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Passive Portfolio Management over a Finite Horizon with a Target
Liquidation Value under Transaction Costs and Solvency Constraints

Stefano Baccarin∗ & Daniele Marazzina† ‡

We consider a passive investor who divides his capital between two assets: a risk-free money market
instrument and an index fund, or ETF, tracking a broad market index.We model the evolution of the
market index by a lognormal diffusion. The agent faces both fixed and proportional transaction costs
and solvency constraints. The objective is to maximize the expected utility from the portfolio liquidation
at a fixed horizon but if the portfolio reaches a pre-set target value then the position in the risky asset
is liquidated. The model is formulated as a parabolic impulse control problem and we characterize the
value function as the unique constrained viscosity solution of the associatedquasi-variational inequality.
We show the existence of an impulse policy which is arbitrarily close to the optimal one by reducing the
model to a sequence of iterated optimal stopping problems. The value function and the quasi-optimal
policy are computed numerically by an iterative finite element discretization technique. We present ex-
tended numerical results in the case of a CRRA utility function, showing the non-stationary shape of
the optimal strategy and how it varies with respect to the model parameters. The numerical experiments
reveal that, even with small transaction costs and distant horizons, the optimal strategy is essentially a
buy-and-hold trading strategy where the agent recalibrates his portfoliovery few times.

Keywords: Dynamic Trading Strategies, Passive Portfolio Management, Quasi-variational Inequalities,
Solvency Constraints, Transaction Costs, Viscosity Solutions

1. Introduction

We consider a portfolio problem for an investor who pursues apassive investment strategy making no
attempt to “beat” the market. Our agent chooses a broad market index, such as the S&P 500, as his risky
portfolio and divides his capital between it and a risk-freesecurity. This strategy is easy to implement
trading only two financial securities: an index fund, or ETF,representing all the stocks in the index,
and a money market instrument, such as Treasury Bills. We will model the evolution of the market
index, and therefore of the risky security, by a geometric Brownian motion. The investor’s objective is
to maximize the expected utility from the portfolio liquidation at a given terminal horizon. However
our investor has a prudent attitude and if the portfolio’s value reaches a pre-set upper bound then he
liquidates the risky asset, bearing no more risk up to the final date.

In his seminal article, Merton (1969) first developed a continuous time model to find the dynamic
optimal strategy for an investor managing a portfolio of risky assets, whose prices evolve according
to geometric Brownian motions. Since then, research in thisarea has focused on different aspects,
aiming to make the mathematical model closer to the real market. It is well known that, in the real
economy, investors face nontrivial transaction costs, which influence their trading policies. It is not
possible to rebalance a portfolio in a continuous way, as assumed by Merton, and margin requirements
and bounds on the open short positions are commonly present.Most of the literature on portfolio
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optimization with transaction costs considers the problemof maximizing the cumulative expected utility
of consumption over a infinite horizon, with proportional transaction costs. See for instance Davis and
Norman (1990), Shreve and Soner (1994), Akian et al. (1996),Kumar and Muthuraman (2006) and,
in case of small transaction costs, Mokkhavesa and Atkinson(2002) where the optimization problem
is solved for arbitrary utility functions using perturbation theory. The same infinite horizon problem
but with fixed and proportional costs has been studied in Oksendal and Sulem (2002) and Liu (2004).
A second class of articles studies the problem of maximizingthe long-term growth rate of portfolio
value. See Morton and Pliska (1995) for a problem with transaction costs equal to a fixed fraction
of the portfolio value (“portfolio management fee”), Assafet al. (1988), Dumas and Luciano (1991),
Akian et al. (2001) for models with proportional transaction costs, and Bielecki and Pliska (2000) in
the more general framework of risk-sensitive impulse control. In Gashi and Date (2012) a completely
different approach is adopted: in order to reduce the variation in the asset holdings and the consequent
proportional transaction costs, the trading strategies tobuild optimal portfolios are constrained to be of
finite variation. Fewer papers consider a portfolio optimization problem with transaction costs over a
finite horizon. Liu and Loewenstein (2002) consider proportional transaction costs and approximate the
value function by a sequence of problems with exponentiallydistributed horizons. However for a given
terminal date the optimal trading strategy is described by astationary policy. In Eastham and Hastings
(1988), Korn (1998) both fixed and variable transaction costs are considered and the model is solved
by using impulse control techniques. These last articles use verification theorems to characterize the
value function and the optimal policy and, apart from some simple cases, only approximate the solution
by an asymptotic analysis. In the recent paper by Ly Vath et al. (2007) the authors consider a portfolio
optimization problem over a finite horizon with a permanent price impact and a fixed transaction cost.
The main result in Ly Vath et al. (2007) is a viscosity characterization of the value function, but neither
a characterization of the optimal policy nor a numerical solution of the problem is given.

To deal with the fixed component in the transaction costs we formulate our model as an impulse con-
trol problem, associated by the dynamic programming principle to a Hamilton-Jacobi-Bellman quasi-
variational inequality (HJBQVI). The features of our stochastic control problem lead to consider a
parabolic HJBQVI in two variables and time, and to impose state constraints on the space variables.
To characterize the value function we consider, as in Akian et al. (2001), Oksendal and Sulem (2002),
Ly Vath et al. (2007), the very general notion of discontinuous constrained viscosity solutions. In Sec-
tion 3 of this paper, by means of a weak comparison principle,we show that the value function is the
unique constrained viscosity solution of the HJBQVI verifying certain boundary conditions, and that it
is (almost everywhere) continuous. These results are summarized in Theorem 3.3.

To show the existence of an optimal trading strategy and to describe its structure, in Section 4 we
decompose our impulse control problem into a sequence of iterated optimal stopping problems (as in
Chancelier et al. (2002), Baccarin (2009)). This reduction, first introduced in Bensoussan and Lions
(1984), has both a theoretical and a computational interest. It allows to represent the value function by
the limit of a sequence of solutions of variational inequalities. Moreover it makes possible to charac-
terize a Markovian quasi-optimal policy which is arbitrarily close to the optimal one. We propose an
iterative finite element discretization technique to solvenumerically this sequence of variational inequal-
ities, and therefore to compute the value function and the optimal policy for arbitrary utility functions.

In Section 5 we present extended numerical results for our model in the case of a constant relative
risk aversion (CRRA) utility, which is the most commonly used utility function in expected utility
maximization problems. We analyze the transaction regions, the target portfolios, i.e., the portfolios
where it is optimal to move from the transaction regions, andhow the agent’s optimal strategy varies
as time goes on and for different time horizons. To the best ofour knowledge this is the first paper



where a non-stationary optimal policy is fully described for a portfolio selection problem in continuous
time. We show explicitly how the transaction regions and thetarget portfolios change, in a asymmetrical
way, as time passes up to the finite horizon. Sensitivity analysis with respect to the market and agent’s
parameters and a comparison between our optimal strategy and others suggested in literature is also
provided. Our numerical results show that the transaction costs have a dramatic impact on the frequency
of trading of an optimal policy. This phenomenon has alreadybeen noted, in a qualitative way, in
Dumas and Luciano (1991), Morton and Pliska (1995), Liu and Loewenstein (2002) and Liu (2004). The
optimal strategy is essentially a buy-and-hold trading strategy where the agent recalibrates his portfolio
very few times, in contrast with the continuous interventions of the Merton’s model without transaction
costs. In the Appendix we collect the more long and technicalproofs of the results.

2. The model formulation

We denote byS(t) the value invested by the agent in the stock market index at time t, and byB(t) his
amount of money invested in a risk-free asset, such as Treasury Bills. The initial wealth int = 0 is given
by (B0,S0). The valueS(t) evolves as a geometric Brownian motion

dS(t) = µS(t)dt+σS(t)dW(t), S(0) = S0,

whereWt is an adapted Wiener process on the filtered probability space (Ω ,F,P,Ft), verifying the usual
conditions. The risk-free asset grows in a certain way at thefixed rater

dB(t) = rB(t)dt, B(0) = B0.

At any time the investor can buy (ξ > 0) or sell (ξ < 0) the valueξ ∈ R of stocks, reducing (or in-
creasing) correspondingly the the investment in the risk-free asset. However to make a transaction it is
necessary to bear the associated transaction costsC(ξ ), which we assume of a fixed plus proportional
type

C(ξ ) = K+c|ξ | , K > 0, 06 c< 1 .

These costs are drawn immediately from the risk-free asset:if the valueξ of stocks is bought (or sold)
the variation in the risk-free asset is given by−ξ −K−c|ξ |.
A portfolio control policyp is a sequence{(τi ,ξi)} , i = 1,2, · · · , of stopping timesτi and corresponding
random variablesξi , which represent the value of stocks bought (or sold) inτi . We define a policy as
feasible if it verifies the following conditions:















τi is aFt stopping time
τi 6 τi+1 ∀i
lim i→+∞ τi =+∞ almost surely
ξi is Fτi measurable .

(1)

Note that conditionτi → ∞ a.s. implies that the number of stopping times in any boundedtime interval
is almost surely finite (τi =+∞ for somei < ∞ is possible, it means a policy which consists of at most
i−1 transactions). Starting from the initial amounts(B0,S0) of the two assets int = 0, the dynamics of
the portfolio(Bp(t),Sp(t)), controlled by policyp, is given by the following set of stochastic differential
equations:

{

dS0(t) = µS0(t)dt+σS0(t)dW(t) , S0(0) = S0

dB0(t) = rB0(t)dt , B0(0) = B0,
for t ∈ [0,τ1] (2)



and, fort ∈ [τi ,τi+1], i > 1,
{

dSi(t) = µSi(t)dt+σSi(t)dW(t) , Si(τi) = Si−1(τi)+ξi

dBi(t) = rBi(t)dt , Bi(τi) = Bi−1(τi)−ξi −K−c|ξi | .
(3)

Whenτi < τi+1, we define(Bp(t),Sp(t)) = (Bi(t),Si(t)) for t ∈ [τi , τi+1). If we have, for example,
τi−1 < τi = τi+1 = ...= τi+n < τi+n+1, then we set

{

(Bp(τ−i+n),S
p(τ−i+n)) = (Bi−1(τi+n),Si−1(τi+n))

(Bp(τi+n),Sp(τi+n)) = (Bi+n(τi+n),Si+n(τi+n))

where(Bp(τ−i+n),S
p(τ−i+n)) are the left limits int = τi = ... = τi+n. The resulting controlled process

(Bp(t),Sp(t)) is cadlag and adapted to the filtrationFt .
A fundamental notion in our model is the liquidation value ofthe assets. We define the liquidation

valueL(B,S) of the portfolio(B,S) as

L(B,S) =

{

max{S+B−K−c|S| ,B} if S> 0
S+B−K−c|S| if S< 0 .

It represents the value when the long or short position in stocks is cleared out (if S> 0 but S−cS< K it
is not convenient to close the long position in stocks because of the fixed costK and the liquidation
value is simply the amount ofB). Note thatL(B,S)<B+S, except forS= 0, and that every transaction
cannot increase the liquidation value of the portfolio, that is L(B,S) > L(B− ξ −K − c|ξ | ,S+ ξ ),
∀ξ ∈ R (the equality holds only ifL(B,S) = S+B−K − c|S| andξ = −S). Besides the transaction
costs, our investor must face another kind of constraints. We assume that there are bounds on the
open short positions and that the portfolio liquidation value must be greater than zero. This kind of
solvency constraints correspond to the margin requirements required by brokers to allow an investor to
buy stocks on margin or to shortsell securities. Therefore the set of admissible portfolios is given by the
closed regionAdr⊂ R2,

Adr=
{

(B,S) ∈ R
2 : (L(B,S)> 0)∧ (B> Bmin)∧ (S> Smin)

}

.

HereBmin < 0 andSmin < 0 are the bounds in the short position in the risk-free asset and in the risky
security, respectively. We assumeB0 > Bmin, S0 > Smin and L(B0,S0) > 0. The admissible region
is depicted in Figure 1.The portfolios inside the triangle OAI in Figure 1 are of course solvent
portfolios because bothSand B are positive but they are instances of the case where the amount
of S is so small that it is not convenient to close the long position in stocks because of the fixed cost
K. When S is negative, that is a short position in stocks is open, it is mandatory to close this short
position to liquidate the portfolio. In this case it is necessary to buy stocks and the fixed costK
will always be paid. All this explains the corners at the points A and I of the admissible region:
we haveL(B,S) = 0 along the segments AB, AO and HI (except in the point I) andL(B,S) = B on
the segment IO.The investor’s preferences are represented by a continuous, increasing, utility function
U : R+ → R+, with U(0) = 0 . We assume thatU satisfies, for someC > 0 and 0< γ < 1, the upper
bound

U(L)6CLγ . (4)

Note that we are not assuming a particular form or the concavity of the utility function and that (4) is
only an upper bound. The objective of our investor is to liquidate his portfolio at a fixed time horizon



FIG. 1. Admissible region (left) and bounded value function domain (right). The points in the figures have coordi-

nates A= (0, K
1−c), B= (Bmin,

K−Bmin
1−c ), C=

(

Bmin,
−Bmin+K+Lmax

1−c

)

, D=
(

Lmax,
K

1−c

)

, E= (Lmax,0), F= (Lmax+K,0), G=

(−(1+c)Smin+K+Lmax,Smin), H= (−(1+c)Smin+K,Smin) and I= (K,0).

T > 0. This means that the problem is to maximize the expected utility of the portfolio liquidation value
at the terminal dateT. However if the portfolio reaches a threshold liquidation valueLmax, at a time
t < T, then the agent is satisfied. He liquidates the risky asset int and invests allLmax in the risk-free
asset up to the finite horizonT.

REMARK 2.1 This assumption has a natural financial meaning: the investor has a target value for his
portfolio and if this value is reached before T, then he is notinterested in holding the risky asset any
longer and in bearing the associated risk up to the final date.Of course if Lmax is set to a too large
value with respect to the initial wealth(B0,S0) and the horizon T , the target portfolio will never be
reached and the investor maximizes the expected utility in Tusing both assets. Indeed, for theoretical
and computational purposes, the problem without a target liquidation value can be treated as the limit
case, letting Lmax→+∞.

We define the open control regionCor

Cor=
{

(B,S) ∈ R
2 : L(B,S)< Lmax

}

and byCor its closure.Cor is the region where it may be useful to rebalance the portfolio because the
threshold valueLmax has not been reached yet. Letθ p be the first exit time of the controlled process
from the control region

θ p = inf {t : (Bp(t),Sp(t)) /∈Cor} .

We setϑ p ≡ θ p∧T, and we define a policyp admissible if the corresponding controlled process verifies
(Bp(t),Sp(t)) ∈ Adr, ∀t ∈ [0,ϑ p]. The payoff functionalJp associated to policyp is then given by

Jp = E
[

U(L(Bp(ϑ p),Sp(ϑ p))er(T−ϑ p))
]

.

Note that the behavior of(Bp(t),Sp(t)) for t > ϑ p is irrelevant in our formulation: that is to say
(Bp(t),Sp(t)) represents the financial position of our investor only up toϑ p. If we denote byA the



set of admissible policies, the control problem can be formulated as

max
p∈A

Jp .

It is a stochastic impulse control problem over a finite horizon where the system is controlled only in the
Cor region, and with the state constraint(Bp(t),Sp(t)) ∈ Adr, ∀t ∈ [0,ϑ p]. We will solve this problem
by using a dynamic programming approach. We consider the compact setΩ = Adr∩Cor which is
depicted in Figure 1 and we denote byΩ its interior. We define the setQ ≡ [0,T]×Ω and we will
denote byQ the subset[0,T)×Ω . Now we can introduce the value functionV(t,B,S) : Q⊂ R3 → R

defined by
V(t,B,S) = sup

p∈A(t,B,S)
Jp(t,B,S) .

HereA(t,B,S) is the set of admissible policies when the controlled process starts int with values(B,S)
and

Jp(t,B,S) = Et,B,S

[

U (L(Bp(ϑ p),Sp(ϑ p))er(T−ϑ p))
]

.

REMARK 2.2 We have A(t,B,S) 6= /0 for any initial condition(t,B,S) ∈ Q since the policy















τ1 =

{

+∞ if S> 0 and B> 0
t otherwise

ξ1 =

{

arbitrary if S> 0 and B> 0
−S otherwise

,







τi =+∞

ξi arbitrary
for i > 1

is clearly always admissible. Note that V(t,0,0) = 0, ∀t ∈ [0,T], because the only admissible policy
is doing nothing, and U(0) = 0 by assumption. Moreover V(t,B,S) > U(Lmaxer(T−t)) only if (B,S) ∈
{EF\E}, because the points in the set{EF\E} (see Figure 1(right)) can be reached by an admissible
policy only afterϑ p, if the initial position(B,S) /∈ {EF\E}.

The value functionV of our problem verifies the following dynamic programming property (see
Fleming and Soner (1993), Section V.2, or Ly Vath et al. (2007)).

Dynamic Programming Property:
(a) For any(t,B,S) ∈ Q, p∈ A(t,B,S) and{Fs}-stopping timeα > t we have

V(t,B,S)> Et,B,S [V(ϑ p∧α,Bp(ϑ p∧α),Sp(ϑ p∧α))] ; (5)

(b) For any(t,B,S) ∈ Q, andδ > 0, there exists p′(δ ) ∈ A(t,B,S) such that for all{Fs}-stopping time
α > t we have

V(t,B,S)6 Et,B,S[V(ϑ p′ ∧α,Bp′(ϑ p′ ∧α),Sp′(ϑ p′ ∧α))]+δ . (6)

Combining (a) and (b) we obtain the subsequent version of thedynamic programming principle,
which holds for any(t,B,S) ∈ Q and{Fs}-stopping timeα > t:

V(t,B,S) = sup
p∈A(t,B,S)

Et,B,S [V(ϑ p∧α,Bp(ϑ p∧α),Sp(ϑ p∧α))] .



Now, we denote byF(B,S) the set of admissible transactions from(B,S) ∈ Ω

F(B,S) =
{

ξ ∈ R : (B−ξ −K−c|ξ | ,S+ξ ) ∈ Ω
}

and by̥ the subset ofΩ whereF(B,S) 6= /0.

REMARK 2.3 The set F(B,S) can be empty. For example it is always empty when B+S< K, but if
F(B,S) 6= /0, then it is a compact subset ofR. Moreover let(Bn,Sn) ∈ Adr be a sequence converging to
(B′,S′) ∈ Adr with F(Bn,Sn) 6= /0. Since the function L is upper semicontinuous we have L(B′,S′) > 0
and F(B′,S′) 6= /0. Any sequenceξn ∈ F(Bn,Sn) is bounded and therefore contains a subsequenceξ ′

n
converging to someξ ′ ∈ R. As L(Bn− ξ ′

n−K − c|ξ ′
n| ,Sn+ ξ ′

n) > 0 and L is upper semicontinuous, it
also holds thatξ ′ ∈ F(B′,S′).

For any given functionZ : Q→ R we define the intervention (non local) operatorM by

M Z(t,B,S) =

{

sup
ξ∈F(B,S)

Z(t,B−ξ −K−c|ξ | ,S+ξ ) if (B,S) ∈̥

−1 if (B,S) /∈̥.
(7)

Considering anyp∈A(t,B,S) with an immediate transaction int of arbitrary sizeξ ∈F(B,S) and setting
α = t in (5), we can see as a direct consequence of dynamic programming property thatV(t,B,S) >
MV(t,B,S), for any(t,B,S) ∈ Q (this is obvious ifF(B,S) = /0 becauseV is non-negative).

It is well known that we can associate to the value function ofan impulse control problem a
Hamilton-Jacobi-Bellman quasi-variational inequality (HJBQVI) which plays the same role of the HJB
equation in continuous optimization. We introduce the second order differential operatorL

LV(t,B,S) = rB
∂V
∂B

+µS
∂V
∂S

+
1
2

σ2S2 ∂ 2V
∂S2

which corresponds to the infinitesimal generator of the uncontrolled process(B(t),S(t)). We will show
that the value function of our problem is a weak solution of the following HJBQVI inQ

min

{

−
∂V
∂ t

−LV,V −MV

}

= 0. (8)

In the preliminary paper Baccarin and Marazzina (2014), where the authors considered an in-
vestment problem with only a fixed transaction cost, the connection between the value function
and the HJBQVI was deduced in an heuristic way, making extensive use of the Dynkin’s formula.
However to use this formula and to show that the value function is a solution of the HJBQVI the
authors assumed aC2 regularity for the value function that is certainly not sati sfied in our port-
folio selection problem.One cannot hope to show thatV is a classical solution of (8). It is easy to see
that the value function is not even continuous in some pointsof ∂Q, such as, for instance, points A and
I in Figure 1, for anyt ∈ [0,T], or lineS= 0 in t = T. In these pointsV is only upper-semicontinuous.
In the present article we deal with a rigorous mathematical analysis of the problem, exploiting
the viscosity solutions framework. The next section will characterizeV as the unique constrained
viscosity solution of (8) verifying certain boundary conditions.



3. Boundary properties, bounds, and viscosity characterization of the value function

By ∂ ∗Q we denote the subset of∂Q given by∂ ∗Q≡ ([0, t)×∂Ω)∪ (T ×Ω). The boundary∂Ω of Ω
is divided in two parts:

∂1Ω ≡ {(B,S) ∈ ∂Ω : L(B,S)< Lmax}

and its complement∂2Ω ≡ ∂Ω\∂1Ω . In ∂2Ω the threshold liquidation valueLmax has already been
reached. It is also useful to define∂ ∗

2 Q≡ ([0, t)×∂2Ω)∪(T×Ω), which is the part of∂ ∗Q wheret = T
or L(B,S)> Lmax. We now investigate the behavior ofV at the boundary∂ ∗Q.

For t = T we have obviouslyV(T,B,S) = U(L(B,S)) for any (B,S) ∈ Ω . It is always optimal not
to intervene inT because any intervention cannot increase the portfolio liquidation value. However one
single transactionξ =−S is also optimal ifS< 0 or if S> 0 andS+B−K−c|S|> B. In this case we
haveV = MV, otherwiseV > MV. Note thatV is upper-semicontinuous but not continuous for any
point (T,B,0) ∈ Q.

For t ∈ [0,T) the behavior ofV depends on which part of∂Ω we are considering:
(a) Along the segments OA and OI in Figure 1 it is not possible to intervene because this will

bring the process(B,S) outside the admissible regionAdr. Actually in the points A and I there is one
admissible transaction which leads us to the origin O, but this is certainly unprofitable. Therefore we
haveV > MV. Apart fromV(t,0,0) = 0, the value ofV is not known a priori in this part of∂ ∗Q.

(b) Except for the points A and I, along the segments AB and IH it is necessary to make a trans-
action, otherwise the process could leaveAdr with a positive probability. Moreover the only admissi-
ble intervention brings the process to O. Consequently it holds V = MV = 0. Note thatV is upper-
semicontinuous but not continuous in A and I.

(c) In the interior points of the segments BC and HG it is necessary to make a transaction because
one of the bounds in the short position is reached. The value of V is not known a priori. We have
V = MV.

(d) In the upper part of∂ ∗Q, that is along the segments CD, DE, EF and FG, the threshold liquidation
valueLmax has already been reached. The value ofV is known. If (B,0) ∈ EF thenV(t,B,0) = U(B
er(T−t)). If (B,S) ∈CD∪DE∪{FG\F} thenV(t,B,S) = U(Lmax er(T−t)). It is always optimal not to
intervene, but we also haveV = MV, with ξ =−S in (7), if S< 0 or if S> 0 andS+B−K−c|S|> B.
Note thatV is upper-semicontinuous but not continuous in the point F, for anyt ∈ [0,T).

We give now some bounds on the value function. SinceJp > 0, for any p ∈ A(t,B,S), it is ob-
vious thatV(t,B,S) is nonnegative in[0,T]×Ω . By the problem definition we also haveV(t,B,S) 6
U((Lmax+K)er(T−t)), that is the value function is bounded. Moreover, as it holdsU(L(B,S)er(T−t))6
V(t,B,S)6U(Lmaxer(T−t)) when(B,S) /∈EF, the value function is also continuous in the segments CD,
{DE\E}, {FG\F}. It is not difficult to show thatV is also bounded from above by the value function
of the same problem withU(L) = CLγ and without transaction costs and solvency constraints, i.e., a
Merton problem over a finite horizon without consumption anda CRRA utility function, see Merton
(1969).

PROPOSITION3.1 We have
V(t,B,S)6Ceδ (T−t) (B+S)γ (9)

in [0,T]×Ω , where

δ = γ
(

r +
(µ − r)2

2σ2(1− γ)

)

.



Proof. See Appendix A.1. �

The bound (9) shows in particular thatV(t,B,S) is continuous in(t,0,0), whereV(t,0,0) = 0,
∀t ∈ [0,T]. Now we give the precise characterization of the value function as a viscosity solution
of (8). SinceV is not even continuous at some points in∂Q it is necessary to consider the notion
of discontinuous viscosity solution. Moreover the state constraint(Bp(t),Sp(t)) ∈ Adr, ∀t ∈ [0,ϑ p],
requires a particular treatment of the lateral boundary conditions when(t,B,S) ∈ [0,T)× ∂1Ω and the
use of constrained viscosity solutions. LetUSC(Q) and LSC(Q) be respectively the sets of upper-
semicontinuous (usc) and lower-semicontinuous (lsc) functions defined onQ. Given a locally bounded
functionu : Q→ R+ we will denote byu∗ andu∗ respectively the usc envelope and the lsc envelope of
u

u∗(t,B,S) = limsup
(t ′,B′,S′)∈Q

(t ′,B′,S′)→(t,B,S)

u(t ′,B′,S′) ∀(t,B,S) ∈ Q

u∗(t,B,S) = liminf
(t ′,B′,S′)∈Q

(t ′,B′,S′)→(t,B,S)

u(t ′,B′,S′) ∀(t,B,S) ∈ Q .

We haveu∗ 6 u6 u∗ andu is usc (lsc) if and only ifu= u∗ (u= u∗). In the following, unless otherwise
specified, we setx≡ (B,S) ∈ Ω̄ to simplify the notation.

DEFINITION 3.1 GivenO ⊂Ω , a locally bounded functionu : Q→R+ is called a viscosity subsolution
(resp. supersolution) of (8) in[0,T)×O if for all (t,x) ∈ [0,T)×O andϕ(t,x) ∈ C1,2(Q) such that
(u∗−ϕ)(t,x) = 0 (resp. (u∗−ϕ)(t,x) = 0) and(t,x) is a maximum ofu∗ −ϕ (resp. a minimum of
u∗−ϕ) on [0,T)×O, we have

min

{

−
∂ϕ
∂ t

(t,x)−L ϕ(t,x),u∗(t,x)−M u∗(t,x)

}

6 0 (10)

(resp.u∗ and > 0) (11)

On [0,T)×∂2Ω the value functionV verifies the Dirichlet boundary condition

V(t,B,S) =U(L(B,S)er(T−t)).

To deal properly with the state constraint(Bp(t),Sp(t))∈Adr, ∀t ∈ [0,ϑ p], it will be necessary to require
thatV satisfies the subsolution property also on the[0,T)×∂1Ω part of the lateral boundary[0,T)×∂Ω
(see Crandall et al. (1992), section 7C, Oksendal and Sulem (2002), Ly Vath et al. (2007)).

DEFINITION 3.2 We say that a locally bounded functionu : Q → R+ is a ∂1Ω constrained viscosity
solution of (8) inQ= [0,T)×Ω if it is a viscosity supersolution of (8) inQ and a viscosity subsolution
of (8) in [0,T)×{Ω ∪∂1Ω}.

The next Lemma shows some properties of the non-local operator M .

LEMMA 3.1 Given a locally bounded functionu : Q→ R+ we have:
(a) if u is lower-semicontinuous (resp. usc) thenM u is lower-semicontinuous (resp. usc)
(b) M u∗ 6 (M u)∗ andM u∗ > (M u)∗

(c) if u is upper-semicontinuous then there exists a Borel measurable functionξ ∗
u : ̥→ R such that for

any(B,S) ∈̥

M u(t,B,S) = u(t,B−ξ ∗
u (B,S)−K−c|ξ ∗

u (B,S)| ,S+ξ ∗
u (B,S)). (12)



Proof. (a) and (b) can be proven in the same way as in Ly Vath et al. (2007), Lemma 5.5. Asu is
upper-semicontinuous and for(B,S) ∈ ̥ the setF(B,S) is compact the sup in (7) is reached for some
values ofξ , ∀(B,S) ∈ ̥. Moreover, as̥ is σ -compact, we can select a Borel measurable function
ξ ∗

u : ̥→ R such that (c) holds true (see Fleming and Rishel (1975), Appendix B, Lemma B). �

It is now possible to prove the viscosity property of the value function.

THEOREM 3.1 The value functionV(t,B,S) is a∂1Ω constrained viscosity solution of (8) inQ.

Proof. Using the dynamic programming property (5-6), and properties (a) and (b) of Lemma 3.1, the
proof can be done in the same way as the proof of Theorem 5.3 in Ly Vath et al. (2007). The only
difference is that in our problem it is possible to prove the subsolution property only inQ and in the
[0,T)× ∂1Ω part of the lateral boundary. The reason is that an admissible policy can now allow the
controlled process to leaveQ from the subset[0,T)×∂2Ω of ∂ ∗Q. On [0,T)×∂2Ω the value function
will be determined by the Dirichlet type conditionV(t,B,S) = L(B,S)er(T−t). �

As there can be many viscosity solutions of (8) the next step is to determine the right boundary
conditions on∂ ∗Q which are sufficient to uniquely determine the value function. The usual way to
show uniqueness of viscosity solutions is to prove a comparison theorem between viscosity sub and
supersolution. The purpose is to show that a subsolution is lower than a supersolution on the whole
domain if it assumes the same or a lower value at the boundary∂ ∗Q. However in our problem the
value ofV is not known in some part of[0,T)× ∂1Ω , such as the segments BC and HG in Figure 1.
Thus on[0,T)×∂1Ω we will need the viscosity boundary condition given by the subsolution property.
Moreover if we look atV∗ as a subsolution and atV∗ as a supersolution, along the segmentsITFT ≡
{

(t,B,S) ∈ Q : t = T, S= 0,B> K
}

andF0FT ≡
{

(t,B,S) ∈ Q : B= Lmax+K, S= 0
}

the subsolution
V∗ is greater than the supersolutionV∗. Therefore on the rectangular region

R≡
{

(t,B,S) ∈ Q : S= 0,B> K
}

we cannot hope to show thatV∗ 6V∗, and consequently thatV is continuous inR (because by definition
V∗ >V∗, and thusV∗ =V∗). This will induce us to prove only a weaker comparison principle between
viscosity sub and supersolutions, which holds onQ\R. Thus we will distinguish the casesS> 0 and
S< 0. We denote byΩ+, Q+, the sets

Ω+ ≡ {(B,S) ∈ Ω : S> 0} , Q+ ≡ [0,T)×Ω+,

and byΩ+
, Q

+
, their closures. We also define the boundaries

∂ ∗Q+ ≡ [0,T)×∂Ω+∪T ×Ω+
,

∂1Ω+ ≡
{

(B,S) ∈ ∂Ω+ : L(B,S)< Lmax
}

, ∂2Ω+ = ∂Ω+\∂1Ω+,

∂ ∗
2 Q+ ≡ [0,T)×∂Ω+

2 ∪T ×Ω+
.

The setsΩ−, Q−, Ω−
, Q

−
, ∂ ∗Q−, ∂2Ω−, ∂ ∗

2 Q− are defined similarly by settingS< 0.

THEOREM3.2 (Weak Comparison Principle) Assume thatu∈USC(Q) is a viscosity subsolution of (8)
in [0,T)×{Ω ∪∂1Ω} andv∈ LSC(Q) is a viscosity supersolution of (8) inQ= [0,T)×Ω Furthermore
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limsup
(t ′,B′,S′)∈Q+

(t ′,B′,S′)→(t,B,S)

u(t ′,B′,S′)6 liminf
(t ′,B′,S′)∈Q+

(t ′,B′,S′)→(t,B,S)

v(t ′,B′,S′) ∀(t,B,S) ∈ ∂ ∗
2 Q+

limsup
(t ′,B′,S′)∈Q−

(t ′,B′,S′)→(t,B,S)

u(t ′,B′,S′)6 liminf
(t ′,B′,S′)∈Q−

(t ′,B′,S′)→(t,B,S)

v(t ′,B′,S′) ∀(t,B,S) ∈ ∂ ∗
2 Q−

limsup
(t ′,B′,S′)∈Q

(t ′,B′,S′)→(t,0,0)

u(t ′,0,0)6 liminf
(t ′,B′,S′)∈Q

(t ′,B′,S′)→(t,0,0)

v(t ′,0,0) ∀t ∈ [0,T) .

(13)

Thenu6 v onQ\R.

Proof. See Appendix A.2. �

In order to use the comparison principle to identify the onlyviscosity solution which represents the
value function we need to describe the behavior ofV approaching the boundary∂ ∗

2 Q and taking into
account of the discontinuity in∂ ∗

2 Q∩R.

LEMMA 3.2 The value functionV verifies the following limit conditions near the boundary∂ ∗
2 Q:
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lim
(t ′,B′,S′)∈Q

(t ′,B′,S′)→(t,B,S)

V(t ′,B′,S′) =U(L(B,S)er(T−t)) ∀(t,B,S) ∈ ∂ ∗
2 Q\R

lim
(t ′,B′,S′)∈Q+

(t ′,B′,S′)→(t,B,0)

V(t ′,B′,S′) =U(Ber(T−t)) ∀(t,B,0) ∈ ∂ ∗
2 Q∩R

lim
(t ′,B′,S′)∈Q−

(t ′,B′,S′)→(t,B,0)

V(t ′,B′,S′) =U((B−K)er(T−t)) ∀(t,B,0) ∈ ∂ ∗
2 Q∩R

(14)

Proof. See Appendix A.3. �

Now we are able to give the complete viscosity characterization of the value function.

THEOREM 3.3 The value functionV(t,B,S) is continuous inQ\R and it is the unique∂1Ω constrained
viscosity solution inQ\R of (8) which verifies the limit conditions (14) and

lim
(t ′,B′,S′)∈Q̄

(t ′,B′,S′)→(t,0,0)

V(t ′,B′,S′) =V(t,0,0) = 0 ∀t ∈ [0,T] . (15)

Proof. We apply the comparison principle theorem, usingV∗ as a subsolution andV∗ as a supersolution.
In particular the boundary conditions (13) are verified as equalities since (14) and (15) hold true. We
derive thatV∗ 6V∗ onQ\Rand since by definitionV∗ >V∗ we obtain immediately thatV is continuous
in Q\R. Now supposeV is another∂1Ω constrained viscosity solution of (8) inQ which verifies the
boundary conditions (14), (15). By the comparison principle it follows thatV

∗
6 V∗ 6 V∗ 6 V∗ and

thereforeV =V in Q\R. �



4. Existence and structure of the optimal trading strategy

To show the existence of a quasi-optimal impulse policy and to characterize its form we reduce our
impulse control problem to a sequence of optimal stopping time problems. By this reduction, first
introduced in Bensoussan and Lions (1984), it is possible toreduce the solution of a HJBQVI to the
solution of an iterative sequence of variational inequalities, where the obstacles are explicit (see Korn
(1998), Chancelier et al. (2002), Oksendal and Sulem (2007), Baccarin (2009)). We denote byAn the
set of admissible policies with at mostn> 1 interventions, that is

An(t,B,S) = {p∈ A(t,B,S) : τn+1 =+∞}

and byVn(t,B,S) : Q⊂R3 →R the value function of the corresponding problem with a bounded number
of transactions

Vn(t,B,S) = sup
p∈An(t,B,S)

Jp(t,B,S) .

It is not difficult to show that increasing the number of interventionsVn converges toV.

THEOREM 4.1 We have limn→∞Vn =V for all (t,B,S) ∈ Q.

Proof. As A1(t,B,S)⊂ A2(t,B,S)⊂ ....⊂ A(t,B,S), it holdsV1(t,B,S)6V2(t,B,S) 6 ....6V(t,B,S)
and limn→∞Vn 6 V for all (t,B,S) ∈ Q. To obtain the reverse inequality consider anε-optimal policy
pε ∈ A(t,B,S) such that

V(t,B,S)6 Jpε (t,B,S)+ ε . (16)

Settingτ i ≡ τ pε
i ∧ϑ pε , by (1) for a.a.ω there existsn(ω) such thatτn(ω) = ϑ pε (ω). If we define

Jp
n (t,B,S) = Et,B,S

[

U (L(Bpε (τn),S
pε (τn))er(T−τn))

]

by the dominated convergence theorem it follows that

Jpε (t,B,S) = limn→∞ Jp
n (t,B,S),

and we can choosen such that
Jpε (t,B,S)6 Jp

n (t,B,S)+ ε . (17)

Consider now the policypn =
{

(τ i ,ξ pε
i )

}

, i = 1,2, · · · ,n, settingτn+1 =∞ a.s.. We havepn ∈An(t,B,S)
and combining (16) and (17) we obtain

V(t,B,S)6 Jpn(t,B,S)+2ε .

Sinceε is arbitrary, it followsV 6 limn→∞Vn for all (t,B,S) ∈ Q. �

We consider now the following iterative sequence of optimalstopping problems. Let(B(s),S(s)) be
the uncontrolled process. We set

θ ≡ {inf s> t : (B(s),S(s)) /∈Cor} , and ϑ ≡ θ ∧T.

and we define onQ∩R3
+

P0(t,B,S) = Et,B,S

[

U (L(B(ϑ),S(ϑ))er(T−ϑ)
]



that is the expected utility without interventions, starting with nonnegativeBandS(to be sure the process
does not exit fromAdr beforeϑ ). Then we define, recursively, forn> 1

Pn(t,B,S) = sup
τ∈A1(t,B,S)

Et,B,S

[

M Pn−1(τ ,B(τ),S(τ))χτ<ϑ

+U (L(B(ϑ),S(ϑ))er(T−ϑ)χτ>ϑ

]

(18)

for all (t,B,S) ∈ Q, where we denote withχ the indicator function. HereM Pn−1 is defined by (7) and
it is a given function at stepn (note thatP0 is defined inQ∩R3

+ but all Pn and(M Pn−1), n > 1, are
defined inQ). To the optimal stopping problem (18) it is associated the variational inequality

min

{

−
∂Pn

∂ t
−L Pn,Pn−M Pn−1

}

= 0 . (19)

Using the same techniques as in the previous section, it is not difficult to show thatPn is the unique
constrained viscosity solution of (19) verifying the same boundary conditions of (8), whereM Pn is
replaced byM Pn−1. By the following theorem we can reduce the impulse control problem to the
sequence (18) of optimal stopping problems.

THEOREM 4.2 For all (t,B,S) ∈ Q and n > 1 it holds Pn(t,B,S) = Vn(t,B,S). Moreover for each
(t,B,S) ∈ Q there existsp∗ ∈ An(t,B,S) such that

Vn(t,B,S) = Jp∗(t,B,S) .

Proof. See Appendix A.4. �

Therefore, as limn→∞Vn = limn→∞ Pn = V, we can compute the value function by solving the se-
quence (19) of variational inequalities. Each solutionVn = Pn has the meaning of the value function of
the same problem with at mostn transactions. Moreover the optimal trading strategyp∗ described in
Theorem 4.2 gives us, forn large enough, a payoff which is arbitrarily close to the optimal one.

4.1 Numerical computation of the value function and the optimalpolicy

In our numerical experiments we have simplified the domain inFigure 1 as in Figure 2, i.e., we have
prolonged the segments AB and CD in Figure 1 respectively up to the points I and F andwe have
set L(B,S) = Lmax along the entire segments CF and FG andL(B,S) = 0 along BI and HI. This
corresponds to assumeL(B,S) = S+B−K − c|S| for all S> 0, that is to impose a transaction to
obtain the portfolio’s liquidation value even if the long position in stocks is so small that it is not
convenient to clear it because of fixed costK. SinceL(B,S) is now continuous in all the admissible
region it follows that V(t,B,S) is also continuous at the boundary∂Q, and therefore in all the domain.
We are quite confident that, for the small values ofK we used in our numerical experiments, assuming
V continuous everywhere is irrelevant for the numerical results. We denote byD the numerical domain
and we setQ

′
= [0,T]×D . Thus we have slightly modified the boundary conditions stated in the

previous section, setting:

• V(t,B,S) =U(Lmaxer(T−t)), ∀t ∈ [0,T], along the entire edges CF and FG;

• V(t,B,S) = 0 ∀t ∈ [0,T] along the entire edges BI and HI.



FIG. 2. Simplified value function domain for numerical discretization. Coordinates of vertices as in Figure 1.

Moreover, we compute the functionP0(t,B,S), that is the expected utility without interventions,
solving the PDE

−
∂P0

∂ t
−L P0 = 0

in Q
′
∩R3

+ with the additional boundary conditions, whenS= 0 orB= 0:

• P(t,B,0) =U(Ber(T−t));

• µS∂P
∂S(t,0,S)+

1
2σ2S2 ∂ 2P

∂S2 (t,0,S)+
∂P
∂ t (t,0,S) = 0.

Thus we are now ready to deal with the numerical discretization of our iterative optimal stopping
problem. Each variational inequality (19) can be solved by adiscrete approximation using the finite
element method. See, for instance, Achdou and Pironneau (2005), Ballestra and Sgarra (2010) and
Marazzina et al. (2012) for the finite element method in finance, and Barucci and Marazzina (2012)
and Federico and Gassiat (2012) for applications of finite element and finite difference techniques to
financial optimization problems. SettingLtV = − ∂V

∂ t −LV, we discretize the PDELtV = 0 with a
finite element technique based on polynomial of degree 1, coupled with a Crank-Nicholson scheme.
We consider a triangular mesh onto the spaceD with N nodes and a equally-spaced time grid 0= t0 <
t1 < · · · < tW = T, of W time steps. Denoting byvi the discrete approximation ofVi , if (Bn,Sn) is a
vertex of the mesh,n = 1, ....,N, we setvi

j,n = vi(t j ,Bn,Sn). As proved in Wilmott et al. (1993) with
reference to American options, thei-th discrete variational inequality can be solved backward-in-time
( j =W−1, · · · ,0) by the following algebraic systems in the unknown vectorsvi

j :

vi
j > M i

j , Av i
j > bi

j+1,
(

vi
j −M i

j

)(

Av i
j −bi

j+1

)

= 0 (20)

Herevi
j is theN dimensional vectorvi(t j , ., .), the obstacleM j , depending on the solutionvi−1, is defined

by Mi
j,n = Mvi−1(t j ,Bn,Sn), A is the Crank-Nicholson finite element matrix associated to the operator

Lt , and the vectorbi
j+1 is constructed using vectorvi

j+1.



Problem (20) can be solved using a Projected SOR (PSOR) algorithm, see Wilmott et al. (1993). To
computevi

j , we used as first guess solutionvi
j+1 and we stopped the PSOR iterations when theL∞ dis-

tance between two consecutive solutions falls under a giventolerance (TOL). Similarly, we considered
vi a good approximation ofV(t,B,S), the value function of our problem, when the distance between
vi andvi−1 falls under another given tolerance (TOL2). In the next section we show numerically the
convergence of our numerical scheme when we increase the number of mesh nodes and time steps.

5. Numerical results for CRRA utility functions

In this section we present extended numerical results in thecase of the CRRA utility function

U(L) =
Lγ

γ

with 0< γ < 1. This utility, which is the most commonly used in the literature, belongs to the class of
hyperbolic absolute risk aversion (HARA) utility functions. Using these functions the Merton’s portfo-
lio problem without transaction costs admits closed form solutions. Therefore it is possible to compare
these exact solutions with the numerical results in the presence of transaction costs and solvency con-
straints. The main alternative would be to consider the exponential utility which implies a constant
absolute risk aversion (see, for instance, Liu (2004)). However, if we consider our portfolio problem
without transaction costs and exponential utility, the optimal strategy would be to maintain constant
the discounted amount of money invested in the risky asset, independently of investor’s wealth, which
appears to be a rather unrealistic policy (see Korn (1997), chapter 3, and Merton (1969)). In all the
case studies we set the valuesBmin = Smin = −20, Lmax= 100, TOL=10−5 (the tolerance threshold in
the PSOR algorithm), TOL2=0.001 (the tolerance threshold to exit from the iterated optimal stopping
cycle).

The structure of the section is the following. First of all, we investigate the form of the optimal trans-
action strategy and we describe how the transaction regions, the no-trade region and the target portfolios
vary as time approaches the final horizon. Moreover we show the convergence of our numerical scheme.
Subsection 5.1 contains a comparative static analysis to show how the optimal policy is influenced by
the different model parameters. Finally, in Subsection 5.2, the impact of transaction costs on the value
of the final portfolio and on the frequency of trading is analyzed.

In our first numerical experiment, which we use as base case, we set the following values of the
model parameters:K = 0.1, c= 0.01, r = 0.02, µ = 0.06,σ = 0.4, γ = 0.3 andT = 5.

Figures 3 and 4 show the corresponding (dark) transaction regions and (white) no-trade region,
at different time instants.Along with the Merton straight line (here depicted with a continuous
line), the two (dotted) lines inside the no-trade region represent the re-calibrated portfolios, i.e. the
portfolios where it is optimal to move when the investor’s position falls in the intervention area.The
re-calibrated portfolios are always inside the continuation region because the intervention costs
make two consecutive transactions unprofitable. In the following we will refer to the two lines
of re-calibrated portfolio as the upper and the lower target line. The upper (lower) target line is
the set of target portfolios where it is optimal to move when the investor’s position is in the upper
(lower) part of the trade area, that is the transaction area which is above (below) the Merton
line. After a possible first transaction, made if the initial portfolio is in the intervention region, the



FIG. 3. Transaction region in the plane(B,S). Time t = 0, N = 5000,W = 250,K = 0.1 andc= 0.01.

FIG. 4. Transaction region in the plane(B,S). Time t = 2 (left) - t = 4 (middle) -t = 4.5 (right), N = 5000,W = 250,K = 0.1
andc= 0.01.

investor will maintain his position inside the white regionre-calibrating his portfolio only if it reaches
the boundary of the dark areas. In these figures some optimal transactions have been depicted: these
are represented by the straight lines connecting the threshold portfolios in the transaction region to the
corresponding target portfolios inside the no-trade area.Unlikely the infinite horizon case (see Davis
and Norman (1990), see Dumas and Luciano (1991), see Shreve and Soner (1994)) the optimal policy
is not stationary: the transaction regions, as well as the target portfolios, change as time goes by. As
expected the size of the intervention regions decreases as the time increases because, approaching the
finite horizon, only a large change in the portfolio composition can compensate the transaction costs.
However the evolution of the two parts of the transaction region is not symmetric. The size of the lower
part decreases faster than the upper one. This reveals that the finite horizon and the bounded liquidation
region induce a bias, as time goes on, in favor of the risklessasset. For example int = 4.5 the lower
transaction region is already below the axisS= 0. This implies that if int = 4.5 the investor has a long
position in stock he will never buy again the stock up toT = 5. Similarly the lower target line decreases
with time towards the axisS= 0, and it is already equal to the axisS= 0 in t = 4.5. The same kind of
liquidity preference in case of shorter investment horizons can be noted if we fixt = 0 and we consider a



FIG. 5. Value function in the plane(B,S): Solution att = 0. N = 5000,W = 250,K = 0.1 andc= 0.01.

variable terminal dateT, as we will do in Section 5.2. The more distant is the horizonT, the lower is the
no-transaction region and the percentange of cash which is allowed to remain in the portfolio. This result
is consistent with the common life-cycle investment advicethat a young investor should hold a greater
share of stocks in the portfolio than an old investor (see Liuand Loewenstein (2002)). In the graphs the
Merton straight line is also depicted, which is constant in time and it represents the optimal portfolios
for the same problem but without transaction costs and solvency constraints. It is interesting to note that
the upper line of target portfolios remains approximately equal to the Merton line. In both Figures 3-4
the two optimal lines move down approaching to the edges CF and FG of the liquidation region (see
Figure 2). This is due to the fact that the portfolio liquidation value is already near toLmax= 100, the
value considered satisfactory by the investor. Probably hewill liquidate his position in short time and
beforeT, this induces again a bias in favor of cash. For allt and most of the value function domain, the
shape of the continuation region closely resembles a cone, enlarging with time, containing two moving
straight lines of optimal portfolios. We conjecture that this would be the exact shape if we considered
the same problem with an unbounded domain (Lmax = +∞, i.e. the investor is never satisfied before
T). Finally in Figure 5 we show the value function associated to our base case at timet = 0, i.e.
V(0,B,S), which corresponds to the optimal policy depicted in Figure3. It has a concave shape
which is probably inherited by the concavity of the utility f unction.

In Table 1 and 2 we illustrate the convergence of our numerical scheme. We consider the solutions at
t = 0 increasing the number of sub-intervals of the time-grid (W), and the number of mesh-points (N). In
Table 1 we compute theL2-norm error assuming as exact solution the one computed withW = 250 and
N= 5000. More specifically in the upper part of the table we fixN= 5000 and we show the convergence
increasing the time grid. Conversely, in the lower part we fixW = 250 and we make the space grid more
dense. As expected, in both cases the solutions converge. Moreover, in Table 2 we show the convergence
when we increaseW andN at the same time; we do not assume an exact solution (an analytical solution
is not available) but we list the distances, increasing bothW andN, between two consecutive solutions
in the numerical sequence. We consider both theL2 andL∞ relative errors. To show the convergence of



Table 1.L2 distance from the solution withW = 250 andN = 5000 at timet = 0, increasingW (above) andN (below).

Distance from theW = 250 solution, settingN = 5000
W = 25 50 100 200

0.0051 0.0026 0.0012 0.0008

Distance from theN = 5000 solution, settingW = 250
N = 1000 2000 3000 4000

0.0032 0.0014 0.0011 0.0005

Table 2. L∞ andL2 errors and Hausdorff distances between the transaction regions (HD1) and the optimal lines (HD2) of two
consecutive solutions in the sequence, at timet = 0.

W N L∞ L2 HD1 HD2 Iterations CPU Time (s)
25 1000 - - - - 6 283
50 2000 0.0324 0.0023 0.0734 0.1562 6 1578
75 3000 0.0219 0.0014 0.0565 0.0720 5 3715
100 4000 0.0163 0.0011 0.0350 0.0348 5 8435
250 5000 0.0098 0.0005 0.0291 0.0296 4 23635

the optimal control regions, we have also computed the Hausdorff distances (normalized by the length
of the domainL) between the transaction regions and between the target portfolios of the consecutive
solutions (the Hausdorff distance is the supremum of the distances of the points in one region to the
other region, and vice versa). Both Tables 1 and 2 indicate a rapid convergence of the solutions and of
the optimal regions. Finally in Table 2 we also list the number of variational inequalities (number of
iterations above the obstacle) which were necessary to achieve the TOL2 convergence and the CPU time
necessary for the computation. All the computation have been performed in Matlab R2011a and on a
personal computer equipped with a Pentium Dual-Core 2.70 GHz and 4 GB RAM.

5.1 Sensitivity analysis

Except for the parameters under investigation, in this subsection the values of the other parameters are
the same as in the base case. The numerical results have been obtained settingW = 100 andN = 4000.

5.1.1 Sensitivity with respect to the transaction costsNaturally enough, increasing the transaction
costs, the size of the intervention regions decreases. Due to the finite horizonT, if we increaseK and
c only fewer large transactions can be profitable. Figure 6 depicts the optimal regions for different
values ofK andc. Increasing the transaction costs produces a variation in the optimal policy which is
similar to that caused by approaching the finite horizonT. The lower part of the intervention region
decreases faster than the upper one, indicating a shift towards the riskless asset which is not present
without transaction costs and solvency constraints. ForK = c= 0.1 the lower target portfolios are made
only of the riskless asset while the upper optimal line staysclose to the Merton one.However this
liquidity preference seems due only to the proportional component of the transaction costs. In
Figure 7 we setc = 0.01 and we vary K. It is evident that the increase of fixed transaction costs
results in an enlargement of the no-transaction region, butthe target lines remain substantially
steady and the two parts of the trade region decrease in a moresymmetric way. In Baccarin and
Marazzina (2014) some preliminary results for the case without proportional transaction costs



FIG. 6. Transaction area in the plane(B,S). Timet = 0, K = 0.01, c= 0.001 (left) -K = 0.05, c= 0.005 (middle) -K = 0.1, c=
0.1.

FIG. 7. Transaction area in the plane(B,S). Time t = 0, K = 0.01, c= 0.01 (left) - K = 0.05, c= 0.01 (middle) - K = 0.1, c=
0.01 (right).

were presented. The numerical experiments showed that ifc = 0 there is only one line of re-
calibrated portfolios, which remains stable for different K and it is coincident with the optimal
portfolios without transaction costs. Here this coincidence is no longer true. We have two lines
of re-calibrated portfolios which show an independent dynamics varying the transaction cost pa-
rameters and as time passes. It is thereforeinteresting to observe how the optimal policy varies when
we change the relative size of the variable costc with respect to the fixed componentK. In Figure 8 we
setK = 0.1 and we consider different values ofc. See also Figure 3. For vanishingc the lower optimal
line converge to the upper one, which is essentially the Merton line, as expected. Conversely, an increase
in c pull the lines apart and closer to the intervention regions.VanishingK the solution tends towards
the solution of a singular control problem where the optimalpolicy is an instantaneous reflection at the
boundary of the intervention region (see Davis and Norman (1990), Shreve and Soner (1994)). This
behavior of the optimal control sets, varying the relative size of the variable and of the fixed part of the
intervention costs, has already been noted, for a cash management problem (see, for instance, Baccarin
(2009)). To summarize, these numerical experiments show that fixed and proportional transac-
tion costs are both responsible of the enlargement (reduction) of the no-transaction region, but
the presence of two target lines of optimal portfolios (and their relative positions with respect the
Merton one and to the no-trade areas) is only due to the proportional costs.



FIG. 8. Transaction area in the plane(B,S). Timet = 0, K = 0.1, c= 0.005 (left) -K = 0.1, c= 0.05 (middle) -K = 0.1, c= 0.1
(right).

Table 3. Transaction Region in the plane(B,S) (percentage) for different values of interest rate (r), volatility (σ ) and risk aversion
coefficient (γ). K = 0.1, c= 0.01 andT = 5.

r σ 1− γ
t 0.01 0.02 0.04 0.3 0.4 0.5 0.6 0.7 0.8
0 69.09 69.14 74.21 62.77 69.14 74.21 66.75 69.14 70.59
2 68.29 68.52 73.38 60.86 68.52 73.95 66.18 68.52 70.34
4 60.83 62.03 68.43 48.56 62.03 69.97 58.47 62.03 64.79

5.1.2 Sensitivity with respect to the other model parametersWhen we modify the market parameters
σ andr or the relative risk aversion coefficient(1− γ) the Merton line varies its position and the no-
transaction area follows it in the same direction. Ifσ or (1− γ) increase the investor will hold more of
the riskless asset because he is risk averse, and, ifr increases, he will hold more cash since the stock
becomes less attractive. Consequently the Merton’s line moves down towards the axisS= 0. In Table 3
we show the percentage of the transaction area on the overalldomain increasingr, σ and(1− γ). This
percentage grows in all cases, essentially because the upper optimal line follows closely the Merton’s
one and the upper part of the transaction region becomes bigger.

5.2 The impact of transaction costs on the frequency of trading and on the value of the final portfolio

In order to get an estimate of the number of transactions madeby an investor who follows our optimal
policy we have coupled our numerical solution to a Monte Carlo simulation. Precisely we have consid-
ered an agent with initial portfolio made only of cash,B0 = 20, S0 = 0, who behaves according to the
optimal intervention and continuation regions that we havecomputed numerically. When the investor’s
position is in the continuation region, which changes dynamically according to our numerical solution,
we simulate the evolution of the stock valueS(t) by a computer generated random walk (the risk-free as-
set valueB(t) grows in a deterministic way). Whenever the simulated portfolio falls into the transaction
region the agent re-calibrates its portfolio moving to the corresponding (at that time instant) optimal tar-
get portfolio and paying the necessary transaction costs. The Monte Carlo simulations were performed
with 100 time steps, according to the time grid of the numerical solution computed withW = 100 and
N = 4000.

In Table 4 we show the average and the standard deviation of the number of transactions, computed
using 500000 simulations, considering increasing values of T, up to forty years and different values for
the transaction costs. It is surprising to observe that, even with the smallest transaction costs (K = 0.01



Table 4. Average (up) and standard deviation (down) of the number of transactions. Parameters:r = 0.02,µ = 0.06,σ = 0.4, and
γ = 0.3. Initial portfolio: B0 = 20, S0 = 0. Number of simulations equal to 500000.

T
K c 2 3 5 10 20 40

Average
0.1 0.01 2.0007 2.0167 2.0952 2.6626 3.8775 6.1432
0.1 0.005 2.0014 2.0223 2.1233 2.7154 3.9962 6.3354
0.1 0.001 2.0030 2.0283 2.1454 2.7573 4.1726 6.4378
0.1 0 2.0052 2.0322 2.2523 2.8319 4.2174 6.8480
0.01 0.01 2.0414 2.2146 2.9961 4.6006 7.6706 12.5226
0.01 0.005 2.2142 2.5109 3.0501 4.8450 8.0899 13.5611
0.01 0.001 2.2150 2.6285 3.2504 5.5152 8.9542 15.1048
0.01 0 2.2629 2.7840 3.5118 5.6233 9.9649 17.1312

Standard Deviation
0.1 0.01 0.0257 0.1361 0.3072 0.7238 1.1943 1.8453
0.1 0.005 0.0379 0.1543 0.3481 0.8113 1.2589 1.8552
0.1 0.001 0.0545 0.1664 0.3761 0.8438 1.2771 1.8743
0.1 0 0.0649 0.1988 0.4733 0.8692 1.4450 1.9174
0.01 0.01 0.2027 0.4427 0.9364 1.6249 2.3478 3.4454
0.01 0.005 0.4256 0.6821 0.9717 1.6285 2.3940 3.5861
0.01 0.001 0.5263 0.7030 1.0277 1.8462 3.0124 5.8325
0.01 0 0.5287 0.8204 1.1833 1.9236 4.9104 8.7569

andc= 0), on average more than three years are necessary to have threetransactions and that less than
five interventions are made every ten years on the overall period (T = 40). Note that if we consider
ten thousand euros as the unit of measure,K = 0.01 means a cost of 100 euros for each transaction,
to rebalance a portfolio of initial value 200,000 euros. If we think of this cost, not only as a fixed
commission, but also as the opportunity cost for the investor to collect information and submit an order
to his broker, this value does not seem large.

It is also interesting to compare some alternative policieswith the optimal one. In Table 5 we have
considered the following trading strategies:

• the risk-free strategy (RF): the agent only invests his wealth in the risk-free asset

• the Merton strategy (Mer): it is the optimal strategy without transaction costs. The expected utility
of the final position is given by the closed formula

E [U(L(B(T),S(T)))] =
Bγ

0

γ
exp

(

γ(r +
(µ − r)2

2σ2(1− γ)
)T

)

• the optimal strategy (Opt): in this case we haveE [U(L(B(T),S(T)))] = V(B0,0,T). To obtain
the average number of transactions we couple the Monte Carlosimulation with the numerical
solution, as described above

• the Merton strategy with transaction costs: the agent recalibrates his portfolio moving to the Mer-
ton’s line when the distance between his portfolio and the line itself is bigger than 5% (MTC(5%))
or 10% (MTC(10%)) of his wealth



Table 5. Comparison of different strategies: certainty equivalent and average number of transactions. Parameters:K = 0.01,
r = 0.02, µ = 0.06,σ = 0.4, andγ = 0.3. Initial portfolio: B0 = 20, S0 = 0. Number of simulations equal to 500000.

c T RF Mer Opt MTC(5%) MTC(10%) Bar(1%)

Certainty Equivalent
0.01 3 21.236 21.696 21.482 21.393 21.473 21.445
0.01 5 22.103 22.906 22.747 22.539 22.651 22.520
0.01 10 24.427 26.236 26.014 25.687 25.889 25.481
0.005 3 21.236 21.696 21.531 21.480 21.511 21.435
0.005 5 22.103 22.906 22.789 22.626 22.722 22.506
0.005 10 24.427 26.236 26.058 25.778 25.979 25.470

0 3 21.236 21.696 21.629 21.553 21.624 21.431
0 5 22.103 22.906 22.816 22.685 22.801 22.487
0 10 24.427 26.236 26.099 25.885 26.081 25.439

Average Number of transactions
0.01 3 0 ∞ 2.21 13.42 5.44 5.23
0.01 5 0 ∞ 3.00 18.87 7.44 6.14
0.01 10 0 ∞ 4.60 29.14 11.76 7.78
0.005 3 0 ∞ 2.51 13.43 5.44 5.33
0.005 5 0 ∞ 3.05 18.87 7.45 6.25
0.005 10 0 ∞ 4.84 29.14 11.77 7.83

0 3 0 ∞ 2.78 13.43 5.45 5.44
0 5 0 ∞ 3.51 18.87 7.46 6.37
0 10 0 ∞ 5.62 29.15 11.81 8.13

• the barrier strategy (Bar(1%)): here we assume that the no-transaction region is a time-independent
region delimited by two fixed barriers. The agent recalibrates his portfolio only when his position
touches one of the two barriers and he makes the minimal transactions necessary to stay inside the
no-trade region. We define the fixed barriers as the borders ofthe transaction regions that we have
computed numerically att = 0. To avoid unbounded transaction costs, due the fixed component
K, we assumed that the portfolio is recalibrated towards the lower/upper barrier only if it falls
below/above the barrier by more than the 1% of the agent’s wealth.

For each of the last three strategies we have simulated 500000 possible scenarios, and thus 500000
possible values ofB(T) and S(T), computing the mean value ofU(L(B(T),S(T)) and the average
number of transactions. To make a more readable comparison among the different policies, in Table 5,
besides the average number of transactions, we have shown the certainty equivalent of the utility of the
final position, that isU−1(E [U(L(B(T),S(T)))]). In this numerical experiment, whereB0 = 20, S0 = 0
and at mostT = 10, practically no simulated path reached the threshold liquidation valueLmax= 100, as
it is also shown by the certainty equivalents which never exceed 30. This is an instance where the agent
never liquidates the risky asset beforeT becauseLmax is too large compared to the initial wealth and
T. As expected, if we do not consider the Merton (Mer) strategy, without transaction costs, the optimal
strategy is the best one, i.e., the one with the highest certainty equivalent. It is also the policy with the
lowest average number of interventions. We also notice thatthe optimal strategy and the MTC(10%)
one are close, while the Bar(1%) strategy is the worst one, despite a low number of transactions. Notice
that the Bar(1%) strategy is similar to the trading strategywhich has been proven optimal for portfolio



Table 6. Sensitivity with respect toγ considering a fixed transaction costK = 0.01: transaction region att = 0 (TR), average (Av)
and standard deviation (Std) of the number of transactions, and certainty equivalent for the optimal strategy with transaction costs
(CE). Other parameters:r = 0.02, µ = 0.06, andσ = 0.4. Initial portfolio: B0 = 20, S0 = 0. Number of simulations equal to
500000.

c= 0.1 c= 0.001
γ TR (%) Av Std CE TR (%) Av Std CE

T = 1
0.1 0.704 0 0 20.404 0.820 2.022 0.068 20.434
0.2 0.702 0 0 20.404 0.810 2.016 0.056 20.454
0.3 0.670 0 0 20.404 0.806 2.004 0.070 20.476
0.4 0.639 0 0 20.404 0.789 2.002 0.039 20.506
0.5 0.586 0 0 20.404 0.758 2.002 0.047 20.543
0.6 0.517 0 0 20.404 0.728 2.001 0.037 20.590
0.7 0.434 0 0 20.404 0.685 2.000 0.006 20.677

T = 5
0.1 0.715 2.003 0.037 22.182 0.837 4.923 4.292 22.590
0.2 0.708 2.003 0.034 22.191 0.832 3.342 1.056 22.665
0.3 0.687 2.002 0.046 22.194 0.822 3.250 1.027 22.791
0.4 0.658 2.003 0.042 22.195 0.811 3.141 1.007 22.924
0.5 0.611 2.002 0.048 22.195 0.794 3.038 1.000 23.116
0.6 0.565 2.002 0.055 22.200 0.770 2.945 0.926 23.404
0.7 0.499 2.002 0.059 22.203 0.745 2.366 0.942 23.892

T = 10
0.1 0.727 4.059 1.073 24.643 0.839 6.578 4.191 25.638
0.2 0.723 3.705 1.124 24.664 0.836 5.980 2.003 25.775
0.3 0.705 3.025 0.957 24.683 0.826 5.515 1.846 26.074
0.4 0.673 2.553 0.986 24.718 0.815 5.012 1.998 26.345
0.5 0.632 2.519 0.837 24.790 0.803 4.596 1.790 26.774
0.6 0.591 2.444 0.774 24.932 0.785 4.211 1.674 27.400
0.7 0.544 2.207 0.854 25.139 0.764 4.023 1.948 28.335

optimization problems with only proportional transactioncosts (see Davis and Norman (1990), Dumas
and Luciano (1991), Fleming and Soner (1993), Liu and Loewenstein (2002)). Thus trying to use this
kind of policy in the presence of a fixed costK different from zero clearly becomes unprofitable (and
the results are even worse if we decrease the 1% level). We also notice that this strategy results in a
lower utility when the proportional costc approaches to zero. This rather surprising effect depends on
the increased number of transactions due to a smaller no-transaction region, and thus on the increased
fixed transaction costs.

Finally, in order to understand how the risk aversion index 1− γ influences the agent’s behavior,
in Table 6 we report the average number of transactions for agents who use our optimal policy with
different values ofγ. We have consideredK = 0.01, andc = 0.1 or c = 0.001 (the other parameters
are the same considered in this section). We notice that, decreasingγ, i.e., considering more risk-averse
investors, both the percentage of the transaction region and the average number of transactions increase.
This is due to the fact that a more risk-averse agent prefers to pay higher transaction costs to maintain
his portfolio into a less risky position.



6. Conclusions

In this paper we have investigated a portfolio selection problem for a passive investor who divides
his capital between a risk-free money market instrument anda financial security representing a broad
market index. At every time instant the agent must decide theproportion of his wealth to invest in
the risky asset but the presence of transaction costs makes it unprofitable to trade continuously. Under
general assumptions we have characterized the value function as a constrained viscosity solution of
the related HJBQVI and we have proven the existence and structure of an optimal impulse trading
policy. Moreover we have proposed an iterative finite element method to numerically solve the model
for arbitrary utility functions. In the case of a power utility we have shown that the no-transaction
region closely resembles a cone which is the same shape of similar problems with infinite horizon and
proportional transaction costs. However the presence of a fixed cost leads to a big structural difference
in the optimal strategy: in our model there are two lines of target portfolios where to move from the
borders of the no-trade region, while in the proportional case the agent makes the minimal transactions
to stay inside the no-trade region. By a numerical example wehave shown that trying to implement
this second policy in the presence of a fixed cost is clearly sub-optimal. Unlike most of the literature
on portfolio selection in continuous time, our optimal trading strategy is not stationary. This is due to
the finite horizon because approaching the final date the intervention costs tend to be greater than the
benefits from rebalancing. Consequently, as time goes on, the no-trade region increases and the target
lines move apart. Furthermore the evolution of the two partsof the transaction region and of the two
lines of target portfolio is not symmetric, showing a liquidity preference in favor of the riskless asset as
time goes on up to the final date. Finally we have computed the average number of transactions made
by an agent using the optimal trading strategy. Our numerical simulations show that, even with small
transaction costs, the investor rebalances his portfolio very few times. This contrast sharply with the
continuous interventions of the Merton’s model without transaction costs.
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A. Proofs

A.1 Proof of Proposition 3.1

We setZ(t,B,S) :=Ceδ (T−t) (B+S)γ . The inequality (9) holds true inT×Ω asV(T,B,S)=U(L(B,S))6
CL(B,S)γ 6C(B+S)γ and in[0,T)× (0,0) because here we haveV(t,0,0) = 0. Moreover, inΩ\{0} ,
Z verifiesZ>M Z and− ∂Z

∂ t −L Z> 0. IndeedM Z=−1 if (B,S) /∈̥, M Z6Ceδ (T−t) (B+S−K)γ <

Z if (B,S) ∈ ̥, and, differentiatingZ, it is easy to verify that∂Z
∂ t +L Z 6 0 in Ω\{0}. Now con-

sider an admissible policyp ∈ A(t,B,S), for the controlled process starting int ∈ [0,T) with values
(B,S) ∈ Ω\{0}. We defineτ p

0 = t and, almost surely,np(ω) = max
{

i > 0 : τ p
i (ω)6 ϑ p(ω)

}

. Apply-
ing the generalized Itô’s formula to the functionZ, from t to ϑ p, we have:

Z(ϑ p,Bp(ϑ p),Sp(ϑ p)) = Z(t,B,S)+
∫ ϑ p

t ( ∂Z
∂ t +L Z)ds+

∫ ϑ p

t σS∂Z
∂S dW(s)+

+∑np

i=1(Z(τi ,B(τ−i )−ξi −K−c|ξi | ,S(τ−i )+ξi)−Z(τi ,B(τ−i ),S(τ−i ))) .

Since∂Z
∂ t +L Z 6 0 andZ > M Z it follows that, a.s.,

Z(ϑ p,Bp(ϑ p),Sp(ϑ p))< Z(t,B,S)+
∫ ϑ p

t
σS

∂Z
∂S

dW(s) .



Taking expectations, the stochastic integral vanishes, since ∂Z
∂S is bounded, and we obtain

Z(t,B,S)> E[Z(ϑ p,Bp(ϑ p),Sp(ϑ p))] ∀p∈ A(t,B,S) .

Therefore

Z(t,B,S) > sup
p∈A(t,B,S)

E[Z(ϑ p,Bp(ϑ p),Sp(ϑ p))]

= sup
p∈A(t,B,S)

E[C(Bp(ϑ p)+Sp(ϑ p))γeδ (T−ϑ p)]

> sup
p∈A(t,B,S)

Jp =V(t,B,S) .

A.2 Proof of Theorem 3.2

To prove the weak comparison principle, we adapt our problemto the techniques in Akian et al. (2001),
Barles (1994), Ly Vath et al. (2007), Oksendal and Sulem (2002), giving all the necessary preliminary
definitions and results. To prove comparison results for second-order equations is useful to give equiva-
lent definitions of viscosity solutions in terms of parabolic second order super and subdifferentials, see
Crandall et al. (1992). We will denote byS 2 the set of all 2×2 symmetric matrices and, when it is
convenient, byx the couple(B,S) ∈ Ω .

DEFINITION A.1 1) The set of parabolic second order superdifferentialsof a functionu : Q→ R at the
point (t,x) ∈ Q is defined by

D+(1,2)u(t,x) =
{

(q, p,A) ∈ R×R
2×S

2 :

limsup
(h,y)→0

(t+h,x+y)∈Q

u(t +h,x+y)−u(t,x)−qh− py− 1
2Ay·y

|h|+ |y|2
6 0















(21)

2) A triplet (q, p,A)∈R×R2×S 2 belongs toD
+(1,2)

u(t,x), the closure ofD+(1,2)u(t,x), if there exists
a sequence(tm,xm) converging to(t,x), and another sequence

(qm, pm,Am) ∈ D+(1,2)u(tm,xm)

converging to(q, p,A) asm tends to infinity.

The setD−(1,2)u(t,x) of parabolic second order subdifferentials ofu : Q→R at (t,x) ∈ Q is defined
in a symmetric way using the liminf and the> inequality in (21) and the definition of its closure

D
−(1,2)

u(t,x) is analogous to the definition ofD
+(1,2)

u(t,x).

DEFINITION A.2 GivenO ⊂Ω , a locally bounded functionu : Q→R+ is called a viscosity subsolution
(resp. supersolution) of (8) in[0,T)×O if

min

{

−q− rBp1−µSp2−
1
2

σ2S2A22,u
∗(t,x)−M u∗(t,x)

}

6 0

(resp.u∗ and > 0)

for all (t,x) ∈ [0,T)×O, (q, p,A=

[

A11 A12

A21 A22

]

) ∈ D
+(1,2)

u∗(t,x) (resp.D
−(1,2)

u∗(t,x)).



In order to prove the weak comparison principle it is useful to obtain strict viscosity supersolutions
of (8) in Q= [0,T)×Ω .

LEMMA A.1 Fix δ ′ > δ = γ
(

r + (µ−r)2

2σ2(1−γ)

)

and consider the smooth perturbation functiong(t,B,S) =

eδ ′(T−t)(B+S)γ . Let v ∈ LSC(Q) be a viscosity supersolution of (8) inQ. Then for anyε > 0 the lsc
functionvε = v+εg is a strict viscosity supersolution of (8) in any compact setG⊂ Q. This means that
for any compactG⊂ Q there exists a constantρ > 0, depending onG, such that

min

{

−q− rBp1−µSp2−
1
2

σ2S2A22,vε −M vε

}

> ερ

for all (t,B,S) ∈ G, ε > 0 and(q, p,A) ∈ D
−(1,2)

vε(t,B,S).

Proof. From the definition (7) we have, forε > 0,

M v+ εM g> M vε

and thus
vε −M vε > v−M v+ ε(g−M g) . (22)

Sincev is a supersolution it holdsv−M v> 0. Moreover from (7) and the definition ofg it follows

g(t,B,S)−M g(t,B,S)>

{

eδ ′(T−t) [(B+S)γ − (B+S−k)γ ] if (B,S) ∈̥

1 if (B,S) /∈̥ .

Hence for any compactG⊂ Q there existsρ1 > 0 such thatg−M g> ρ1 for (t,B,S) ∈ G. Combining
this with (22) we obtainvε −M vε > ερ1 in G. We consider now− ∂g

∂ t −L g. We have

−
∂g
∂ t

−L g= eδ ′(T−t)(B+S)γ
[

δ ′− γ
rB+µS
B+S

−
1
2

γ(γ −1)σ2 S2

(B+S)2

]

(23)

and, setting S
B+S = α, B

B+S = (1−α), it is not difficult to see thatδ ′ > γ
(

r + (µ−r)2

2σ2(1−γ)

)

is sufficient to

get− ∂g
∂ t −L g > 0, whenB+S> 0. Therefore for any compactG ⊂ Q there existsρ2 > 0 such that

− ∂g
∂ t −L g> ρ2 for all (t,B,S) ∈ G. Sincev is already a supersolution of (8), we obtain that

−q− rBp1−µSp2−
1
2

σ2S2A22 > ερ2

for all (t,B,S) ∈ G and(q, p,A) ∈ D
−(1,2)

vε(t,B,S). Thereforevε is a strict viscosity supersolution of
(8) in any compact setG⊂ Q. �

Now it is sufficient to prove the weak comparison principle between a viscosity subsolutionu and a
strict viscosity supersolutionvε = v+ ε f , for all ε > 0, becauseu6 v in Q\R will follow in the limit
ε ↓ 0. We show the result first reasoning inQ

+
. Let u andv be as in theorem 3.2. We redefine the

supersolutionv on ∂ ∗Q+ by

v(t,B,S) = liminf
(t ′,B′,S′)∈Q+

(t ′,B′,S′)→(t,B,S)

v(t ′,B′,S′) ∀(t,B,S) ∈ ∂ ∗Q+, (24)



and we still denotev this function. Now we consider the differenceu− vε in Q
+

, and we argue by
contradiction supposing that

m≡ sup
(t,B,S)∈Q

+
u−vε > 0 . (25)

Sinceu− vε is u.s.c,Q
+

is compact and the boundary conditions (13) hold true, the maximum m is
attained in some point(t0,x0) ∈ {[0,T)×{Ω+∪∂1Ω+}}\{0}. To obtain a contradiction we apply the
Ishii’s technique redoubling the variables and penalizingthis doubling, see Crandall et al. (1992) and
Barles (1994). First suppose(t0,x0) ∈ Q+ and consider the test functions fori > 1

Φi(t,x,x
′) = u(t,x)−vε(t,x

′)−ϕi(t,x,x
′),

where

ϕi(t,x,x
′) = |t − t0|

2+ |x−x0|
4+

i
2

∣

∣x−x′
∣

∣ .

As Φi(t,x,x′) is usc inQ
+
, there exists(t̂i , x̂i , x̂′i) ∈ Q

+
such that

mi = sup
(t,x,x′)∈[0,T]×Ω+

×Ω+
Φi(t,x,x

′) = Φi(t̂i , x̂i , x̂
′
i),

and, at least for a subsequence,(t̂i , x̂i , x̂′i) converges to some(t̂0, x̂0, x̂′0) ∈ Q
+

. By definition we have

m6 mi 6 u(t̂i , x̂i)−vε(t̂i , x̂
′
i),

and it is not difficult to show that, approachingi to infinity, we obtain






t̂0 = t0, x0 = x̂0 = x̂′0
mi −→ m
i
2 |x̂i − x̂′i | → 0.

(26)

Therefore we can apply Ishii’s lemma to the interior maximum(t̂i , x̂i , x̂′i) ∈ [0,T)×Ω+×Ω+ of Φi , see
Theorem 8.3 in Crandall et al. (1992). There existq,q′ ∈ R, p, p′ ∈ R2 andA,A′ ∈ S 2 such that

(q, p,A) ∈ D
+(1,2)

u(t̂i , x̂i) and (q′, p′,A′) ∈ D
−(1,2)

vε(t̂i , x̂i),

where










q−q′ = ∂ϕi
∂ t (t̂i , x̂i , x̂′i) = 2(t̂i − t0)

p= ∂ϕi
∂x (t̂i , x̂i , x̂′i) = 4(x̂i −x0) |x̂i −x0|

2+ i(x̂i − x̂′i)

p′ =− ∂ϕi
∂x′ (t̂i , x̂i , x̂′i) = i(x̂i − x̂′i),

(27)

andA, A′ are such that
[

A 0
0 A′

]

6
∂ 2ϕi

∂x∂x′
(t̂i , x̂i , x̂

′
i)+

1
i

(

∂ 2ϕi

∂x∂x′
(t̂i , x̂i , x̂

′
i)

)2

. (28)

The subsolution property ofu in (t̂i , x̂i) and the strict supersolution property ofvε in (t̂i , x̂′i), imply that

min

{

−q− rB̂i p1−µŜi p2−
1
2

σ2Ŝ2
i A22, u(t̂i , x̂i)−M u(t̂i , x̂i)

}

6 0 (29)

min

{

−q′− rB̂′
i p

′
1−µŜ′i p

′
2−

1
2

σ2Ŝ′2i A′
22, zε(t̂i , x̂

′
i)−M zε(t̂i , x̂

′
i)

}

> ερ . (30)



If u(t̂i , x̂i)−M u(t̂i , x̂i) 6 0 in (29), then, combining withzε(t̂i , x̂′i)−M zε(t̂i , x̂′i) > ερ due to (30), we
obtain

mi 6 u(t̂i , x̂i)−vε(t̂i , x̂
′
i)6 M u(t̂i , x̂i)−M zε(t̂i , x̂

′
i)− ερ .

Using Lemma 3.1 and (26), wheni goes to infinity, we have

m6 M u(t0,x0)−M zε(t0,x0)− ερ .

Since by Remark 2.2,F(x0) is compact, if it is not empty, andu is usc, then there existsx′0 such that
M u(t0,x0) = u(t0,x′0) and we obtain a contradiction using the definitions ofm andM

m6 u(t0,x
′
0)−zε(t0,x

′
0)− ερ 6 m− ερ .

Therefore it must be−q− rB̂i p1−µŜi p2−
1
2σ2Ŝ2

i A22 6 0 in (29), and, combining with−q′− rB̂′
i p

′
1−

µŜ′i p
′
2−

1
2σ2Ŝ′2i A′

22 > ερ of (30), we obtain

−(q−q′)− r(B̂i p1− B̂′
i p

′
1)−µ(Ŝi p2− Ŝ′i p

′
2)−

1
2

σ2(Ŝ2
i A22− Ŝ′2i A′

22)6−ερ . (31)

By (26) and (27), asi goes to infinity,(q−q′), (B̂i p1− B̂′
i p

′
1), (Ŝi p2− Ŝ′i p

′
2) converge to zero. Moreover

by (28) it follows
(Ŝ2

i A22− Ŝ′2i A′
22)6 βi , (32)

where

βi = si

[

∂ 2ϕi

∂x∂x′
(t̂i , x̂i , x̂

′
i)+

1
i

(

∂ 2ϕi

∂x∂x′
(t̂i , x̂i , x̂

′
i)

)2
]

sT
i , (33)

with si = [0, Ŝi ,0, Ŝ′i ]. We have

∂ 2ϕi

∂x∂x′
(t̂i , x̂i , x̂

′
i) =

[

iI2+Qi −iI2

−iI2 iI2

]

, (34)

whereQi = 8|x̂i −x0|
2 I2+8(x̂i − x0)(x̂i − x0)

T andI2 is the(2×2) identity matrix. Substituting (34)
into (33), after some computations we obtain

βi = 3i(Ŝi − Ŝ′i)
2+si

([

3Qi −Qi

−Qi 0

]

+
1
i

[

Q2
i 0

0 0

])

sT
i . (35)

By (26) and (35),βi also converges to zero asi goes to infinity and therefore (31) and (32) lead to
another contradiction wheni → ∞. Therefore we have shown that the maximizer(t0,x0) of (25) can-
not belong toQ+. The more difficult case ,when we suppose the maximizer(t0,x0) is on the border
{[0,T)×∂1Ω+}\{0} , can be faced as in Oksendal and Sulem (2002) and Ly Vath et al. (2007) using
a technique proposed in Barles (1994) which assumes some regularity of the boundary. Specifically if
we denote byd(x) the distance fromx to ∂Ω+, this distance must be twice continuously differentiable
in a neighborhood ofx0. It can be shown as in Ly Vath et al. (2007) that this regularity is satisfied on
the border{[0,T)×∂1Ω+}\{0} . By (24) there exists a sequence(ti ,xi) in Q+ converging to(t0,x0).
Defineαi = |ti − t0|, γi = |xi −x0| and consider, as in Ly Vath et al. (2007), the test functions for i > 1

Φi(t, t
′,x,x′) = u(t,x)−vε(t

′,x′)−ϕi(t, t
′,x,x′), (36)



where

ϕi(t, t
′,x,x′) = |t − t0|

2+ |x−x0|
4+

|t − t ′|2

2αi
+

|x−x′|2

2γi
+

(

d(x′)
d(xi)

−1

)4

.

It is not difficult to show that in the maximizer(t̂i , t̂ ′i , x̂i , x̂′i) of Φi , the point ˆx′i always verifiesd(x̂′i)> 0.
Therefore we can still use the strict supersolution property of vε in (t̂ ′i , x̂

′
i). Applying Ishii’s lemma to the

point (t̂i , t̂ ′i , x̂i , x̂′i) and repeating the preceding arguments with the test functions (36) we obtain again,
by contradiction, that it must bem> 0. Finally to getu6 v also inQ−\R it is sufficient to redefine the
subsolutionu on ∂ ∗Q− by

v(t,B,S) = limsup
(t ′,B′,S′)∈Q−

(t ′,B′,S′)→(t,B,S)

v(t ′,B′,S′) ∀(t,B,S) ∈ ∂ ∗Q−

and to repeat the same proof ofQ
+

in Q
−

.

A.3 Proof of Lemma 3.2

First of all we consider(t,B,S) ∈ ∂ ∗
2 Q\R. SinceU(L(B,S)er(T−t)) is continuous in(t,B,S) ∈ ∂ ∗

2 Q\R
and, by construction, it always holdsV(t ′,B′,S′) > U(L(B′,S′)er(T−t ′)), it holds for any(t,B,S) ∈
∂ ∗

2 Q\R
V∗(t,B,S)≡ liminf

(t ′,B′,S′)∈Q
(t ′,B′,S′)→(t,B,S)

V(t ′,B′,S′)>U(L(B,S)er(T−t)) . (37)

Now let
V∗(t,B,S) = limsup

(t ′,B′,S′)∈Q
(t ′,B′,S′)→(t,B,S)

V(t ′,B′,S′)

and(tm,Bm,Sm) be a sequence inQ such that

lim
(tm,Bm,Sm)→(t,B,S)

V(t ′,B′,S′) =V∗(t,B,S).

By (6), for anym there exists a quasi-optimal policypm = {(τm
i ,ξ m

i )} such thatpm ∈ A(tm,Bm,Sm) and
V(tm,Bm,Sm)6 Jpm

(tm,Bm,Sm)+
1
m. Denoting the controlled process(Bpm

,Spm
) by Xm it follows (here

ϑ m = T ∧θ pm
)

V(tm,Bm,Sm)6 Etm,Bm,Sm

[

U (L(Xm(ϑ m))er(T−ϑm))
]

+
1
m

.

As it is always optimal not to intervene inϑ m we can assumeτm
i 6= ϑ m, ∀i. Defining∆Xm

s ≡ Xm(s)−
Xm(s−), wheres> tm andXm(t−m)≡ (Bm,Sm), we have

Xm(ϑ m) = Xm(t−m)+∆Xm
tm +

ϑm
∫

tm

α(Xm(s))ds+

ϑm
∫

tm

β (Xm(s))dWs+ ∑
tm<s<ϑm

∆Xm
s (38)

whereα(Xm) = [rBpm
,µSpm

] andβ (Xm) = [0,σSpm
]. Since(tm,Bm,Sm) → (t,B,S) ∈ ∂ ∗

2 Q it follows
thatϑ m− tm converges a.s. to zero whenm→ ∞. Thus the two integrals in (38) vanish becauseXm∈ Ω
is bounded. Moreover the last summation also vanishes because the jump sizes are uniformly bounded



and the number of interventions aftertm and beforeϑ m, converges to zero astm → ϑ m. The first
difference∆Xm

tm, at least for a subsequence, converges to some∆X1 whenm→ ∞. Finally, approaching
m to infinity in (A.3), by the dominated convergence theorem weobtain

V∗(t,B,S)6U(L((B,S)+∆X1)e
r(T−t))6U(L(B,S)er(T−t)), (39)

and therefore the first condition in (14) is true. If(t,B,0) ∈ ∂ ∗
2 Q∩R and(t ′,B′,S′) ∈ Q+ converges to

(t,B,0) from aboveR, we have

lim
(t ′,B′,S′)∈Q+

(t ′,B′,S′)→(t,B,0)

U(L(B′,S′)er(T−t ′)) =U(Ber(T−t)),

and we can repeat the same reasoning as for(t,B,S) ∈ ∂ ∗
2 Q\R. However, if(t ′,B′,S′) ∈ Q− converges

to (t,B,0) from belowR, we have

lim
(t ′,B′,S′)∈Q−

(t ′,B′,S′)→(t,B,0)

U(L(B′,S′)er(T−t ′)) =U((B−K)er(T−t))

and, by the same procedure used before to obtain (37) and (39), we get

V∗
Q−(t,B,0) ≡ limsup

(t ′,B′,S′)∈Q−

(t ′,B′,S′)→(t,B,0)

V(t ′,B′,S′)6U((B−K)er(T−t))

6 V∗ Q−(t,B,0)≡ liminf
(t ′,B′,S′)∈Q−

(t ′,B′,S′)→(t,B,0)

V(t ′,B′,S′) .

A.4 Proof of Theorem 4.2

We first show thatPn > Vn for any (t,B,S) ∈ Q. Let p ∈ An(t,B,S), with p = {τ p
i ,ξ

p
i }i=1,··· ,n, and

(Bp,Sp) the corresponding controlled process. SinceM Pn−1 is given at stepn, the functionPn is, for
anyn, the value function of an optimal stopping problem. By using the dynamic programming principle
for the value functions of optimal stopping problems - see Chapter 3, Section 1, in Krylov (1980) - it
can be shown, as in Corollary 3.7 in Chancelier et al. (2002),that the process

Zn(s) = Pn(s∧ϑ p,Bp(s∧ϑ p),Sp(s∧ϑ p)), s> t

is a supermartingale, for anyn and any given stopping timeα > t. From the optional sampling theorem
it follows that if t 6 α1 6 α2 are stopping times then we have

Et,B,S [Pn(α1∧ϑ p,Bp(α1∧ϑ p),Sp(α1∧ϑ p))]

> Et,B,S [Pn(α2∧ϑ p,Bp(α2∧ϑ p),Sp(α2∧ϑ p))] . (40)



Defineτ0 ≡ 0, τ i ≡ τ p
i ∧ϑ p and let(Bp(s),Sp(s)) = (B(s),S(s)) in any interval[τ j ,τ j+1). By (40) and

the definitions (7) and (18) we obtain forj = 0, ....,n−1

Et,B,S [Pn− j(τ j ,B(τ j),S(τ j))]> Et,B,S

[

Pn− j(τ j+1,B(τ −
j+1),S(τ

−
j+1))

]

= Et,B,S

[

Pn− j(τ j+1,B(τ −
j+1),S(τ

−
j+1))

]

χτ p
j+1i6ϑ p

+Et,B,S

[

Pn− j(τ j+1,B(τ −
j+1),S(τ

−
j+1))

]

χτ p
j+1i>ϑ p

> Et,B,S

[

M Pn− j−1(τ j+1,B(τ −
j+1),S(τ

−
j+1))

]

χτ p
j+1i6ϑ p

+Et,B,S

[

Pn− j−1(τ j+1,B(τ −
j+1),S(τ

−
j+1))

]

χτ p
j+1i>ϑ p

> Et,B,S
[

Pn− j−1(τ j+1,B(τ j+1),S(τ j+1))
]

.

Summing up all these inequalities fromj = 0 to j = n−1 we obtain

Pn(t,B,S)> Et,B,S [P0(τn,B(τn),S(τn))] .

By property (40) we also have

Et,B,S [P0(τn,B(τn),S(τn))]> Et,B,S [P0(ϑ p,B(ϑ p),S(ϑ p))]

= Et,B,S

[

U (L(B(ϑ p),S(ϑ p))er(T−ϑ p))
]

= Jp(t,B,S) .

Thus we have shown thatPn(t,B,S)> Jp(t,B,S), ∀p∈ An(t,B,S) andPn >Vn, ∀(t,B,S) ∈ Q.
To obtain the reverse inequality we build an optimal policyp∗ ∈ An(t,B,S) such thatJp∗(t,B,S) =

Pn(t,B,S). First of all, let us define the control sets

Ci ≡
{

(t,B,S) ∈ Q : Pi(t,B,S) = M Pi−1(t,B,S)
}

, i = 1, · · · ,n.

Moreover, letI1 be the set
I1 ≡ {ϑ > s> t : (s,B(s),S(s)) ∈Cn} .

We chooseτ∗1 such that

τ∗1 =

{

inf I1 if I1 6= /0
+∞ if I1 = /0

andξ ∗
1 is given by

ξ ∗
1 =

{

ξ ∗
Pn−1

(B(τ∗−1 ),S(τ∗ −1 )) if τ∗1 < ∞
arbitrary if τ∗1 = ∞

whereξ ∗
Pn−1

(B,S) is defined in Lemma 3.1 (c). Ifα1,α2 are stopping times such thatt 6 α1 6 α2 6 τ∗1 ,
it follows by the dynamic programming principle that (40) becomes an equality. See Corollary 3.7b in
Chancelier et al. (2002) and Chapter 7 in Oksendal and Sulem (2007). From this fact and the choice of
(τ∗1 ,ξ ∗

1 ), all the inequalities in (A.4) become equalities and, beingτ∗1 ≡ τ∗1 ∧ϑ , we obtain

Pn(t,B,S) = Et,B,S[Pn−1(τ∗1,B(τ∗1),S(τ∗1))]. (41)



Now we define the policyp∗ recursively by














τ∗i =

{

inf Ii if Ii 6= /0
+∞ if Ii = /0

ξ ∗
i =

{

ξ ∗
Pn−i

(B(τ∗−i ),S(τ∗ −i )) if τ∗i < ∞
arbitrary if τ∗i = ∞

for i = 1, ...,n, with τ∗0 ≡ 0 and whereIi is the set

Ii ≡
{

ϑ > s> τ∗i−1 : (s,Bp∗(s−),Sp∗(s−)) ∈Cn+1−i

}

.

By the same argument of (41) we have

Et,B,S[Pn−i(τ∗i ,Bp∗(τ∗i ),Sp∗(τ∗i ))] = Et,B,S[Pn−i−1(τ∗i+1,B
p∗(τ∗i+1),S

p∗(τ∗i+1))], (42)

with τ∗i ≡ τ∗i ∧ϑ p∗ . Considering all then equalities (42) we conclude the proof since

Pn(t,B,S) = Et,B,S[P0(τ∗n,Bp∗(τ∗n),Sp∗(τ∗n))]

= Et,B,S[P0(ϑ p∗ ,B(ϑ p∗),S(ϑ p∗))]

= Et,B,S[U (L(B(ϑ p∗),S(ϑ p∗))er(T−ϑ p∗ ))] = Jp∗(t,B,S) .


