it varies with respect to the model param@&teesiumerical experiments
reveal that, even with small transaction costs and distant horizons, tineabptrategy is essentially a
buy-and-hold trading strategy where the agent recalibrates his poréolidew times.

Keywords Dynamic Trading Strategies, Passive Portfolio Management, Queatigaal Inequalities,
Solvency Constraints, Transaction Costs, Viscosity Solutions

1. Introduction

We consider a portfolio problem for an investor who pursupassive investment strategy making no
attempt to “beat” the market. Our agent chooses a broad madex, such as the S&P 500, as his risky
portfolio and divides his capital between it and a risk-fseeurity. This strategy is easy to implement
trading only two financial securities: an index fund, or ETépresenting all the stocks in the index,
and a money market instrument, such as Treasury Bills. Wemdbel the evolution of the market
index, and therefore of the risky security, by a geometriovBrian motion. The investor’s objective is
to maximize the expected utility from the portfolio liquiitan at a given terminal horizon. However
our investor has a prudent attitude and if the portfolio’kigareaches a pre-set upper bound then he
liquidates the risky asset, bearing no more risk up to the diase.

In his seminal article, Merton (1969) first developed a awmius time model to find the dynamic
optimal strategy for an investor managing a portfolio okyisssets, whose prices evolve according
to geometric Brownian motions. Since then, research indhés has focused on different aspects,
aiming to make the mathematical model closer to the real etark is well known that, in the real
economy, investors face nontrivial transaction costschvimfluence their trading policies. It is not
possible to rebalance a portfolio in a continuous way, asrasd by Merton, and margin requirements
and bounds on the open short positions are commonly preddast of the literature on portfolio
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optimization with transaction costs considers the prold&maximizing the cumulative expected utility
of consumption over a infinite horizon, with proportionansaction costs. See for instance Davis and
Norman (1990), Shreve and Soner (1994), Akian et al. (19Q6mar and Muthuraman (2006) and,
in case of small transaction costs, Mokkhavesa and Atkitf2002) where the optimization problem
is solved for arbitrary utility functions using perturlai theory. The same infinite horizon problem
but with fixed and proportional costs has been studied in Qdaleand Sulem (2002) and Liu (2004).
A second class of articles studies the problem of maximitiveglong-term growth rate of portfolio
value. See Morton and Pliska (1995) for a problem with tratisa costs equal to a fixed fraction
of the portfolio value (“portfolio management fee”), Assfal. (1988), Dumas and Luciano (1991),
Akian et al. (2001) for models with proportional transantitosts, and Bielecki and Pliska (2000) in
the more general framework of risk-sensitive impulse aintin Gashi and Date (2012) a completely
different approach is adopted: in order to reduce the vanah the asset holdings and the consequent
proportional transaction costs, the trading strategidmitiol optimal portfolios are constrained to be of
finite variation. Fewer papers consider a portfolio optiatian problem with transaction costs over a
finite horizon. Liu and Loewenstein (2002) consider projooil transaction costs and approximate the
value function by a sequence of problems with exponentdifiiributed horizons. However for a given
terminal date the optimal trading strategy is described btationary policy. In Eastham and Hastings
(1988), Korn (1998) both fixed and variable transaction<asé considered and the model is solved
by using impulse control techniques. These last articlesvesification theorems to characterize the
value function and the optimal policy and, apart from som&pée cases, only approximate the solution
by an asymptotic analysis. In the recent paper by Ly Vath.€R8D7) the authors consider a portfolio
optimization problem over a finite horizon with a permanemtgimpact and a fixed transaction cost.
The main result in Ly Vath et al. (2007) is a viscosity chagazation of the value function, but neither
a characterization of the optimal policy nor a numericalisoh of the problem is given.

To deal with the fixed component in the transaction costs waditate our model as an impulse con-
trol problem, associated by the dynamic programming pplecio a Hamilton-Jacobi-Bellman quasi-
variational inequality (HIBQVI). The features of our stastic control problem lead to consider a
parabolic HIBQVI in two variables and time, and to imposdestanstraints on the space variables.
To characterize the value function we consider, as in Akiaal.2001), Oksendal and Sulem (2002),
Ly Vath et al. (2007), the very general notion of discontimsi@onstrained viscosity solutions. In Sec-
tion 3 of this paper, by means of a weak comparison principteshow that the value function is the
unique constrained viscosity solution of the HIBQVI verify certain boundary conditions, and that it
is (almost everywhere) continuous. These results are suizedan Theorem 3.3.

To show the existence of an optimal trading strategy and soritee its structure, in Section 4 we
decompose our impulse control problem into a sequence rattéte optimal stopping problems (as in
Chancelier et al. (2002), Baccarin (2009)). This redugtiost introduced in Bensoussan and Lions
(1984), has both a theoretical and a computational inteleagiows to represent the value function by
the limit of a sequence of solutions of variational ineciegdi. Moreover it makes possible to charac-
terize a Markovian quasi-optimal policy which is arbithartlose to the optimal one. We propose an
iterative finite element discretization technique to soluenerically this sequence of variational inequal-
ities, and therefore to compute the value function and thienag policy for arbitrary utility functions.

In Section 5 we present extended numerical results for outefria the case of a constant relative
risk aversion (CRRA) utility, which is the most commonly dsaetility function in expected utility
maximization problems. We analyze the transaction regitiestarget portfolios, i.e., the portfolios
where it is optimal to move from the transaction regions, hod the agent’s optimal strategy varies
as time goes on and for different time horizons. To the bestuofknowledge this is the first paper



where a non-stationary optimal policy is fully describeddqortfolio selection problem in continuous
time. We show explicitly how the transaction regions andé#nget portfolios change, in a asymmetrical
way, as time passes up to the finite horizon. Sensitivityyamalvith respect to the market and agent’s
parameters and a comparison between our optimal stratefypthers suggested in literature is also
provided. Our numerical results show that the transactistschave a dramatic impact on the frequency
of trading of an optimal policy. This phenomenon has alrebdgn noted, in a qualitative way, in
Dumas and Luciano (1991), Morton and Pliska (1995), Liu aneMenstein (2002) and Liu (2004). The
optimal strategy is essentially a buy-and-hold tradingtetyy where the agent recalibrates his portfolio
very few times, in contrast with the continuous intervensiof the Merton’s model without transaction
costs. In the Appendix we collect the more long and techmicabfs of the results.

2. The model formulation

We denote by§(t) the value invested by the agent in the stock market indexregtti and byB(t) his
amount of money invested in a risk-free asset, such as TmeBdls. The initial wealth int =0 is given
by (Bo, S). The valueS(t) evolves as a geometric Brownian motion

dS(t) = pSt)dt+oS(t)dw(t), S(0) =S,

whereW is an adapted Wiener process on the filtered probabilityesf@ck, P, ), verifying the usual
conditions. The risk-free asset grows in a certain way afitieel rater

dB(t) = rB(t)dt, B(0) = Bo.

At any time the investor can buy (> 0) or sell € < 0) the valueé € R of stocks, reducing (or in-
creasing) correspondingly the the investment in the nisk-Bisset. However to make a transaction it is
necessary to bear the associated transaction C¢&js which we assume of a fixed plus proportional
type

C(é)=K+c|é|, K>0,0<c<1.

These costs are drawn immediately from the risk-free aggbe valueé of stocks is bought (or sold)
the variation in the risk-free asset is givenby§ —K —c|&].

A portfolio control policyp is a sequencé(t;, &)}, i=1,2,-- -, of stopping timeg; and corresponding
random variablesg;, which represent the value of stocks bought (or sold);inWe define a policy as
feasible if it verifies the following conditions:

T; is alF; stopping time

T < Tig1 Vi

limj_ ;o Tj = +00 almost surely
¢ is Fr; measurable .

1)

Note that conditiorr; — o a.s. implies that the number of stopping times in any bouttitkeel interval

is almost surely finite1{ = 4o for somei < o is possible, it means a policy which consists of at most
i — 1 transactions). Starting from the initial amou(Bs, S) of the two assets ih= 0, the dynamics of
the portfolio(BP(t), SP(t)), controlled by policyp, is given by the following set of stochastic differential
equations:

{ dL(t) = uS(V)dt+ oSLOAW(D) , S(O) =S ¢, [0, 74] @)

dB°(t) = rBO(t)dt, B°(0) = By,



and, fort € [1j, Tiy1],1 > 1,

dS(t) = uS(t)dt+ oS t)dW(t), S(1) =S (1) +& 3
{ dBI(t) = 1B (t)dt, B'(r) =B 1(1;) - & — K —c|&|. ®)

When Tt < 1,1, we define(BP(t),SP(t)) = (B'(t),S(t)) fort € [t , Ti11). If we have, for example,
T_1<Ti=T41="...= Titn < Tj+n+1, then we set

{ (BP(T:), (1)) = (B H(Tin), S (Tin))
(BP(Titn), S (Titn)) = (B "(Tisn), S(Titn))
where (BP(1;,,),SP(1;,,)) are the left limits int = ; = ... = Tj;n. The resulting controlled process

(BP(t),SP(t)) is cadlag and adapted to the filtratiBp
A fundamental notion in our model is the liquidation valuetlvd assets. We define the liquidation
valueL (B, S) of the portfolio(B,S) as

[ max{S+B-K-c|9,B} ifS>0
L(B’S)—{ S+B—K—c|S ifS<0.

It represents the value when the long or short position iokstis cleared ouif( S> 0 but S—cS< K it

is not convenient to close the long position in stocks becagisf the fixed cosK and the liquidation
value is simply the amount ofB). Note that (B, S) < B+ S, except forS= 0, and that every transaction
cannot increase the liquidation value of the portfolio,ttisal (B,S) > L(B— & — K —c|&|,S+ &),

V& € R (the equality holds only it (B,S) = S+ B—-K —c|§ andé = —S). Besides the transaction
costs, our investor must face another kind of constraint® adsume that there are bounds on the
open short positions and that the portfolio liquidationueamust be greater than zero. This kind of
solvency constraints correspond to the margin requiresmemuired by brokers to allow an investor to
buy stocks on margin or to shortsell securities. Therefoeeset of admissible portfolios is given by the
closed regiorAdr C R?,

Adr={(B,S) € R?: (L(B,S) = 0) A (B = Bmin) A (S Smin) } -

HereBmin < 0 andSyin < 0 are the bounds in the short position in the risk-free assgtirathe risky
security, respectively. We assurBg > Bmin, S = Snin andL(Bo, &) > 0. The admissible region
is depicted in Figure 1The portfolios inside the triangle OAI in Figure 1 are of course solvent
portfolios because bothSand B are positive but they are instances of the case where the amuaiu
of Sis so small that it is not convenient to close the long positioin stocks because of the fixed cost
K. When Sis negative, that is a short position in stocks is open, it is andatory to close this short
position to liquidate the portfolio. In this case it is necesary to buy stocks and the fixed cosK
will always be paid. All this explains the corners at the poirts A and | of the admissible region:
we havelL (B,S) = 0 along the segments AB, AO and HI (except in the point I) and_(B,S) =B on
the segment |0.The investor’s preferences are represented by a contininmusasing, utility function
U:R: — Ry, withU(0) =0 . We assume thal satisfies, for som€ > 0 and 0< y < 1, the upper
bound

U(L)<CLY. (4)

Note that we are not assuming a particular form or the cohca¥ithe utility function and that (4) is
only an upper bound. The objective of our investor is to ligié his portfolio at a fixed time horizon
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FIG. 1. Admissible region (left) and bounded value function doméight). The points in the figures have coordi-
nates A= (07%)7 B= (Bmim Kf’g"”), C= (Bminfﬂ%frl_max)x D= (Lmax,-%), E= (Lmax,-o)v F= (Lmax+K70), G=

(=(1+¢)Smin + K + Lmax; Smin), H= (—(1+ ¢)Smin + K, Snin) and k= (K, 0).

T > 0. This means that the problem is to maximize the expectétyut the portfolio liquidation value
at the terminal dat@. However if the portfolio reaches a threshold liquidati@ue Lhax, at a time
t < T, then the agent is satisfied. He liquidates the risky asdetimdl invests allLmayx in the risk-free
asset up to the finite horizoh.

REMARK 2.1 This assumption has a natural financial meaning: the invdsés a target value for his
portfolio and if this value is reached before T, then he isintgrested in holding the risky asset any
longer and in bearing the associated risk up to the final dd@dé.course if lyax iS set to a too large
value with respect to the initial wealtfBp,S) and the horizon T, the target portfolio will never be
reached and the investor maximizes the expected utility iisifig both assets. Indeed, for theoretical
and computational purposes, the problem without a targgtitlation value can be treated as the limit
case, letting khax — +.

We define the open control regi@or

Cor= {(B, S e R?: L(B,S) < Lmax}

and byCor its closure.Cor is the region where it may be useful to rebalance the poottodicause the
threshold valudax has not been reached yet. L&t be the first exit time of the controlled process
from the control region

0P =inf{t: (BP(t),S"(t)) ¢ Cor}.

We setdP = BP AT, and we define a policg admissible if the corresponding controlled process vavifie
(BP(t),SP(t)) € Adr, vt € [0,9P]. The payoff functionall? associated to policp is then given by

P=E u(L(Bpwp),sp(ap))ef“—m)].

Note that the behavior ofBP(t),SP(t)) for t > 9P is irrelevant in our formulation: that is to say
(BP(t),SP(t)) represents the financial position of our investor only u@t If we denote byA the



set of admissible policies, the control problem can be fdated as

maxJP .
peA

It is a stochastic impulse control problem over a finite hamigzvhere the system is controlled only in the
Cor region, and with the state constra{@°(t),S"(t)) € Adr, vt € [0,9P]. We will solve this problem
by using a dynamic programming approach. We consider thepaotrsetQ = Adr Cor which is
depicted in Figure 1 and we denote byits interior. We define the s& = [0,T] x Q and we will
denote byQ the subsef0, T) x Q. Now we can introduce the value functibfit,B,S): Q ¢ R® — R
defined by

V(t,B,S = sup JPt,B,S).

peA(t.B,S)

HereA(t,B,S) is the set of admissible policies when the controlled prestarts irt with values(B, S)
and

JP(t,B,S) = Eps |U (L(BP(IP),SP(9 p))erﬁ—v?"))} _

REMARK 2.2 We have £t,B,S) # 0 for any initial condition(t, B, S) € Q since the policy

+o0o fS>0andB>0
1= . Tj = 4
t otherwise fori>1
= arbitrary if S>0and B> 0 & arbitrar
171 -s  otherwise ' y

is clearly always admissible. Note tha{ty0,0) = 0, Vt € [0, T], because the only admissible policy
is doing nothing, and 0) = 0 by assumption. Moreover(¥,B,S) > U (Lmax (") only if (B,S) €
{EF\E}, because the points in the SgEF\E} (see Figure 1(right)) can be reached by an admissible
policy only afterd P, if the initial position(B, S) ¢ {EF\E}.

The value functiorV of our problem verifies the following dynamic programmingperty (see
Fleming and Soner (1993), Section V.2, or Ly Vath et al. (D07

Dynamic Programming Property:
(a) For any(t,B,S) € Q, p€ A(t,B,S) and {Fs}-stopping timex >t we have

V(t,B,S) > EgsV(PAna,BP(8PA),SP(IPAa))]; (5)

(b) For any(t,B,S) € Q, and d > 0, there exists 1§9) € A(t,B,S) such that for all{ Fs}-stopping time
a >t we have
V(t,B,9) <EpgV(OP Aa,BY (97 na), S (97 na))|+ 8. (6)

Combining (a) and (b) we obtain the subsequent version oflyfmamic programming principle,
which holds for any(t, B, S) € Q and{Fs}-stopping timea > t:

V(t,B,S = sup Epgs|V(3°Aa,BP(3PAQ),SP(3PA)) .
peA(t,B,S)



Now, we denote by (B, S) the set of admissible transactions fr¢B)S) € Q
F(B,S={{cR:(B-&—-K—cl§|,S+¢&)cQ}

and byF the subset of2 whereF (B, S) # 0.

REMARK 2.3 The set KB, S) can be empty. For example it is always empty whep®B< K, but if
F(B,S) # 0, then it is a compact subset Bf Moreover let(B,,S,) € Adr be a sequence converging to
(B',S) € Adr with F(Bn,S,) # 0. Since the function L is upper semicontinuous we hg@, B) > 0
and F(B',S) # 0. Any sequencé, € F(By,S,) is bounded and therefore contains a subsequéijce
converging to somé’ € R. As L(Bn — §; — K —c[&y], S+ &;) > 0 and L is upper semicontinuous, it
also holds tha€’ € F(B',S).

For any given functioZ : Q — R we define the intervention (non local) operataf by

sup Z(t,B—&—-K-c|&|,S+¢&) if (B,S e
MZ(t,B,S) :{ EcF(BS) )
-1 it (B,S)¢r.

Considering any € A(t, B, S) with an immediate transactionirf arbitrary siz&§ € F(B, S) and setting
a =t in (5), we can see as a direct consequence of dynamic progranproperty thaV/ (t,B,S) >
AN (t,B,9S), for any(t,B,S) € Q (this is obvious ifF (B,S) = 0 becaus¥ is non-negative).

It is well known that we can associate to the value functioranfimpulse control problem a
Hamilton-Jacobi-Bellman quasi-variational inequalidBQVI) which plays the same role of the HIB
equation in continuous optimization. We introduce the sdaarder differential operato#’

Y oV 1 5,0V
2V(,B,S) = Bog +HS55+50 szﬁ

which corresponds to the infinitesimal generator of the ntrefled proces$B(t), S(t)). We will show

that the value function of our problem is a weak solution effillowing HIBQVI inQ
. \Y
mm{——fV,V—//A/}:O. (8)

In the preliminary paper Baccarin and Marazzina (2014), where the authors considered an in-
vestment problem with only a fixed transaction cost, the conection between the value function
and the HIBQVI was deduced in an heuristic way, making exterigse use of the Dynkin’s formula.
However to use this formula and to show that the value functia is a solution of the HIBQVI the
authors assumed &C? regularity for the value function that is certainly not satisfied in our port-
folio selection problem.One cannot hope to show thétis a classical solution of (8). It is easy to see
that the value function is not even continuous in some pah&¥, such as, for instance, points A and
I in Figure 1, for anyt € [0, T], orlineS=0int =T. In these point¥ is only upper-semicontinuous.
In the present article we deal with a rigorous mathematical aalysis of the problem, exploiting
the viscosity solutions framework. The next section will characteriaé as the unique constrained
viscosity solution of (8) verifying certain boundary cotioins.



3. Boundary properties, bounds, and viscosity characteration of the value function

By 9*Q we denote the subset 80 given byd*Q = ([0,t) x Q) U (T x Q). The boundary Q of Q
is divided in two parts:

0.0 ={(B,S) € 9Q :L(B,S) < Lmax}

and its complemend,Q = 9Q\d1 Q. In 6,Q the threshold liquidation valuemax has already been
reached. Itis also useful to defidgQ = ([0,t) x Q) U (T x Q), which is the part ob*Qwheret =T
orL(B,S) > Lmax. We now investigate the behavior\éfat the boundarg™*Q.

Fort = T we have obviousl\¥ (T,B,S) = U(L(B,9)) for any (B,S) € Q. It is always optimal not
to intervene inlT because any intervention cannot increase the portfoliodation value. However one
single transactiod = —Sis also optimal ifS< 0 or if S> 0 andS+ B — K —¢|S > B. In this case we
haveV = .#V, otherwiseV > .#ZV. Note thatV is upper-semicontinuous but not continuous for any
point(T,B,0) € Q.

Fort € [0, T) the behavior o¥ depends on which part afQ we are considering:

(a) Along the segments OA and Ol in Figure 1 it is not possibléntervene because this will
bring the proces$B, S) outside the admissible regidkdr. Actually in the points A and | there is one
admissible transaction which leads us to the origin O, bigtithcertainly unprofitable. Therefore we
haveV > .#V. Apart fromV (t,0,0) = 0, the value o¥ is not known a priori in this part ad*Q.

(b) Except for the points A and I, along the segments AB andtlid hecessary to make a trans-
action, otherwise the process could le@dr with a positive probability. Moreover the only admissi-
ble intervention brings the process to O. Consequently ldd\d = .#ZV = 0. Note thatV is upper-
semicontinuous but not continuous in A and 1.

(c) In the interior points of the segments BC and HG it is neagsto make a transaction because
one of the bounds in the short position is reached. The vdlié is not known a priori. We have
V =.4V.

(d) In the upper part of*Q, that is along the segments CD, DE, EF and FG, the threslyplaiation
valueLmax has already been reached. The valu¥ o known. If (B,0) € EF thenV(t,B,0) =U (B
(V). If (B,S) € CDUDEU{FG\F} thenV(t,B,S) = U(Lmax € T~Y). It is always optimal not to
intervene, but we also ha¥e= .#V, with £ = —Sin (7), if S<0orif S>0andS+B—-K —c|S >B.
Note thatV is upper-semicontinuous but not continuous in the poinoiFahyt € [0,T).

We give now some bounds on the value function. Side: 0, for any p € A(t,B,S), it is ob-
vious thatV (t,B,S) is nonnegative if0,T| x Q. By the problem definition we also ha¥gt,B,S) <
U ((Lmax+ K)€(T-Y), that is the value function is bounded. Moreover, as it hblds(B, S)e(T-Y) <
V(t,B,S) <U(LmaT~Y) when(B,S) ¢EF, the value function is also continuous in the segments CD,
{DE\E}, {FG\F}. Itis not difficult to show tha¥ is also bounded from above by the value function
of the same problem withl (L) = CLY and without transaction costs and solvency constrairgs, a.
Merton problem over a finite horizon without consumption @an@RRA utility function, see Merton
(1969).

PropPoOsSITION3.1 We have
V(t,B,S) <CTY (B+9)Y 9)

6:y(r+2(ag(_lr_)zy)> :

in [0,T] x Q, where



Proof. See Appendix A.1. O

The bound (9) shows in particular the{t,B,S) is continuous in(t,0,0), whereV(t,0,0) = 0,
vt € [0,T]. Now we give the precise characterization of the value foncks a viscosity solution
of (8). SinceV is not even continuous at some pointsd@ it is necessary to consider the notion
of discontinuous viscosity solution. Moreover the statastmint(BP(t), SP(t)) € Adr, Wt € [0,9P],
requires a particular treatment of the lateral boundanditimms when(t,B,S) € [0, T) x 6:Q and the
use of constrained viscosity solutions. L&8C Q) and LSCQ) be respectively the sets of upper-
semicontinuous (usc) and lower-semicontinuous (Isc)tfans defined o®. Given a locally bounded
functionu : Q — R, we will denote byu* andu, respectively the usc envelope and the Isc envelope of
u

u'(t,B,S) = limsup u(t’,B,3S) V(t,B,S) €Q
(t'B,9)e0
(t'B,9)=(t,B,5
u(t,B,S) = liminf  u(t’,B,S) V(t,B,9) €qQ.
(t,B'.9)eQ
(t'B,9)=(t,B,5)

We haveu, < u< u* anduis usc (Isc) if and only iti= u* (u= u,). In the following, unless otherwise
specified, we set= (B, S) € Q to simplify the notation.

DEFINITION 3.1 Givend cQ, a locally bounded function: Q — R, is called a viscosity subsolution
(resp. supersolution) of (8) if0,T) x & if for all (,X) € [0,T) x ¢ and¢(t,x) € C?(Q) such that
(u* — @) (T,X) = 0 (resp. (u. — ¢)(f,X) = 0) and(t,X) is a maximum ofu* — ¢ (resp. a minimum of
u.—@)oni[0,T) x &, we have

min {¢(t,x) —Z¢(T,X),u"(t,x) ///u*(t,x)} < 0 (10)
(resp.u,and > 0) (12)
On|0,T) x d.Q the value functiorV verifies the Dirichlet boundary condition
V(t,B,S) =U(L(B,S)&T-V).

To deal properly with the state constraiBP(t), S(t)) € Adr, vt € [0, 3 P], it will be necessary to require
thatV satisfies the subsolution property also on[h& ) x ¢1.Q part of the lateral boundarf@, T) x dQ
(see Crandall et al. (1992), section 7C, Oksendal and Swé62), Ly Vath et al. (2007)).

DEFINITION 3.2 We say that a locally bounded function Q — R, is ad1Q constrained viscosity
solution of (8) iINQ = [0, T) x Q if it is a viscosity supersolution of (8) i and a viscosity subsolution
of (8)in[0,T) x {QUQ}.

The next Lemma shows some properties of the non-local aprerat
LEMMA 3.1 Given a locally bounded functian: Q — R, we have:
(a) if uis lower-semicontinuous (resp. usc) thefiu is lower-semicontinuous (resp. usc)
(b) A, < (A ), and.Zu* > (A u)*
(c) if uis upper-semicontinuous then there exists a Borel mealsuiaiictioné; : £ — R such that for
any(B,S) € F



Proof. (a) and (b) can be proven in the same way as in Ly Vath et al.72@@mma 5.5. A is
upper-semicontinuous and fB,S) € F the setF(B,S) is compact the sup in (7) is reached for some
values ofé, V(B,S) € F. Moreover, ag is g-compact, we can select a Borel measurable function
&, : F — R such that (c) holds true (see Fleming and Rishel (1975), AgipeB, Lemma B). d

It is now possible to prove the viscosity property of the edflunction.

THEOREM3.1 The value functiol (t,B,S) is ad; Q constrained viscosity solution of (8) @.

Proof. Using the dynamic programming property (5-6), and propsrta) and (b) of Lemma 3.1, the
proof can be done in the same way as the proof of Theorem 5.8 Math et al. (2007). The only
difference is that in our problem it is possible to prove thbsolution property only ifQ and in the
[0,T) x 01Q part of the lateral boundary. The reason is that an admésgiblicy can now allow the
controlled process to leaw@ from the subsei0, T) x 3,Q of 0*Q. On[0,T) x d.Q the value function
will be determined by the Dirichlet type conditidf(t,B,S) = L(B,S)e (T-Y. O

As there can be many viscosity solutions of (8) the next stefp idetermine the right boundary
conditions ond*Q which are sufficient to uniquely determine the value functid’he usual way to
show uniqueness of viscosity solutions is to prove a corapartheorem between viscosity sub and
supersolution. The purpose is to show that a subsolutioowsd than a supersolution on the whole
domain if it assumes the same or a lower value at the boungfa@y However in our problem the
value ofV is not known in some part dD,T) x d1Q, such as the segments BC and HG in Figure 1.
Thus on[0, T) x d1Q we will need the viscosity boundary condition given by thbsalution property.
Moreover if we look alv* as a subsolution and & as a supersolution, along the segmdnts =
{(t,B,9 €Q:t=T,S=0,B>K} andRFr = {(t,B,S) € Q: B=Lmax+ K, S=0} the subsolution
V* is greater than the supersolutidn Therefore on the rectangular region

R={(t,B,9€Q:5S=0B>K}

we cannot hope to show thdt < V., and consequently thstis continuous irR (because by definition
V* > V,, and thus/* = V,). This will induce us to prove only a weaker comparison gptecbetween
viscosity sub and supersolutions, which holds@{R. Thus we will distinguish the cas&> 0 and

S< 0. We denote b2+, QT, the sets

Q"={(B,9€Q:S>0}, Q"=[0,T)xQ",
and by§+, Q" their closures. We also define the boundaries

QT =[0,T)xdQ T UTxQ ",
010" ={(B,9 €dQ" :L(B,S) < Lmax}, Q" =001\01Q",
%3Q =[0T)x0Q; UTxQ".

Theset—,Q,Q ,Q ,9*Q ", 3.Q~, d;Q  are defined similarly by settin§< 0.

THEOREM3.2 (Weak Comparison Principle) Assume thatU SC(Q) is a viscosity subsolution of (8)
in[0,T) x {QUaAQ}andve LSOQ) is a viscosity supersolution of (8) @= [0, T) x Q Furthermore



assume that

limsup u(t’,B,8)< liminf v(t’,B,S) V(t,B,5) €d;Q"
csup, ( ) o minfo, ( ) V(t,B,§) €d;
(t'B,.9)=(t,B.9) (t',B.9)=(t,B,)

limsup u(t’,B,S)< liminf v(t',B,S) V(t,B,S) €d;Q
(t'.B,8)eQ (tB.8)eQ" 2 (13)
(',B,S)—=(t,B,S) (',B,S)—(t,B,S)

limsup u(t’,0,0) < liminf  v(t’,0,0) Vte[0,T).

(t',B,9)eQ (t'B.9)eQ
(',B,9)—(t,0,0) (t',B',8)—=(t,0,0)
Thenu < vonQ\R.
Proof. See Appendix A.2. 0

In order to use the comparison principle to identify the oricosity solution which represents the
value function we need to describe the behavio¥ aipproaching the boundagjQ and taking into
account of the discontinuity id;QNR.

LEMMA 3.2 The value functioW verifies the following limit conditions near the bounda§Q:

lim  V(',B,S)=U(L(B,9¢TY) v(t,B,S) cd;Q\R
(t'B,9)eQ
(t',B.,8)—(t,B,9

lim  V({,B,S)=uBeTY V(t,B,0) € 3;QNR
e Do ( )=U( ) ( ) €93Q (14)
(t',B',9)—(t,B,0)

lim V(,B,S)=U((B=K)&TY) v(t,B,0) € 32QNR
e Do ( ) =U(( ) ) Y( ) € 0;Q
(t',B',8)—(t,B,0)

Proof. See Appendix A.3. |
Now we are able to give the complete viscosity charactearaif the value function.

THEOREM3.3 The value functiol (t,B, S) is continuous iQ\R and it is the uniqu@; Q constrained
viscosity solution inQ\R of (8) which verifies the limit conditions (14) and

lim _ V(,B,S)=V(t,00 =0 Vte[0T]. (15)
(t',B,9)eQ
(t/,B',8)—(t,0,0)

Proof. We apply the comparison principle theorem, usitigas a subsolution and as a supersolution.
In particular the boundary conditions (13) are verified asaditjes since (14) and (15) hold true. We
derive thatv* <V, onQ\Rand since by definitiok'* > V, we obtain immediately that is continuous
in Q\R. Now supposé/ is anotherd; Q constrained viscosity solution of (8) i@ which verifies the
boundary conditions (14), (15). By the comparison prirgiplfollows thatV* <V, < V* <V, and
thereforevV =V in Q\R. O



4. Existence and structure of the optimal trading strategy

To show the existence of a quasi-optimal impulse policy andharacterize its form we reduce our
impulse control problem to a sequence of optimal stoppingetproblems. By this reduction, first
introduced in Bensoussan and Lions (1984), it is possibliedoice the solution of a HIBQVI to the
solution of an iterative sequence of variational ineqiesdijtwhere the obstacles are explicit (see Korn
(1998), Chancelier et al. (2002), Oksendal and Sulem (2@&9carin (2009)). We denote By, the
set of admissible policies with at mast> 1 interventions, that is

An(t,B,S) = {pe A(t,B,S) : Tns1 = +oo}

and byV,(t, B, S) : Q ¢ R® — R the value function of the corresponding problem with a baghaumber
of transactions
Win(t,B,S)= sup JP(t,B,S).
peAn(t,B,S)

It is not difficult to show that increasing the number of inemtionsV,, converges t¥.
THEOREM4.1 We have lim_.V, =V forall (t,B,5) € Q.

Proof. AsAq(t,B,S) C Ax(t,B,S) C ... CA(L,B,S), it holdsV4(t,B,S) < V»(t,B,S) < .... <V(,B,9)
and lim,_,»Vy <V for all (t,B,S) € Q. To obtain the reverse inequality considersnptimal policy
pe € A(t,B,S) such that

V(t,B,S) <JP(t,B,S) +¢. (16)

SettingT; = 1 A 8P, by (1) for a.a.w there exist$1(w) such thaf,(w) = 9P (w). If we define
R(.B,S) = Eigs U (L(B™(Tn), S (Tn)) €T ™)
by the dominated convergence theorem it follows that

JPe(t,B,9) = limn_0 JN(t, B, ),

and we can choosesuch that

JP(t,B,S) < IP(t,B,9) + ¢ . (17)

Consider now the policp, = { (T, &™) },i=1,2,--- 7, settingTn 1 = © a.s.. We havy; € An(t,B,S)
and combining (16) and (17) we obtain

V(t,B,S) <JIP(t,B,S) +2¢ .
Sincee is arbitrary, it followsV < limy_»V, for all (t,B,S) € Q. O

We consider now the following iterative sequence of optistapping problems. L&B(s), S(s)) be
the uncontrolled process. We set

6= {infs>t:(B(s),S(s)) ¢Cor}, and 9 =0 AT.

and we define o@ NR3

Po(t,B,S) = Eigs |U (L(B(I),S(9)) T



that is the expected utility without interventions, stagtivith nonnegativ® andS(to be sure the process
does not exit fronAdr befored). Then we define, recursively, for> 1

Pn(t7BaS) = sup Et.,B,S[J//Pn—l(TvB(T)yS(T))XKB
€A1 (1,B,9)

+U (L(B(9),5(9)) €T xrzs | (18)

for all (t,B,S) € Q, where we denote witly the indicator function. Here#P,_1 is defined by (7) and
itisa givef function at step (note thatR, is defined inQﬂRi but all B, and (#P,-1), n > 1, are
defined inQ). To the optimal stopping problem (18) it is associated tugational inequality

Using the same techniques as in the previous section, ittiglifficult to show thatP, is the unique
constrained viscosity solution of (19) verifying the sanwihdary conditions of (8), where? P, is
replaced by.#P,_;. By the following theorem we can reduce the impulse controbfem to the
sequence (18) of optimal stopping problems.

THEOREM 4.2 For all(t,B,S) € Q andn > 1 it holds Py(t,B,S) = Vi(t,B,S). Moreover for each
(t,B,S) € Qthere existp* € Aq(t,B,S) such that

Vi(t,B,S) =JP (t,B,S) .
Proof. See Appendix A.4. a

Therefore, as lifm.»Vh = limy_« P, =V, we can compute the value function by solving the se-
quence (19) of variational inequalities. Each solu@n= P, has the meaning of the value function of
the same problem with at mosttransactions. Moreover the optimal trading strat@gydescribed in
Theorem 4.2 gives us, farlarge enough, a payoff which is arbitrarily close to the wyati one.

4.1 Numerical computation of the value function and the optipadicy

In our numerical experiments we have simplified the domaiRigure 1 as in Figure 2, i.e., we have
prolonged the segments AB and CD in Figure 1 respectivelyouthé points | and F and/e have
setL(B,S) = Lmax along the entire segments CF and FG and.(B,S) = 0 along Bl and HI. This
corresponds to assumé.(B,S) = S+ B—K —c|] for all S> 0, that is to impose a transaction to
obtain the portfolio’s liquidation value even if the long pasition in stocks is so small that it is not
convenient to clear it because of fixed cod€. SincelL(B,S) is now continuous in all the admissible
region it follows that V (t, B, S) is also continuous at the boundadQ, and therefore in all the domain.
We are quite confident that, for the small valueKoifve used in our numerical experiments, assuming
V continuous everywhere is irrelevant for the numerical ltesiiVe denote by? the numerical domain
and we se@’ =[0,T] x 2. Thus we have slightly modified the boundary conditionsestat the
previous section, setting:

e V(t,B,S) =U(Lmax€ TY), ¥t € [0, T], along the entire edges CF and FG;

e V(t,B,S) =0Vt € [0,T] along the entire edges Bl and HI.
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FiG. 2. Simplified value function domain for numerical discretiaat Coordinates of vertices as in Figure 1.

Moreover, we compute the functidhy(t,B,S), that is the expected utility without interventions,

solving the PDE
R
2 =0
ot ZR

inQ NR3 with the additional boundary conditions, wh&gs= 0 or B = 0:
e P(t,B,0)=U(BeTY);

o USZE(t,0,9) + 102F 2P (1,0,5) + %(t,0,5) = 0.

Thus we are now ready to deal with the numerical discretimadif our iterative optimal stopping
problem. Each variational inequality (19) can be solved liisarete approximation using the finite
element method. See, for instance, Achdou and Pironnedib)28allestra and Sgarra (2010) and
Marazzina et al. (2012) for the finite element method in firgrend Barucci and Marazzina (2012)
and Federico and Gassiat (2012) for applications of finieneint and finite difference techniques to
financial optimization problems. SettingV = —‘;—\t’ — 2%V, we discretize the PDE4AV = 0 with a
finite element technique based on polynomial of degree lpleduwith a Crank-Nicholson scheme.
We consider a triangular mesh onto the spgceith N nodes and a equally-spaced time grigt @ <
t1 <--- <tw=T, of W time steps. Denoting by the discrete approximation o, if (Bn,S) is a
vertex of the meshp=1,.....N, we se'[vij’n = vi(t,-,Bn,Sq). As proved in Wilmott et al. (1993) with
reference to American options, tirth discrete variational inequality can be solved backwartime
(j=W-—-1,---,0) by the following algebraic systems in the unknown vecti?rs

V=ML A >bLL g (V- M) (A —blL) =0 (20)

HereV! is theN dimensional vectov'(t;, .,.), the obstaclé j, depending on the solutiof 2, is defined

by M} , = MVI~L(t;, B, Sh), A is the Crank-Nicholson finite element matrix associatecéodperator

%4, and the vectob), is constructed using vectot ;.



Problem (20) can be solved using a Projected SOR (PSOR)talgoisee Wilmott et al. (1993). To
computevij, we used as first guess solutim‘prl and we stopped the PSOR iterations whenltfalis-
tance between two consecutive solutions falls under a gilenance (TOL). Similarly, we considered
V' a good approximation o¥ (t,B,S), the value function of our problem, when the distance betwee
v andV ! falls under another given tolerance (TOL2). In the nextisacive show numerically the
convergence of our numerical scheme when we increase thearwwhmesh nodes and time steps.

5. Numerical results for CRRA utility functions

In this section we present extended numerical results iedke of the CRRA utility function

LY
oy

with 0 < y < 1. This utility, which is the most commonly used in the liten, belongs to the class of
hyperbolic absolute risk aversion (HARA) utility functisnUsing these functions the Merton’s portfo-
lio problem without transaction costs admits closed forttsans. Therefore it is possible to compare
these exact solutions with the numerical results in thegmes of transaction costs and solvency con-
straints. The main alternative would be to consider the egptal utility which implies a constant
absolute risk aversion (see, for instance, Liu (2004)). &k, if we consider our portfolio problem
without transaction costs and exponential utility, theimpt strategy would be to maintain constant
the discounted amount of money invested in the risky assg¢piendently of investor’s wealth, which
appears to be a rather unrealistic policy (see Korn (199¥pter 3, and Merton (1969)). In all the
case studies we set the valtBgin = Smin = —20, Lmax = 100, TOL=10"° (the tolerance threshold in
the PSOR algorithm), TOL2=0.001 (the tolerance thresholeiit from the iterated optimal stopping
cycle).

The structure of the section is the following. First of alk imvestigate the form of the optimal trans-
action strategy and we describe how the transaction regioeso-trade region and the target portfolios
vary as time approaches the final horizon. Moreover we shewdhvergence of our numerical scheme.
Subsection 5.1 contains a comparative static analysisaw slow the optimal policy is influenced by
the different model parameters. Finally, in Subsection & impact of transaction costs on the value
of the final portfolio and on the frequency of trading is aal.

U(L)

In our first numerical experiment, which we use as base casesetvthe following values of the
model parameterd« = 0.1,¢c=0.01,r =0.02, u =0.06,0 = 0.4,y =0.3 andT =5.

Figures 3 and 4 show the corresponding (dark) transactigions and (white) no-trade region,
at different time instantsAlong with the Merton straight line (here depicted with a continuous
line), the two (dotted) lines inside the no-trade region represent the re-caébrportfolios, i.e. the
portfolios where it is optimal to move when the investor'siion falls in the intervention arealhe
re-calibrated portfolios are always inside the continuaton region because the intervention costs
make two consecutive transactions unprofitable. In the fobwing we will refer to the two lines
of re-calibrated portfolio as the upper and the lower targetline. The upper (lower) target line is
the set of target portfolios where it is optimal to move when e investor’s position is in the upper
(lower) part of the trade area, that is the transaction area which is above (below) the Merton
line. After a possible first transaction, made if the initial polith is in the intervention region, the
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FiG. 3. Transaction region in the plaB, S). Timet = 0, N = 5000,W = 250,K = 0.1 andc = 0.01.

FIG. 4. Transaction region in the plaiiB, S). Timet = 2 (left) -t = 4 (middle) -t = 4.5 (right), N = 5000,W = 250,K = 0.1
andc=0.01.

investor will maintain his position inside the white regimcalibrating his portfolio only if it reaches
the boundary of the dark areas. In these figures some optiaredactions have been depicted: these
are represented by the straight lines connecting the tbigglortfolios in the transaction region to the
corresponding target portfolios inside the no-trade atéwmlikely the infinite horizon case (see Davis
and Norman (1990), see Dumas and Luciano (1991), see Shrdveamer (1994)) the optimal policy
is not stationary: the transaction regions, as well as trgetgortfolios, change as time goes by. As
expected the size of the intervention regions decreasd®edsrie increases because, approaching the
finite horizon, only a large change in the portfolio compiositcan compensate the transaction costs.
However the evolution of the two parts of the transactionaegs not symmetric. The size of the lower
part decreases faster than the upper one. This revealsightiiite horizon and the bounded liquidation
region induce a bias, as time goes on, in favor of the riskdaset. For example in= 4.5 the lower
transaction region is already below the ais 0. This implies that if int = 4.5 the investor has a long
position in stock he will never buy again the stock ufte- 5. Similarly the lower target line decreases
with time towards the axiS= 0, and it is already equal to the a¥8s= 0 int = 4.5. The same kind of
liquidity preference in case of shorter investment horizean be noted if we fix= 0 and we consider a
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FiG. 5. Value function in the plangB, S): Solution att = 0. N = 5000,W = 250,K = 0.1 andc = 0.01.

variable terminal dat&, as we will do in Section 5.2. The more distant is the horiZothe lower is the
no-transaction region and the percentange of cash whidlevgesd to remain in the portfolio. This result
is consistent with the common life-cycle investment advi a young investor should hold a greater
share of stocks in the portfolio than an old investor (seednd Loewenstein (2002)). In the graphs the
Merton straight line is also depicted, which is constaninmetand it represents the optimal portfolios
for the same problem but without transaction costs and solveonstraints. It is interesting to note that
the upper line of target portfolios remains approximatejyad to the Merton line. In both Figures 3-4
the two optimal lines move down approaching to the edges @H-&h of the liquidation region (see
Figure 2). This is due to the fact that the portfolio liquidatvalue is already near 1onax = 100, the
value considered satisfactory by the investor. Probablwilidiquidate his position in short time and
beforeT, this induces again a bias in favor of cash. Fot alhd most of the value function domain, the
shape of the continuation region closely resembles a coergéng with time, containing two moving
straight lines of optimal portfolios. We conjecture thastivould be the exact shape if we considered
the same problem with an unbounded domain.g = +, i.e. the investor is never satisfied before
T). Finally in Figure 5 we show the value function associated touwr base case at timg =0, i.e.
V(0,B,S), which corresponds to the optimal policy depicted in Figure3. It has a concave shape
which is probably inherited by the concavity of the utility function.

In Table 1 and 2 we illustrate the convergence of our numisidzeme. We consider the solutions at
t = 0 increasing the number of sub-intervals of the time-ghf),(@nd the number of mesh-pointg)( In
Table 1 we compute the?-norm error assuming as exact solution the one computedMith250 and
N =5000. More specifically in the upper part of the table weNfix 5000 and we show the convergence
increasing the time grid. Conversely, in the lower part wé\fix=- 250 and we make the space grid more
dense. As expected, in both cases the solutions convergeoMa, in Table 2 we show the convergence
when we increas@/ andN at the same time; we do not assume an exact solution (an imaakalution
is not available) but we list the distances, increasing NéthndN, between two consecutive solutions
in the numerical sequence. We consider bothLthandL® relative errors. To show the convergence of



Table 1.L? distance from the solution with/ = 250 andN = 5000 at time = 0, increasingV (above) andN (below).
Distance from th&V = 250 solution, setting = 5000
W= 25 50 100 200
0.0051 0.0026 0.0012 0.0008

Distance from thé\ = 5000 solution, settingy = 250
N= 1000 2000 3000 4000
0.0032 0.0014 0.0011 0.0005

Table 2. L* andL? errors and Hausdorff distances between the transactioonse¢HD1) and the optimal lines (HD2) of two
consecutive solutions in the sequence, at time0.

w N L® L? HD1 HD2 | Iterations| CPU Time (s)
25 1000 - - - - 6 283
50 2000| 0.0324 0.0023 0.0734 0.1562 6 1578
75 3000| 0.0219 0.0014 0.0565 0.0720 5 3715
100 4000/ 0.0163 0.0011 0.0350 0.0348 5 8435
250 5000| 0.0098 0.0005 0.0291 0.0296 4 23635

the optimal control regions, we have also computed the Hatfsdistances (normalized by the length
of the domairnL) between the transaction regions and between the targétlpms of the consecutive
solutions (the Hausdorff distance is the supremum of theuwdégs of the points in one region to the
other region, and vice versa). Both Tables 1 and 2 indicaégia iconvergence of the solutions and of
the optimal regions. Finally in Table 2 we also list the numbkvariational inequalities (number of
iterations above the obstacle) which were necessary tewaettie TOL2 convergence and the CPU time
necessary for the computation. All the computation haven lpsgformed in Matlab R2011a and on a
personal computer equipped with a Pentium Dual-Core 2.79 &td 4 GB RAM.

5.1 Sensitivity analysis

Except for the parameters under investigation, in this acien the values of the other parameters are
the same as in the base case. The numerical results havelitagred settingV = 100 andN = 4000.

5.1.1 Sensitivity with respect to the transaction costdaturally enough, increasing the transaction
costs, the size of the intervention regions decreases. ®theffinite horizor, if we increaseK and

c only fewer large transactions can be profitable. Figure Gotiephe optimal regions for different
values ofK andc. Increasing the transaction costs produces a variatiomeioptimal policy which is
similar to that caused by approaching the finite horiZonThe lower part of the intervention region
decreases faster than the upper one, indicating a shifrdawhe riskless asset which is not present
without transaction costs and solvency constraints KFerc = 0.1 the lower target portfolios are made
only of the riskless asset while the upper optimal line stEdgse to the Merton oneHowever this
liquidity preference seems due only to the proportional corponent of the transaction costs. In
Figure 7 we setc = 0.01 and we vary K. It is evident that the increase of fixed transaction costs
results in an enlargement of the no-transaction region, buthe target lines remain substantially
steady and the two parts of the trade region decrease in a morgymmetric way. In Baccarin and
Marazzina (2014) some preliminary results for the case withat proportional transaction costs
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FIG. 6. Transaction area in the plaf® S). Timet =0,K = 0.01, c=0.001 (left) -K = 0.05, c = 0.005 (middle) K =0.1, c=
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FIG. 7. Transaction area in the plane(B,S). Timet =0, K =0.01, c=0.01(left) - K =0.05, c=0.01(middle) -K =0.1, c=
0.01 (right).

were presented. The numerical experiments showed that i€ = O there is only one line of re-
calibrated portfolios, which remains stable for different K and it is coincident with the optimal
portfolios without transaction costs. Here this coincidere is no longer true. We have two lines
of re-calibrated portfolios which show an independent dynanics varying the transaction cost pa-
rameters and as time passes. It is thereformteresting to observe how the optimal policy varies when
we change the relative size of the variable asith respect to the fixed componegt In Figure 8 we
setK = 0.1 and we consider different values©fSee also Figure 3. For vanishinghe lower optimal
line converge to the upper one, which is essentially the didihe, as expected. Conversely, an increase
in ¢ pull the lines apart and closer to the intervention regiofanishingK the solution tends towards
the solution of a singular control problem where the optipwlicy is an instantaneous reflection at the
boundary of the intervention region (see Davis and Norm&9(), Shreve and Soner (1994)). This
behavior of the optimal control sets, varying the relatize ©f the variable and of the fixed part of the
intervention costs, has already been noted, for a cash reareag problem (see, for instance, Baccarin
(2009)). To summarize, these numerical experiments show that fixed ahproportional transac-

tion costs are both responsible of the enlargement (reduan) of the no-transaction region, but
the presence of two target lines of optimal portfolios (andheir relative positions with respect the
Merton one and to the no-trade areas) is only due to the propoibnal costs



» o E © G w @ 20 0 S W ] F TEERES] @ 0 B ] &0 B 00 120
FiG. 8. Transaction area in the plaf® S). Timet =0,K = 0.1, c=0.005 (left) -K = 0.1, c=0.05 (middle) -K =0.1, c=0.1
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Table 3. Transaction Region in the plaiie S) (percentage) for different values of interest raje \olatility (o) and risk aversion
coefficient ¢). K =0.1,c=0.01 andT =5.

r (o) 1-vy
0.01 0.02 0.04] 03 0.4 05| 06 0.7 0.8
69.09 69.14 74.21 62.77 69.14 74.21 66.75 69.14 70.59
68.29 68.52 73.38 60.86 6852 73.95 66.18 68.52 70.34
60.83 62.03 68.43 48.56 62.03 69.97 58.47 62.03 64.79

AN O|

5.1.2 Sensitivity with respect to the other model paramete¥¢hen we modify the market parameters
o andr or the relative risk aversion coefficie(it — y) the Merton line varies its position and the no-
transaction area follows it in the same directionolbr (1— y) increase the investor will hold more of
the riskless asset because he is risk averse, andndfeases, he will hold more cash since the stock
becomes less attractive. Consequently the Merton’s lineesidown towards the ax= 0. In Table 3

we show the percentage of the transaction area on the oderatin increasing, o and(1—y). This
percentage grows in all cases, essentially because the opfmal line follows closely the Merton’s
one and the upper part of the transaction region becomesibigg

5.2 The impact of transaction costs on the frequency of tradimfy@n the value of the final portfolio

In order to get an estimate of the number of transactions rhgda investor who follows our optimal
policy we have coupled our numerical solution to a Monte €aitnulation. Precisely we have consid-
ered an agent with initial portfolio made only of caslh,= 20, Sy = 0, who behaves according to the
optimal intervention and continuation regions that we hawmputed numerically. When the investor's
position is in the continuation region, which changes dyigatty according to our numerical solution,
we simulate the evolution of the stock valBg) by a computer generated random walk (the risk-free as-
set valueB(t) grows in a deterministic way). Whenever the simulated pbetfalls into the transaction
region the agent re-calibrates its portfolio moving to tberesponding (at that time instant) optimal tar-
get portfolio and paying the necessary transaction costs.Monte Carlo simulations were performed
with 100 time steps, according to the time grid of the nunarsolution computed withV = 100 and
N = 4000.

In Table 4 we show the average and the standard deviatioreofitmber of transactions, computed
using 500000 simulations, considering increasing valfifs ap to forty years and different values for
the transaction costs. It is surprising to observe that) @xith the smallest transaction cosks £ 0.01



Table 4. Average (up) and standard deviation (down) of thebrer of transactions. Parameters: 0.02, u = 0.06,0 = 0.4, and
y = 0.3. Initial portfolio: By = 20, S = 0. Number of simulations equal to 500000.

T
K c 2 3 5 10 20 40

Average

0.1 0.01| 2.0007 2.0167 2.0952 2.6626 3.8775 6.1432
0.1 0.005| 2.0014 2.0223 2.1233 2.7154 3.9962 6.3354
0.1 0.001] 2.0030 2.0283 2.1454 2.7573 4.1726 6.4378
0.1 0 2.0052 2.0322 2.2523 28319 4.2174 6.8480
0.01 0.01| 2.0414 2.2146 2.9961 4.6006 7.6706 12.5226
0.01 0.005| 2.2142 25109 3.0501 4.8450 8.0899 13.5611
0.01 0.001| 2.2150 2.6285 3.2504 5.5152 8.9542 15.1048
0.01 0 2.2629 2.7840 3.5118 5.6233 9.9649 17.1312

Standard Deviation

0.1 0.01]| 0.0257 0.1361 0.3072 0.7238 1.1943 1.8453
0.1 0.005| 0.0379 0.1543 0.3481 0.8113 1.2589 1.8552
0.1 0.001| 0.0545 0.1664 0.3761 0.8438 1.2771 1.8743
0.1 0 0.0649 0.1988 0.4733 0.8692 1.4450 1.9174
0.01 0.01| 0.2027 0.4427 0.9364 1.6249 2.3478 3.4454
0.01 0.005| 0.4256 0.6821 0.9717 1.6285 2.3940 3.5861
0.01 0.001| 0.5263 0.7030 1.0277 1.8462 3.0124 5.8325
0.01 0 0.5287 0.8204 1.1833 1.9236 4.9104 8.7569

andc = 0), on average more than three years are necessary to havérémsasctions and that less than
five interventions are made every ten years on the overalthghéF = 40). Note that if we consider
ten thousand euros as the unit of meas#re; 0.01 means a cost of 100 euros for each transaction,
to rebalance a portfolio of initial value 20000 euros. If we think of this cost, not only as a fixed
commission, but also as the opportunity cost for the investaollect information and submit an order
to his broker, this value does not seem large.

It is also interesting to compare some alternative poligiigs the optimal one. In Table 5 we have
considered the following trading strategies:

o the risk-free strategy (RF): the agent only invests his thdalthe risk-free asset

e the Merton strategy (Mer): it is the optimal strategy withtvansaction costs. The expected utility
of the final position is given by the closed formula

EULEM), ST = Dexp(yir+ ;4= )7
S PN 2021y
o the optimal strategy (Opt): in this case we h&véJ (L(B(T),S(T)))] =V (Bop,0,T). To obtain
the average number of transactions we couple the Monte Garlolation with the numerical
solution, as described above

o the Merton strategy with transaction costs: the agentiteedds his portfolio moving to the Mer-
ton’s line when the distance between his portfolio and the iiself is bigger than 5% (MTC(5%))
or 10% (MTC(10%)) of his wealth



Table 5. Comparison of different strategies: certainty emjent and average number of transactions. Paramefters:0.01,
r=0.02,u =0.06,0 = 0.4, andy = 0.3. Initial portfolio: By = 20, S = 0. Number of simulations equal to 500 000.

c T|] RF Mer Opt MTC(5%) MTC(10%) Bar(1%)

Certainty Equivalent

0.01 3| 21.236 21.696 21.482 21.393 21.473 21.445
0.01 522103 22906 22.747 22.539 22.651 22.520
0.01 10| 24.427 26.236 26.014 25.687 25.889 25.481
0.005 3 |21.236 21.696 21531 21.480 21.511 21.435
0.005 5| 22103 22.906 22.789 22.626 22.722 22.506
0.005 10| 24.427 26.236 26.058 25.778 25.979 25.470

0 3| 21.236 21.696 21.629 21.553 21.624 21.431

0 5 | 22103 22.906 22.816 22.685 22.801 22.487

0 10 | 24.427 26.236 26.099 25.885 26.081 25.439

Average Number of transactions

0.01 3 0 0 2.21 13.42 5.44 5.23
001 5 0 o0 3.00 18.87 7.44 6.14
0.01 10 0 00 4.60 29.14 11.76 7.78
0.005 3 0 00 251 13.43 5.44 5.33
0.005 5 0 o0 3.05 18.87 7.45 6.25
0.005 10 0 0 4.84 29.14 11.77 7.83

0 3 0 ) 2.78 13.43 5.45 5.44

0 5 0 0 3.51 18.87 7.46 6.37

0 10 0 o0 5.62 29.15 11.81 8.13

e the barrier strategy (Bar(1%)): here we assume that theamsaction region is a time-independent
region delimited by two fixed barriers. The agent recaligsdtis portfolio only when his position
touches one of the two barriers and he makes the minimaktciinas necessary to stay inside the
no-trade region. We define the fixed barriers as the borderedfansaction regions that we have
computed numerically dat= 0. To avoid unbounded transaction costs, due the fixed coempon
K, we assumed that the portfolio is recalibrated towards dlet/upper barrier only if it falls
below/above the barrier by more than the 1% of the agent'$tivea

For each of the last three strategies we have simulated B0pd@skible scenarios, and thus 500000
possible values oB(T) and S(T), computing the mean value &f(L(B(T),S(T)) and the average
number of transactions. To make a more readable compansongthe different policies, in Table 5,
besides the average number of transactions, we have sheweittainty equivalent of the utility of the
final position, that i) ~1(E [U (L(B(T),S(T)))]). In this numerical experiment, wheBy = 20, =0
and at most = 10, practically no simulated path reached the thresholddation valud_,,ax= 100, as
it is also shown by the certainty equivalents which neveeerc30. This is an instance where the agent
never liquidates the risky asset befaredbecausd.mayx is too large compared to the initial wealth and
T. As expected, if we do not consider the Merton (Mer) strategghout transaction costs, the optimal
strategy is the best one, i.e., the one with the highestingrtaquivalent. It is also the policy with the
lowest average number of interventions. We also noticettiebptimal strategy and the MTC(10%)
one are close, while the Bar(1%) strategy is the worst orepitiea low number of transactions. Notice
that the Bar(1%) strategy is similar to the trading stratefsich has been proven optimal for portfolio



Table 6. Sensitivity with respect foconsidering a fixed transaction cést= 0.01: transaction region at= 0 (TR), average (Av)
and standard deviation (Std) of the number of transactionbcartainty equivalent for the optimal strategy with trantien costs
(CE). Other parameters:= 0.02, u = 0.06, ando = 0.4. Initial portfolio: By = 20, Sy = 0. Number of simulations equal to
500000.

c=01 c=0.001
y [TR(%) [ Av  Std | CE |TR(%) | Av Std | CE
T=1

0.1 0704 [ 0 0 [ 20.404] 0.820 | 2.022 0.068] 20.434
02| 0702 | 0 0 | 20.404| 0.810 | 2.016 0.056| 20.454
03| 0670 | 0 0 |20.404( 0.806 | 2.004 0.070| 20.476
04| 0639 | 0 0 |20.404( 0.789 | 2.002 0.039| 20.506
05| 058 | 0 0 |20.404| 0.758 | 2.002 0.047| 20.543
06| 0517 | 0 0 |20.404( 0.728 | 2.001 0.037| 20.590
07| 0434 | o0 0 |20.404| 0.685 | 2.000 0.006| 20.677

T=5
0.1| 0.715 | 2.003 0.037| 22.182| 0.837 | 4.923 4.292| 22.590
0.2| 0.708 | 2.003 0.034| 22.191| 0.832 | 3.342 1.056| 22.665
0.3 || 0.687 | 2.002 0.046| 22.194| 0.822 | 3.250 1.027| 22.791
0.4 0.658 | 2.003 0.042] 22.195| 0.811 | 3.141 1.007| 22.924
0.5 0.611 | 2.002 0.048] 22.195| 0.794 | 3.038 1.000| 23.116
0.6 | 0.565 | 2.002 0.055| 22.200| 0.770 | 2.945 0.926| 23.404
0.7 ] 0.499 | 2.002 0.059] 22.203| 0.745 | 2.366 0.942| 23.892
T=10
0.1] 0.727 | 4.059 1.073| 24.643| 0.839 | 6.578 4.191 25.638
0.2 0.723 | 3.705 1.124| 24.664| 0.836 | 5980 2.003| 25.775
0.3 0.705 | 3.025 0.957| 24.683| 0.826 | 5515 1.846| 26.074
0.4 0.673 | 2.553 0.986| 24.718| 0.815 | 5.012 1.998| 26.345
05| 0.632 | 2519 0.837| 24.790| 0.803 | 4.596 1.790| 26.774
0.6| 0.591 | 2.444 0.774] 24.932| 0.785 | 4.211 1.674| 27.400
0.7 0.544 | 2.207 0.854| 25.139|| 0.764 | 4.023 1.948| 28.335

optimization problems with only proportional transactmsts (see Davis and Norman (1990), Dumas
and Luciano (1991), Fleming and Soner (1993), Liu and Loeten (2002)). Thus trying to use this
kind of policy in the presence of a fixed cdstdifferent from zero clearly becomes unprofitable (and
the results are even worse if we decrease the 1% level). Wenalice that this strategy results in a
lower utility when the proportional costapproaches to zero. This rather surprising effect depends o
the increased number of transactions due to a smaller neection region, and thus on the increased
fixed transaction costs.

Finally, in order to understand how the risk aversion indexyinfluences the agent’'s behavior,
in Table 6 we report the average number of transactions fentagvho use our optimal policy with
different values ofy. We have considered = 0.01, andc = 0.1 or c = 0.001 (the other parameters
are the same considered in this section). We notice thatedsingy, i.e., considering more risk-averse
investors, both the percentage of the transaction regidnhenaverage number of transactions increase.
This is due to the fact that a more risk-averse agent prefgpay higher transaction costs to maintain
his portfolio into a less risky position.



6. Conclusions

In this paper we have investigated a portfolio selectiorbfgm for a passive investor who divides
his capital between a risk-free money market instrumentaafidancial security representing a broad
market index. At every time instant the agent must decideptioportion of his wealth to invest in
the risky asset but the presence of transaction costs mialeprfitable to trade continuously. Under
general assumptions we have characterized the value dana$i a constrained viscosity solution of
the related HIBQVI and we have proven the existence andtgteuof an optimal impulse trading
policy. Moreover we have proposed an iterative finite elennegthod to numerically solve the model
for arbitrary utility functions. In the case of a power utiliwe have shown that the no-transaction
region closely resembles a cone which is the same shape itdirsproblems with infinite horizon and
proportional transaction costs. However the presence akd fiost leads to a big structural difference
in the optimal strategy: in our model there are two lines of¢a portfolios where to move from the
borders of the no-trade region, while in the proportionalkectne agent makes the minimal transactions
to stay inside the no-trade region. By a numerical exampléawe shown that trying to implement
this second policy in the presence of a fixed cost is cleaycptimal. Unlike most of the literature
on portfolio selection in continuous time, our optimal fragistrategy is not stationary. This is due to
the finite horizon because approaching the final date theveméon costs tend to be greater than the
benefits from rebalancing. Consequently, as time goes emdkrade region increases and the target
lines move apart. Furthermore the evolution of the two pafthe transaction region and of the two
lines of target portfolio is not symmetric, showing a ligitydoreference in favor of the riskless asset as
time goes on up to the final date. Finally we have computedibeage number of transactions made
by an agent using the optimal trading strategy. Our numikesicaulations show that, even with small
transaction costs, the investor rebalances his portf@iy few times. This contrast sharply with the
continuous interventions of the Merton’s model withoutisaction costs.

References

Achdou, Y., Pironneau, O. (2008)omputational Methods for Option Pricin&lAM Frontiers in Ap-
plied Mathematics.

Akian, M., Menaldi, J.L., Sulem, A. (1996) On an investmentsumption model with transaction
costs,SIAM Journal of Control and Optimizatidsd-1, 329-364.

Akian, M., Sulem, A., Taksar, M. (2001) Dynamic optimizatiof long-term growth rate for a portfolio
with transaction costs and logarithmic utilitathematical Financéd 1-2, 153-188.

Assaf, D., Klass, M., Taksar, M. (1988) A diffusion model &gtimal portfolio selection in the presence
of brokerage feesvlathematics of Operations ResealtB) 277-294.

Baccarin, S. (2009) Optimal impulse control for a multidm®nal cash management system with
generalized cost functionBuropean Journal of Operational Researt®6-1, 198-206.

Baccarin, S., Marazzina, D. (2014) Optimal impulse contfa portfolio with a fixed transaction cost,
Central European Journal of Operational Reseag2y2, 355-372.

Ballestra, L.V., Sgarra, C. (2010) The evaluation of Amanioptions in a stochastic volatility model
with jumps: an efficient finite element method approatbmputers and Mathematics with Applica-
tions 60, 1571-1590.



Barles, G. (1994¥olutions de Viscogéitdesequations de Hamilton-JacqlCollection "Matlematiques
et Applications” de la SMAI, no.17. Springer.

Barucci, E., Marazzina, D. (2012) Optimal investment, B&stic labor income and retiremeApplied
Mathematics and Computatid18-9 5588-5604.

Bensoussan, A., Lions, J.L. (198#4hpulse Control and Quasi-Variational Inequalitie&authiers-
Villars, Paris.

Bielecki, T., Pliska, S.R. (2000) Risk sensitive asset rgangent with transaction costSinance and
Stochasticgl, 1-33.

Crandall, M.G., Ishii, H., Lions, P.L. (1992) User’s guideviscosity solutions of second order partial
differential equationsBulletin of the American Mathematical Sociey; 1-67.

Chancelier, J., Oksendal, B., Sulem, A. (2002) Combinedhststic control and optimal stopping, and
application to numerical approximation of combined statitaand impulse controRroceedings of
the Steklov Institute of Mathemati287, 140-163.

Davis, M., Norman, A. (1990) Portfolio selection with traicion costsMathematics of Operations
Research5, 676-713.

Dumas, B., Luciano, E. (1991) An exact solution to a dynanaidfplio choice problemThe Journal
of Finance46, 577-595.

Eastham, J.E., Hastings, K.J. (1988) Optimal impulse obofrportfolios, Mathematics of Operations
Research3, 588-605.

Federico, S., Gassiat, P. (2014) Viscosity charactedmatif the value function of an invest-
ment/consumption problem in presence of illiquid assktarnal of Optimization, Theory and Appli-
cations160-3 966-991.

Fleming, W.H., Rishel, R.W. (197%)eterministic and Stochastic Optimal Contr8pringer.
Fleming, W.H., Soner, M. (1993%Jontrolled Markov processes and viscosity solutji@mringer.

Gashi, B., Date, P. (2012) Two methods for optimal investméti trading strategies of finite variation,
IMA Journal of Management Mathemati28-2 171-193.

Korn, R. (1997)Optimal Portfolios World Scientific.

Korn, R. (1998) Portfolio optimization with strictly posié transaction costs and impulse contifeit,
nance and Stochasti@ 85-114.

Krylov, N.V. (1980)Controlled Diffusion ProcesseSpringer.

Kumar, S., Muthuraman, K. (2006) Multidimensional porithabptimization with proportional transac-
tion costs Mathematical Financé 6-2, 301-335.

Liu, H. (2004) Optimal consumption and investment with saction costs and multiple risky asset,
Journal of Finance.IX-1, 289-338.



Liu, H., Loewenstein, M. (2002) Optimal portfolio selectiavith transaction costs and finite horizon,
The Review of Financial Studié$-3 805-835.

Ly Vath, V., Mnif, M., Pham H. (2007) A model of optimal portio selection under liquidity risk and
price impactFinance and Stochastiddl, 51-90.

Marazzina, D., Reichmann, O., Schwab, Ch. (2012) hp-DGF&MKblmogorov-Fokker-Planck equa-
tions of multivariate evy processed3AS: Mathematical Models and Methods in Applied Sciences
22-1,1150005.1-37.

Merton, R.C. (1969) Lifetime portfolio selection under entainty: the continuous time casehe Re-
view of Economics and Statistib4, 247-257.

Mokkhavesa, S., Atkinson, C. (2002) Perturbation solutibaptimal portfolio theory with transaction
costs for any utility functionlMA Journal of Management Mathematit8-2, 131-151.

Morton, A.J., Pliska, S.R. (1995) Optimal portfolio managmt with fixed transaction costslathe-
matical Financeb-4, 337-356.

Oksendal, B., Sulem, A. (2002) Optimal consumption andfplotwith both fixed and proportional
costs,SIAM Journal of Control and Optimizatiof0-6, 1765-1790.

Oksendal, B., Sulem, A. (200Applied Stochastic Control of Jump Diffusigfiglniversitext” Collec-
tion, Springer.

Shreve, S., Soner, M. (1994) Optimal investment and conSampvith transaction costdnnals of
Applied Probability4, 609-692.

Wilmott, P., Howison, S., Dewynne, J. (1993ption Pricing: Mathematical Models and Computatjon
Oxford Financial Press, Oxford.

A. Proofs

A.1 Proof of Proposition 3.1

We setZ(t,B,S) :=Ce&(T-V (B+9)". The inequality (9) holds true i x Q asV(T,B,S) =U(L(B,S)) <
CL(B,9)Y <C(B+9"andin[0,T) x (0,0) because here we havét,0,0) = 0. Moreover, inQ\ {0},

ZverifiesZ > .#Zand—% — £7 > 0. Indeed#Z = —1if (B,S) ¢ F, . #Z<CTY (B+S-K)Y <

Zif (B,S) € F, and, differentiatingZ, it is easy to verify thal‘f,—f +.£Z < 0in Q\{0}. Now con-
sider an admissible policp € A(t,B,S), for the controlled process starting ire [0,T) with values
(B,S) € Q\ {0}. We definer§ =t and, almost surely)’(w) = max {i > 0: 1"(w) < IP(w) }. Apply-

ing the generalized dfs formula to the functioZ, fromt to 9P, we have:

Z(9P,BP(9P),SP(9P)) = Z(t,B,9) + °" (% + 2Z)ds+ *° 0SZ dW(s)+
+30(Z(5,B(1; ) — & —K —c|&|,S(17) + &) — Z(1,B(1,), (1)) -
Since% +.£Z < 0andZ > .#Z it follows that, a.s.,

o 9z
Z(8°,BP(9P), P(9P)) < Z(t,B, S)—I—/t oSS AW(S) .



Taking expectations, the stochastic integral vanishese% is bounded, and we obtain
Z(t,B,S) > E[Z(8P,BP(8P),SP(8P))] VpeA({t,B,S).

Therefore
Z(t,B,S > sup E[Z(9P,BP(9P),P(9P))]
peA(t,B,S)
—  sup E[C(BP(8P)+SP(8P))el(T-9)]
PEA(t,B,S)
> sup JP=V(,B,9.
peA(t,B,S)

A.2 Proof of Theorem 3.2

To prove the weak comparison principle, we adapt our prolethe techniques in Akian et al. (2001),
Barles (1994), Ly Vath et al. (2007), Oksendal and Sulem Z20@iving all the necessary preliminary
definitions and results. To prove comparison results foosgé@rder equations is useful to give equiva-
lent definitions of viscosity solutions in terms of parabaecond order super and subdifferentials, see
Crandall et al. (1992). We will denote hy’? the set of all 2« 2 symmetric matrices and, when it is
convenient, by the couplgB, S) € Q.

DEFINITION A.1 1) The set of parabolic second order superdifferentiisfunctionu: Q — R at the
point (t,x) € Q is defined by

DAyt — {(q,p,A)eRszxyZ:
t+h —u(t,x) —gh— py— 2Ay-
limsup u(t+h,x+y) —u(t,x) 2q Py—3 yygo (21)
(hy)+0 I +1y]
(t+hx+y)eQ

2) Atriplet (g, p,A) € R x R? x.#? belongs td5+(1’2>u(t, x), the closure oD+ (12 u(t, x), if there exists
a sequencém, xm) converging tq't,x), and another sequence

(Qm, Pm, Am) € D+(l72)u<tm7xm>
converging to(q, p,A) asmtends to infinity.

The seD~(1?)u(t,x) of parabolic second order subdifferentialsiofQ — R at (t,x) € Q is defined
in a symmetric way using the liminf and the inequality in (21) and the definition of its closure
D " u(t,x) is analogous to the definition &+ u(t, x).

DEFINITION A.2 Givend C Q, alocally bounded function: Q — R is called a viscosity subsolution
(resp. supersolution) of (8) ii®,T) x & if

min{—q— rBpr— USSR — %UZSZAZZ,U*(LX) —//u*(t,x)} <0

(resp.u,and > 0)

A1 A

for all (t 0,T)x O A=
orall () € 0.7) <0, @PA= |

]) eD My (t,X) (resp.ﬁf(l’z) U (t,X)).



In order to prove the weak comparison principle it is usefublbtain strict viscosity supersolutions
of (8)inQ=10,T) x Q.

LEMMA Al Fixd' >0= y(r + 22‘;(;2;) and consider the smooth perturbation functign B, S) =

@ (TY(B+9)Y. Letv e LSUQ) be a viscosity supersolution of (8) @. Then for anye > 0 the Isc
functionve = v+ £g s a strict viscosity supersolution of (8) in any compactGet Q. This means that
for any compacG C Q there exists a constapt> 0, depending o1, such that

min{qupluSQ 70282A22,vg //lvg} >ep

forall (t,B,S) € G, € > 0 and(q, p,A) € D *?v,(t,B,S).
Proof. From the definition (7) we have, far> 0,
M+ EMY > Mg

and thus
— MV ZN— M+ E(g— A7) . (22)

Sincev is a supersolution it holds— .#Zv > 0. Moreover from (7) and the definition dfit follows

e T-V[(B+9)Y - (B+S—k)Y] if (B,Ser

g(t,B,S)—///g(t,&S)>{ 1 i]:c (B,S¢F .

Hence for any compact C Q there existg; > 0 such thag — ///g > py for (t,B,S) € G. Combining
this with (22) we obtairvg — .#Vv, > €p; in G. We consider nov»L — 9. We have

ag (T , B+usS 1 , &
- - = B+9Y|d — —=yy-1)0"—= 23
and, settmh =da, B+S = (1—a), itis not difficult to see thad’ > y(r + 2572(l>y)> is sufficient to
get—— — 29> 0, whenB+ S> 0. Therefore for any compa@ C Q there existg, > 0 such that

—@ —Zg> ppforall (t,B,S) € G. Sincevis already a supersolution of (8), we obtain that

—q-rBpr—uSp— %0232A222 Ep2

for all (t,B,S) € G and(q, p,A) € 5_(1’2)vg(t, B,S). Thereforev; is a strict viscosity supersolution of
(8) in any compact séb C Q. (]

Now it is sufficient to prove the weak comparison principlésmEen a viscosity subsolutianand a
strict viscosity supersolutione = v+ ¢ f, for all € > 0, because < v in Q\R will follow in the limit
€] 0. We show the result first reasoning@f. Let u andv be as in theorem 3.2. We redefine the
supersolutiorv on *Q* by

v(t,B,S) = liminf v(',B,S Y(t,B,S) € 9*Q", 24
©BS= Iminf W'B.S) V(B9 ecoQ (24)
(t'B.9)—(t,B.S



and we still denoter this function. Now we consider the difference- vg in 6+, and we argue by
contradiction supposing that
m= sup u—vg>0. (25)
tB,5eqQ"

Sinceu— Vg is u.s.c,@+ is compact and the boundary conditions (13) hold true, theimmam m is
attained in some poirito, o) € {[0,T) x {QT U Q*}}\ {0}. To obtain a contradiction we apply the
Ishii’'s technique redoubling the variables and penalizirig doubling, see Crandall et al. (1992) and
Barles (1994). First suppost, %) € QT and consider the test functions ficg 1

q)l(tvxax/) = U(t,X) _V&‘(tvxl) - ¢i (t,X,X’),
where ;

di(t,x,X) = \t_t0|2+|x_xo\4+é x—X].
As @,(t,x,X) is uscinQ ", there existsf, %, %) € Q" such that

m = sup wl(taxvxl):q)l(fla)zh)zf)v
txx)e0T]xQ " xQ"

and, at least for a subsequen(ie %, %) converges to somgy, %o, %) € 6’. By definition we have
m<m < u(fi, %) —ve(fi,%),

and it is not difficult to show that, approachintp infinity, we obtain

fo=to, Xo =% =%
m-—m (26)
51%—%| = 0.

Therefore we can apply Ishii's lemma to the interior maxim@@iki, %) € [0,T) x Q" x Q* of @, see
Theorem 8.3 in Crandall et al. (1992). There egisf € R, p, p’ € R? andA, A’ € .#? such that

(a,p.A) e D" Mud, %) and (o, p A) e D My (6, %),

where
A(% —X0) |% —Xo2 +i(% — %) (27)

andA, A’ are such that

A 0 2 oo 1% .\
|: 0 A/ :| g dxax/(tlvxhxi,)+T (aXdX/(thXhXi/)> . (28)
The subsolution property afin (fi,%) and the strict supersolution propertywfin (i, %), imply that
. X a 1 54 PN £ oo
mln{—q—rBi pL— US pz—éozazAzz, u(ti,xi)—///u(ti,xi)} <0 (29)

H / S A & 1 S / £ o £ o
mm{q —1BipL — u§p; — 50°5%A, zs(tmé)///zs(tmé)} > £p. (30)



If u(i,%)—.2u(fi,%) < 0in (29), then, combining witlz (i, %) — #z(fi,%X) > ep due to (30), we
obtain
m < U(fi,)’zi) _Vg(fhii/) < %U(ﬂ,)’zi) _‘%Z\E‘(flv)’z:) —&p.
Using Lemma 3.1 and (26), whegoes to infinity, we have
M < .ZU(to,Xo) — . Z¢(to,%0) — €0 -

Since by Remark 2. (xo) is compact, if it is not empty, and is usc, then there exisig such that
A u(to,Xo) = U(to,Xy) and we obtain a contradiction using the definitionsnand.#

m < U(to, Xg) — Ze (to, Xg) —€P < M—¢€p .

Therefore it must be-q— rBipy — uSp2 — %O’ZSZAZZ < 0in (29), and, combining with-o —rB/p; —
uSp, — 10282A,, > £p of (30), we obtain

—(@—d)—r(Bip1—Bipy) — u(Sp2—Sph) — %Uz(ézAzz— §2Ah)) < —¢p . (31)

By (26) and (27), aggoes to infinity,(q— ), (Bip — B/p}), (§p2— §p5) converge to zero. Moreover
by (28) it follows

(§FA2—SA5) < B, (32)
where 5
_ °¢i - % . .
B=s la XIX (6, %0,%)+ T ((7 X (L, |aX/)) ]Si (33)
with s =[0,5,0,§]. We have
%9 . ., ihb+Q il
axan 1-%:%) = { Sil il } (349

whereQ; = 8|%; —x0|2|2 +8(% —Xo) (% — xo)T andl; is the (2 x 2) identity matrix. Substituting (34)
into (33), after some computations we obtain

Bi:3i(§—§)2+s<{ f%i 3 }+H%‘2 8D§- (35)

By (26) and (35),3 also converges to zero agoes to infinity and therefore (31) and (32) lead to
another contradiction whein— . Therefore we have shown that the maximiggrxo) of (25) can-
not belong toQ™. The more difficult case ,when we suppose the maximiizgro) is on the border
{[0,T) x 21Q7}\ {0}, can be faced as in Oksendal and Sulem (2002) and Ly Vath e2G)7] using

a technique proposed in Barles (1994) which assumes somkaneg of the boundary. Specifically if
we denote byd(x) the distance fronx to dQ, this distance must be twice continuously differentiable
in a neighborhood ofg. It can be shown as in Ly Vath et al. (2007) that this regujdstsatisfied on
the border{[0,T) x 1Q"}\ {0} . By (24) there exists a sequenggex) in Q" converging to(to, Xo).
Definea;j = |tj —to|, ¥ = |% —Xo| and consider, as in Ly Vath et al. (2007), the test functians £ 1

@ (t,t', %, X) = u(t,x) — Ve (t',X) — i (t,t',x,X), (36)



where

o 2 a =P =X de)
Bi(t,t,x,X) = [t —to] "+ [x—Xo| "+ 20 + 2y + (d(xi) 1) :
It is not difficult to show that in the maximizéf;,{/, %, %) of @, the point¢ always verifiesi(%) > 0.
Therefore we can still use the strict supersolution propefit in (f/,%). Applying Ishii's lemma to the
point (fi,f,%, %) and repeating the preceding arguments with the test fur({86) we obtain again,
by contradiction, that it must ba > 0. Finally to getu < v also inQ™\Rit is sufficient to redefine the
subsolutioruon d*Q~ by

v(t,B,S) = limsup Vv(t,B,S) V(t,B,S cd‘Q
(t',B,9)eQ"
(t',B,9)—~ (B9

and to repeat the same proof@f in Q .

A.3 Proof of Lemma 3.2

First of all we conside(t,B,S) € ;Q\R. SinceU (L(B,S)e¢(T-Y) is continuous int,B,S) € d;Q\R
and, by construction, it always holds(t’,B’,S) > U(L(B,S)e(T-1)), it holds for any(t,B,S) €
J;Q\R .
Vi(t,B,S = liminf V(' ,B,S)>U(L(B,9TY). 37
(tBS= lminf V({t'B.S)>U(LB ) (37)
(V,B,8)—(t,B,9)
Now let
V*(t,B,S) = limsup V(t',B,S)
(t'B,9)eQ
(t'.B,9)—=(t,B,9)

and(tm, Bm, Sm) be a sequence i@ such that

lim V(t',B,S)=V*t,B,S).
(th,Bm,Sn)—)(t,B«,S)
By (6), for anymthere exists a quasi-optimal poligl' = {(t™, &™)} such thatp™ € A(tm, Bm, Sn) and
V(tm, Bm, Sm) < J7" (tm, Bm, Sm) + &. Denoting the controlled proce¢BP",S”") by XM it follows (here
IM=TA0""
m 1
V (tm By Sn) < Bty | U (LX) ™) | 4=

As it is always optimal not to intervene ™ we can assumg™ # 3™, Vi. DefiningAX{" = X™(s) —
XM(s7), wheres >ty andX™(t,) = (Bm, Sn), we have

om om

XT(9™) = XM(to) + AX + / a(X™(s))ds+ / BX™(S)dWe+ T AXT  (38)
tm -

tm<s<d™M

wherea (X™) = [rBP", uS”"] and B(X™) = [0,0S""]. Since(tm,Bm,Sn) — (t,B,S) € d;Q it follows
thatd™ —t, converges a.s. to zero whan— «. Thus the two integrals in (38) vanish becad$&e Q
is bounded. Moreover the last summation also vanishes bedha jump sizes are uniformly bounded



and the number of interventions aftgy and befored™, converges to zero ag — 3™M. The first
differenceA X, at least for a subsequence, converges to sbiewhenm —; o. Finally, approaching
mto infinity in (A.3), by the dominated convergence theoremolvtain

V*(t,B,S) <U(L((B,S) +AX)eTY) <U(L(B,9)eTY), (39)

and therefore the first condition in (14) is true.(1fB,0) € d;QNRand(t’,B’,S) € Q" converges to
(t,B,0) from aboveR, we have

lim  ULB,S) T =uBdTY),
(t/,B",9)eQt
(t',B',9)—(t,B,0)

and we can repeat the same reasoning a&f&S) € d;Q\R. However, if(t',B',S) € Q converges
to (t,B,0) from belowR we have

lim  U(LE.S) T =u(B-K)TY
v Do (L(B,S) ) =U(( ) )
(t',B,8)—(t,B,0)

and, by the same procedure used before to obtain (37) andW8%Yet

VG (£,B,0) = limsup V(t',B,S)<U((B—K)&T)
(t'B,8)eQ-
(t',B',9)—(t,B,0)
< V,o-(t,B,0)= liminf V(' ,B.S).
o LBO=" fmnf v )
(t/,B",9)—(t,B,0)

A.4 Proof of Theorem 4.2

We first show thaf, >V, for any (t,B,S) € Q. Let p € An(t,B,S), with p = {t°,&"}i—1... n, and
(BP,SP) the corresponding controlled process. Singd3,_; is given at stem, the functionP, is, for
anyn, the value function of an optimal stopping problem. By usimg dynamic programming principle
for the value functions of optimal stopping problems - seaiér 3, Section 1, in Krylov (1980) - it
can be shown, as in Corollary 3.7 in Chancelier et al. (20D2),the process

Zy(s) =Pa(sn 9P, BP(sA8P),SP(sASP)), s>t

is a supermartingale, for amyand any given stopping timg > t. From the optional sampling theorem
it follows that ift < a3 < o are stopping times then we have

Eips [Pn(al/\ﬁp, Bp(alASp),Sp(al/\ﬁp))]
> Eps [Pn(az/\ﬁp,Bp(azAﬁp),S"(az/\ﬁp))] . (40)



DefineTo =0, T = 1° A 8P and let(BP(s),SP(s)) = (B(s),S(s)) in any interval[Tj,Tj,1). By (40) and
the definitions (7) and (18) we obtain fpe=0,....,n—1

Ees [Po- (T}, B(T)), ST)] > B [Pro(Tj:1.B(T}), S(T}0)|
=Eps {Pn i(Ti+1,B(Ty4), ST ) } 3 <O

+EpBs {Pn—j(THl»B( i+1) S(T]H))} XeP y>9P

>EpBs [t///Pnfjfl(THl» B(lel)aS(lel))} XiP_<ov

+Eips |:Pn7jfl(Tj+lv B(Tj 1), S(TJ_H))} XtP

> Eigs [Phoj-1(Tj+1,B(Tj+1), S(Tj+1))] -

Summing up all these inequalities frops= 0 to j = n— 1 we obtain

]+1|>79p

P(t,B,S) > Ei s [Po(Tn, B(Tn), S(Tn))] -

By property (40) we also have

Ecos [R(Tn,B(Tn) S(Tw)) > Evas [R(9P. B(9P), 5(97)]
= Eies |U(LBEP).SOP)eT )| = (1B

Thus we have shown th&(t,B,S) > JP(t,B,S), Vp € Aq(t,B,S) andP, > W, V(t,B,S) € Q.
To obtain the reverse inequality we build an optimal politye An(t,B,S) such thatl® (t,B,S) =
Pa(t,B,S). First of all, let us define the control sets

G={(tB9SecQ:R(tBS =27P 1B}, i=1--,n

Moreover, letl; be the set
l1={3 >s>t: (s,B(s),S(s)) €Cn}.

We choose; such that

. infly ifl;£0

1= +o if I = 0
andé; is given by
g [ GBI )SE) i<
! arbitrary if 1 = oo

whereég 1(B S) is defined in Lemma 3.1 (c). liy, oz are stopping times such tha a1 < a» < 17,
it follows by the dynamic programming principle that (40cbenes an equality. See Corollary 3.7b in

Chancelier et al. (2002) and Chapter 7 in Oksendal and SWé0vj. From this fact and the choice of
(17,€71), all the inequalities in (A.4) become equalities and, béihe: 15 A 3, we obtain

Pa(t,B,S) = Et g s[Ph-1(T1,B(T1), S(T1))]. (41)



Now we define the policy* recursively by
I — infl; ifl;#0
P71 4w ifli=0
&= { Eénfi(B(Ti*i),S(Ti*i)) if TF < oo
|

arbitrary if ;" = oo
fori=1,...,n, with 1j = 0 and wherd; is the set
= {79 >s>10 4 (5B (), (s)) € an,i} .
By the same argument of (41) we have
Ecas[Pri(T,BY (T)),S” (T7))] = Eegs[Pri-a(Ti1,B” (T111), S (T110))],
With T =1 A9 P, Considering all the equalities (42) we conclude the proof since

Pn(th7S) = Et,B,S[PO(TrvBp*(T;)7sp*(T;))]
Eigs[P(97,B(9P),S(8"))]
= EgslU(LBEP),SOP )T =37 (t,B,S).

(42)



