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1. Introduction
 The mechanical study of this problem requires the knowledge of
 
In recent years, autoclaved aerated con
crete (AAC) has been 
material properties, like tensile strength and fracture energy. The
latter has been mainly analyzed in the past through experimental

tests on compact tension specimens and wedge-splitting specimens, 
widely recognized as a high quality, innovative material that 
lization of residential, whose results can be found in the technical literature [3–7].
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

commercial and industrial buildings.
As known, AAC is a lightweight structural material with 

interesting sound and thermal insulation properties that allow 
satisfying increas-ingly stringent building design requirements, and 
ensure environmen-tal compliance [1,2]. From a structural point of 
view, AAC is suitable for the realization of masonry bearing walls of 
low-to-medium rise buildings, since it offers high fire-resistance, due 
to its incombustible nature, and adequate mechanical properties, at 
least for the material with higher density values (corresponding to 
higher compressive strengths). The structural behavior of AAC – 
especially under accidental or seismic loads – is also influenced by its 
toughness, which exerts an important role on its resistance against 
damage during transport and handling [3]. Fracture toughness is also 
relevant with respect to cracking, which represents a quite common 
problem of AAC masonry even under static loads. This problem is 
particularly significant for AAC internal partitions, due to the 
deformability of the upper floor, which can lean on them – thus 
representing an additional, not calculated load – or to that of the 
bottom floor, which can drag down the wall, connected to it.
39 0521 905924.
.

Aim of this work is to investigate cracking development in AAC
walls under static loads and, more generally, cracking in AAC
structures. To this scope, three point bending tests, similar to those
commonly used for ordinary concrete, have been performed on AAC
elements, trying to overcome the difficulties related to crack
propagation control. In more detail, a preliminary set of tests on both
AAC beams and deep-beams has been performed under loading
control, so as to quantify the statistical variability of material tensile
strength. Subsequently, similar specimens have been tested under
crack-mouth opening displacement (CMOD) control, so as to obtain
the complete load–displacement curve and, consequently, the
material fracture energy GF. In order to determine a proper cohesive
law, crack propagation has been observed by using ESPI (Electronic
Speckle Pattern Interferometry) technique, which allows observing
the displacement field of a  surface illuminated  by a laser light with a
precision higher than 10 μm. This has permitted to detect the cracking
onset and to observe the crack profile. The so obtained results have
been then used for calibrating the parameters of a proper cohesive law
through an inverse analysis procedure, performing a non-linear
extended finite element analysis; this law substantially agrees with
those available in the literature, obtained through wedge-splitting
tests [4]. Finally, the proposed cohesive law has been adopted in an
XFEM model so as to reproduce the experimental cracking growth in a
reduced scale AAC wall.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cemconres.2014.09.005&domain=pdf
mailto:daniele.ferretti@unipr.it
Unlabelled image
Unlabelled image


250

625

100

156 313 156

70

83
250

(a) (b) 

Fig. 1. Compression tests on AAC blocks: (a) geometry of the considered samples with position of the adopted instrumentation; (b) general setup adopted for instrumented tests.
2. Experimental tests on AAC

2.1. Mechanical characterization of the material

As already mentioned, the first part of the experimental program 
aimed to provide a mechanical characterization of the investigated 
material, by quantifying at the same time the statistical variability of 
the most important properties. Before testing, all the investigated 
samples, characterized by an average density ρ ≈ 550 kg/m3, were 
cured in lab-oratory conditions so as to reach relatively low moisture 
contents. It should be indeed kept in mind that AAC strength is 
influenced by several parameters, which are related not only to 
specimen size and shape, but also to method of pore formation, 
direction of loading, age, moisture content, characteristics of 
ingredients adopted in the mix, and method of curing [8,9].

As known, AAC compressive strength is usually determined on cubes 
with an edge length of 100 mm, even if cubes with an edge length of 150 
mm can be also used according to RILEM [3]; within this range the size of 
samples does not influence the results. In the technical liter-ature, 
cylindrical or prismatic samples are also often used (e.g., [10]); in this case, 
the measured strength is generally lower than that determined on cubes 
and decreases with increasing sample slenderness (it is approximately 5% 
lower for slenderness equal to 2–3, [3,11]). It is also possible to determine 
the compressive strength by directly testing the block units [3,12]; the so 
obtained values may be up to 10% lower than the ones measured on cubes. 
In this case, the maximum sustainable load of the unit and the 
corresponding compressive strength are indeed governed by the failure of 
the weaker side of the specimen.

In this paper, the statistical variability of AAC mechanical properties
(strength and deformability parameters in compression) has been
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Fig. 2. (a) Statistical variability of AAC compressive strength as measu
investigated with reference to specimens characterized by different 
shapes and dimensions, so as to understand if the results provided by 
standard tests can be used to effectively model the behavior of full-
scale walls, especially in the case of internal partitions. To this scope, 
the results obtained on “traditional” specimens, that is to say cubes 
with an edge length of 100 mm and prisms with slenderness equal to 2 
(characterized by a 40 mm × 40 mm square basis and a height of 80 
mm), have been compared with those provided by non-standard 
samples, represented by blocks and reduced scale walls. In more detail, 
the attention has been focused on blocks with a loaded area equal to 625 
× 100 mm and a height equal to 250 mm, commonly used for the 
realization of internal partitions, as well as on small AAC walls, with a 
loaded area equal to 625 × 100 mm and a height equal to 750 mm.

2.1.1. Uniaxial compression tests on AAC blocks
At first, 13 compression tests have been performed on AAC blocks for 

internal partitions. Before testing, all the specimens have been cured in 
laboratory conditions for about three months until reaching a moisture 
content lower than 10%. Tests have been carried out at the Material and 
Testing Laboratory of the AAC Manufacturer Company (in Piacenza, Italy), 
by using a Metrocom PV50 press working under loading control, with a 
capacity of the hydraulic actuator equal to 5000 kN and a loading rate of 25 
kN/min [13]. The adopted test arrangement is shown in Fig. 1; in order to 
apply a distributed load, a 650 mm long steel rigid beam with I-section has 
been placed on the top of the specimen. AAC surfaces have been 
preliminary flattened by sandpaper to eliminate any irregularity and 
thereby ensure a complete contact between the specimen and the testing 
apparatus; furthermore, thin cardboard layers have been interposed 
between the specimen itself and the loading press, so as to minimize the 
confinement effect due to friction and apply a more uniform
(b) 

red on blocks; (b) example of observed crack pattern at failure.
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Fig. 3. Compression tests on small AAC walls: (a) geometry of the considered samples with position of the adopted instrumentation; (b) general setup adopted for instrumented tests.
state of stress. Three of the 13 specimens have also been instrumented 
with linear variable displacement transducers (LVDTs, see Fig. 1), in 
order to measure vertical and horizontal strains, εV and εH, so as to de-
termine the material elastic modulus E and the Poisson coefficient ν.

As can be seen in Fig. 2a, these tests have highlighted a small vari-
ability of compressive strength, due to the homogenous structure of 
the material. The average value of ultimate load was approximately 
equal to Pc = 150.5 kN, corresponding to a nominal compressive 
strength fc = 2.43 MPa, with a coefficient of variation CV = 0.14. In 
most of the examined cases, specimen failure was characterized by a 
widespread cracking, which was mainly concentrated near one of the 
external corners (Fig. 2b), in the weaker part of the block. As a matter 
of fact, because of material preparation process, the behavior in the di-
rection of the rise of the mass during manufacturing – perpendicular 
to loading direction, for the analyzed specimens – is indeed variable 
along the mold height, since the bottom part is significantly more 
dense and stronger than the top one [12]; as a consequence, one edge 
of each tested specimen was necessarily less resistant than the other, 
influencing the resultant failure load. From the 3 instrumented tests it 
has also been possible to indirectly determine both the elastic 
modulus and the Poisson coefficient, which were respectively equal to 
E = 1285 MPa and ν = 0.38, with a coefficient of variation approxi-
mately equal to 3%. In more detail, the elastic modulus has been
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Fig. 4. (a) Statistical variability of AAC compressive strength as measure
evaluated with reference to a stress interval ranging between 0.02fc 

and 0.33fc, according to the procedure included in RILEM 
recommendations [3]. The so obtained elastic modulus appears to be 
quite in agreement with the results provided by other 
experimental campaigns available in the literature [11,14], as well as 
with the value derivable from a semi-empirical relation between the 
elastic modulus E and the compressive strength fc suggested in 
[11,14]. By substituting the experimental value of compressive 
strength, fc = 2.43 MPa, in this expression, which is here reported for 
reading convenience (with fc and E in psi):

E ¼ 6500 f c
0:6 ð1Þ

a value of E = 1512 MPa can be obtained, which is about 15% higher 
than the measured one. The same authors [11,14] also indicate that 
the modulus of elasticity tested parallel to the direction of rise is 
170 MPa to 340 MPa lower than in case of loading perpendicular to 
the direction of rise.

2.1.2. Uniaxial compression tests on small AAC walls
The performed experimental campaign has also included 7 compression 

tests on small AAC walls, having the same loaded area as the blocks 
previously described (625 × 100 mm), but a greater height (750 mm, Fig. 
3). These compression tests on small walls have been carried out
(b) 

d on small walls; (b) example of observed crack pattern at failure.
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Fig. 5. Statistical variability of AAC compressive strength asmeasured on cubeswith an edge length of 100mmcut frombearingmasonry blocks (in red the ones cut from internal partition
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reader is referred to the web version of this article.)
at the same time as the ones on blocks; as a consequence, the same 
experimental apparatus has been adopted (Fig. 3b).

As can be seen in Fig. 4a, the mean value of compressive strength 
measured on small walls was very similar to that determined on 
blocks; in this case, the obtained results were even characterized by a 
lower scatter (with a coefficient of variation CV equal to 7% instead of 
14%). The average value of ultimate load was indeed approximately 
equal to Pc = 148.8 kN, corresponding to a nominal compressive 
strength fc = 2.39 MPa. This seems to suggest that specimen geometry 
exerts only a limited influence on nominal compressive strength. 
Moreover, the failure mode and the corresponding crack pattern of 
small walls were very similar to the ones already observed for blocks, 
since also in this case specimen failure was characterized by a 
widespread cracking, mainly concentrated near one of the external 
corners (Fig. 4b). Finally, it can be observed that the elastic modulus, 
as well as the Poisson coefficient indirectly determined on small walls 
slightly deviates from those already derived from blocks, being 
respectively equal to E = 1352 MPa and ν = 0.38, with a coefficient of 
variation approxi-mately equal to 4%. In this case, Eq. (1) provides a 
value of the elastic modulus equal to E = 1497 MPa, which is about 
10% higher than the measured one.

2.1.3. Uniaxial compression tests on AAC cubes and prisms
Finally, the compressive strength values obtained on blocks and 

small walls have been compared with those obtained on standard 
cubes with an edge length of 100 mm [15]. These compression tests
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Fig. 6. (a) Statistical variability of AAC compressive strength as measured on prisms with 4
obtained from prisms and comparisons with tests on cylinders in [10]; (c) comparison amo
and dimensions.
have been performed according to UNI EN 772-1 [16] and UNI EN 
771-4 [17], by cutting the cubes from AAC bearing masonry blocks 
(whose dimensions were 625 × 250 × 300 mm), characterized by a 
moisture content approximately equal to 6% (and then comparable to 
that of specimens described in the previous paragraphs). The so 
obtained results are summarized in Fig. 5a and b which reports the 
trend of compressive strength values respectively in the vertical – 
parallel to the applied load – and horizontal directions (lilac 
histogram, C1–C6 and C1*–C6* samples). On this point, it should be 
underlined that each reported value has been deduced as the average 
between the strength of three specimens, respectively cut in the upper, 
the middle and the lower third of each block (as a consequence, a total 
amount of 18 specimens have been analyzed in the two directions of 
load). This has permitted to take into account the effect of density 
variation along the block. As can be seen, a different direction of load 
application determines different average strengths (which are about 
25% higher in the direction of vertical loads), since they are influenced 
by the direction of mass expansion during manufacture.

The same graph in Fig. 5a also reports the strengths of two more 
cubes (red bars, C7–C8 samples), which have been directly cut from 
the central part of block B1 at the end of compression tests described 
in Section 2.1.1. The so obtained cube strength values appear to be 
slightly lower than those obtained from C1 to C6 samples, even if the 
moisture content and effective density were almost the same. In any 
case, the average cube compressive strength in the direction of vertical 
load appears to be up to 25% higher than the corresponding one
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Fig. 7.Geometry of the considered sampleswith position of the adopted instrumentation for (a) beams and (c) deep-beams; experimental crack pattern at the end of three-point bending
tests for (b) beams and (d) deep-beams.
measured on slender blocks if all the specimens in Fig. 5a are consid-
ered, while it is about 15% higher if only the two cubes cut from block
B1 are considered (red bars).

Furthermore, 3 prisms with 40 mm square basis and a height of 80
mm extracted from the same batch of blocks B1–B13 have been test-ed
in compression; also in this case, the specimens have been directly cut
from the central part of the blocks. As can be observed in Fig. 6a,
strength measured on prisms (characterized by a slenderness equal to
2) results about 10% lower than that determined on cubes, as could be
expected. In order to obtain the stress–strain curve for AAC in compres-
sion, these tests have been performed under displacement control.
Longitudinal strains have been experimentally measured by means of
4 LVDTs placed on the 4 edges of each prism. The obtained results have
been reported in Fig. 6b; for comparison, the same graph also shows
the stress–strain curve published in [10] for AAC cylinders with a
similar density (respectively equal to 544 kg/m3 for AAC1 and 450 kg/
m3 for AAC2). As can be seen, Fig. 6b  confirms a good agreemen
between the curves of the two experimental campaigns.

Finally, the obtained results have been summarized in Fig. 6c in
terms of compressive strength values relative to different geometries
and dimensions of the investigated samples. As can be expected, com-
pressive strength determined on prisms is slightly lower than that
obtained from standard cubes, being fc = 2.8 MPa instead of 3.1 MPa 
(with a CV respectively equal to 5% and 7%). Compression tests on 
blocks and reduced scale walls provide instead almost the same value 
of com-pressive strength (around fc = 2.4 MPa), which is about 20% 
lower than the value obtained from standard cubes.

2.2. Evaluation of AAC tensile strength through three-point bending tests

In order to evaluate AAC tensile strength and its statistical variability, a 
preliminary set of three-point bending tests has been carried out on 6 
AAC beams having the same geometry as the blocks tested in 
compression (625 × 100 × 250 mm). Moreover, 7 additional 
three-point tests have been also performed on AAC deep-beams, having the 
same geometry as the small walls tested in compression (625 × 100 × 750 
mm). Before testing, all the considered specimens have been preliminary 
cured in laboratory conditions for about three months, until reaching a 
moisture content lower than 10%. Tests have been carried out at the 
Material and Testing Laboratory of the AAC Manufacturer Company (in 
Piacenza, Italy), by using a Instron 5882 press working under loading 
control, with a loading rate of 1 kN/min [13]. The test setup is shown in 
Fig. 7. Two specimens of each considered typology (beams and deep-
beams) have been instrumented with LVDTs, in
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order to measure horizontal displacements at their top and bottom 
edges (Fig. 7a). In case of deep-beams, an additional LVDT has been 
placed in the central part of specimen side (Fig. 7c). Through these 
tests it has been possible to determine the failure load in bending for 
the two examined types of specimens. Subsequently, the flexural 
tensile strength fct,fl (also called modulus of rupture) has been 
indirectly derived from linear finite element analyses. In more detail, 
the per-formed experimental tests have been numerically modeled by 
adopting the mechanical properties previously derived from the 
compression tests, by considering average values between beams and 
deep-beams (E = 1320 MPa, ν = 0.38 MPa). The small difference of 
elastic moduli in the two directions (parallel and perpendicular to the 
applied load,[14]) has been instead neglected for sake of simplicity.

2.2.1. Three-point bending tests on AAC beams
Three-point bending tests on AAC beams have highlighted a small 

variability of the failure load in flexure. After the reaching of the peak 
load, all the specimens were characterized by a brittle failure, with 
the development of a main crack placed nearly at midspan (Fig. 
7b). The mean value of flexural tensile strength, determined 
though a linear elastic FE inverse analysis, was approximately equal to 
fct,fl = 0.6  N/mm2, with a coefficient of variation CV of about 7%
(Fig. 8a). This value fits quite well to the design provisions suggested 
in [14], where the  flexural tensile strength fct,fl is related to the com-
pressive strength fc through the expression:

f ct;fl ¼ 4:8 f cð Þ0:5; ð2Þ

with fct,fl and fc in psi. By substituting the compressive strength de-
termined on blocks (fc = 2.43 MPa) in this latter equation, a value 
of fct,fl = 0.62 MPa can be obtained, which is very similar to the one 
provided by FE inverse analysis. RILEM provisions [3] suggest the fol-
lowing relation between the flexural tensile strength fct,fl and com-
pressive strength fc instead:

f ct;fl ¼ 0:27þ 0:21 f c; ð3Þ

providing higher and in some cases unconservative [14] values of
flexural tensile strength (for the considered case, fct,fl = 0.78  MPa).
In any case it should be remarked that AAC is slightly stronger in
flex-ural tension if flexural stresses are oriented parallel (rather than
per-pendicular) to the direction of rise [14].

2.2.2. Three-point tests on AAC deep-beams
   The results obtained from three-point tests on AAC deep-beams have
confirmed the small variability of the flexural failure load. Also in
this case, specimens showed a brittle failure, characterized by the 
spreading of an inclined main crack, starting from the bottom of the 
specimen, at a distance approximately ranging from 80 to 150 mm 
(105 mm on average) from its external edge (Fig. 7d). As regards 
flexur-al tensile strength, a mean value of fct,fl = 0.76 N/mm2 – quite 
similar to that determined on AAC beams – with a coefficient of 
variation CV of about 9%, has been deduced from linear elastic FE 
modeling (Fig. 8b). It should be observed that Eqs. (2) and (3) provide 
the same results al-ready obtained for beams, due to the similar 
values of compressive strength (see Sections 2.1.1 and 2.1.2).

3. Cohesive model and fracture energy

3.1. Experimental evaluation of AAC fracture energy

As already mentioned, some three-point bending tests on AAC 
beams have been also repeated under crack-mouth opening displace-
ment (CMOD) control, so as to obtain the fracture energy GF and cali-
brate a proper cohesive law for the investigated material. These tests 
have been carried out at the Materials and Structures Laboratory of 
Milan Polytechnic University, by using an Instron 8862 universal 
testing machine, working under CMOD control with a speed of 1 μm/
min. The effective geometry of the three considered specimens is 
depicted in Fig. 9a; as can be observed, a notch has been made in the 
central part of the bottom edge, so as to guide the crack location. A 
clip gauge has been fixed to the mouth of the notch, in order to 
control and measure the crack opening w during the tests (Fig. 9b). 
Moreover, deflection δ has been measured through a LVDT transducer 
applied on a specific device fixed onto supports; at the same time, also 
the press displace-ment δs has been recorded. More details about 
specimen geometry and notch dimensions are reported in Table 1.

In order to observe the cracking onset and propagation, an ESPI 
measurement system [18] has been used. This system adopts a 20 
mW Helium–Neon (HeNe) laser, which operates at a wavelength of λ 
= 632.8 nm in the red part of the visible spectrum. The adopted opti-cal 
setup, which has been mounted to observe horizontal displace-ments, is 
shown in Fig. 10. As can be seen, the ray generated by the light source is 
split into two identical beams by a beam-splitter. Each of these beams is 
deviated through mirrors along a different path and hits the specimen 
surface with the same incidence angle with respect to its normal (Fig. 
10a). Passing through a 40× microscope lens, the light beams are 
converted into spherical waves, which reach the specimen surface 
illuminating a circular area with 150 mm diameter. The mutual 
interference of these wave fronts creates a dotted pattern, called 
speckle, on the illuminated surface. When the specimen undergoes a 
deformation the illuminated surface changes, and consequently also
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Fig. 9. Three-point bending tests on AAC beams under CMOD control: (a) specimen geometry and (b) variables measured during the test.
the speckle pattern varies. The resulting images are recorded by a CCD 
camera and digitally acquired through an image processing system with 
frame grabber interface. Then, the fringe patterns are obtained as the 
difference (in terms of pixel intensity values) between the current 
image and the initial reference image. These fringes can be regarded as 
contour lines representing the incremental displacement of the 
illuminated surface with respect to the reference image (Fig. 11), with 
an accuracy greater than 0.1 μm. However, the deduction of 
displacement field from the fringe pattern is not straightforward, since 
it requires to count the full fringes (representing the locus of points 
characterized by the same displacements) of each image and multiply 
them for a coefficient depending on the ESPI setup. Automatic methods 
for this procedure, called unwrapping, could be otherwise performed 
[19]. Anyway, in this work ESPI images have been qualitatively read so 
as to determine cracking onset and crack depth hw, while crack width w 
has been deduced just on the basis of clip-gauge measurements.

Fig. 11a–c reports the experimental curves obtained for the three 
investigated AAC beams in terms of load P vs. midspan deflection δ 
and the ESPI images corresponding to the attainment of cracking and 
peak loads (respectively indicated as Pcr and Pu). In the same figure 
the crack depth hw at peak, as deduced from ESPI images, as well as 
the measured fracture energy GF are also indicated for each specimen. 
In more detail, fracture energy has been determined as the total work 
of fracture W, given by the area under the complete load P–
displacement δ curve, divided by the ligament area; the work done by 
the self weight has been properly subtracted. As can be seen, while 
the results of the first two tests (BB1 and BB2) are similar to each 
other, also in terms of fracture energy (approximately equal to 4.7 N/
m), those obtained from the third specimen BB3 are instead 
anomalous, since the softening branch is less steep, so providing an 
almost double value of the fracture energy.
3.2. Calibration of a proper cohesive law through inverse XFEM analysis

The so obtained results have been subsequently numerically 
elaborated so as to calibrate a proper cohesive law suitable for the 
inves-tigated material, by performing an inverse extended finite 
element (XFEM) analysis.
Table 1
Effective dimensions of tested specimens and depth of the notch.

Specimen ID L × H × b
(mm)

a
(mm)

c
(mm)

d
(mm)

BB1 620 × 251.1 × 99.20 14.5 40.0 270.0
BB2 620 × 251.2 × 100.1 12.0 40.0 270.0
BB3 620 × 251.3 × 100.1 12.0 40.0 270.0
The extended finite element method has been here preferred since 
it eases the difficulties in solving problems with localized features 
(e.g., the presence of a main crack) that are not efficiently resolved by 
mesh refinement. XFEM represents indeed an extension of the 
conven-tional FE method based on the concept of partition of unity 
[20], which takes into account a priori the discontinuous structure of 
the displace-ment field [21,22]. Enrichment functions connected to 
additional degrees of freedom are added to the finite element 
approximation in the region of the mesh where the crack is located. 
These enrichment functions usually consist of the asymptotic crack tip 
functions that capture the singularity at the crack tip and a 
discontinuous function that represents the gap between the crack 
surfaces [e.g., 23–25]. A key advantage of this procedure is that the 
finite element mesh does not need to be updated to track the crack 
path, providing at the same time a good approximation of the 
displacements and, generally, leading to symmetric stiffness matrices. 
Since its introduction, XFEM has been subjected to different 
developments and improvements. As an example, in the last ten years 
it has been combined with cohesive crack models so allowing the 
simulation of fracture in quasi-brittle heterogeneous materials 
[26,27]. Other developments have regarded the simulation of crack 
propagation in composite materials [28] and the combination of 
XFEM with other techniques so as to increase the rate of convergence 
(e.g., cut off functions and geometric enrichment, [29,30]). Moreover, 
several researches have been devoted to the solution of numerical and 
technical problems, mainly related to enrichment implementation, as 
well as to the assembly of the stiffness matrix (which requires 
integra-tion of singular/discontinuous functions) and to the 
quadrature of the weak form (among others, e.g., [31–34]). 
Traditional quadrature techniques, which are successfully adopted for 
standard finite elements, should be indeed modified when the 
approximation space is enriched by singular/discontinuous functions, 
since inaccurate quadrature can lead to poor convergence and 
inaccuracy in the solution.

Besides current research developments, standard XFEM is 
currently available in widely diffused general purpose codes, as the 
one (ABAQUS,[35]) used in this work to perform numerical 
simulations.

In this paper standard XFEM inverse analyses have been first per-
formed on AAC beams, so as to study crack propagation 
(experimentally observed through ESPI technique), as well as to 
calibrate a proper cohe-sive law for the material. To this scope, 
according to Fig. 9a and  Table 1 (which are relative to experimental 
samples), an AAC beam with nominal dimensions equal to 620 × 100 
× 250 mm has been modeled, with a 15 mm deep central notch. The 
presence of the notch has been accounted in numerical modeling by 
inserting a seam crack with the same dimensions and in the same 
position as the notch itself (a seam defines an edge in the model that 

is originally closed but can open dur-ing the analysis, due to the 
presence of overlapping duplicate nodes).

The beam has been discretized with 4 node plane stress elements 
with reduced integration (CPS4R in the adopted FE code library). A

image of Fig.�9


Fig. 10. (a) ESPI optical setup; (b) adopted test arrangement.
structured mesh has been adopted, by using 2.5 mm side square
elements. To simulate the interaction between the AAC beam and the
supporting steel plates, as well as between the plates and the steel
rollers, an interface law has been defined, based on the measured fric-
tion coefficients (which have been set respectively equal to 0.7 for the
(a)

(c)

(a)

Fig. 11. Experimental load P–deflection δ curves and ESPI images corresponding to cracking l
BB3;(d) comparison between the adopted exponential cohesive law and relations proposed i
steel–steel interface and 0.3 for the steel–AAC interface). AAC has 
been treated as a linear elastic material in both the tension and 
compression regime, by assuming the same values of elastic modulus 
E and Poisson coefficient ν already described in Section 2.2 (E = 
1320 MPa, ν = 0.38 MPa). Mechanical nonlinearities have been
(b)

(d)

(b)

oad Pcr and peak load Pu for the three investigated AAC beams: (a) BB1, (b) BB2, and (c) 
n [4] for AAC.
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Fig. 12. AAC beams: (a) comparison between numerical and experimental curves in terms of applied load P vs. crack mouth opening displacement CMOD; (b) comparison between
experimental and numerical crack patterns at peak load (point A).
taken into account through the XFEM-based cohesive segment 
method [27], which allows modeling cracking growth along an 
arbitrary, solution-dependent path in the material (crack position is 
indeed not tied to the element boundaries in the mesh). The 
discontinuity of the cracked elements is represented by 
introducing phantom nodes, which are superposed on the original real 
nodes [35]. When the element is intact, each phantom node is 
completely constrained to its corresponding real node; otherwise, 
when the element is cut through by a crack, the cracked element 
splits into two parts. Each phantom node and its corresponding real 
node are no longer tied together and can move apart. The 
magnitude of the separation is governed by the cohesive law 
until the cohesive strength of the cracked element is zero, after 
which the phantom and the real nodes move independently. The 
behavior of XFEM-based cohesive segments for a crack propagation 

analysis is governed by the traction–separation model available in

(a)

Fig. 13. Three-point bending test on an AAC deep-beam under CMOD control: (a) specimen
corresponding to cracking load Pcr and to a load P = 15.6 kN.
ABAQUS [35], which assumes an initially linear elastic behavior 
followed by the initiation and evolution of damage. In more detail, 
when stresses or strains satisfy specified crack initiation criteria, the 
cohesive response at an enriched element begins to degrade, so 
determining crack initiation. In this work, the crack initiation criterion 
based on the maximum principal stress has been chosen, and 
consequently the process of degradation is assumed to start when the 
maximum principal stress attains the direct tensile strength of AAC. 
Subsequently, crack propagation is handled through a damage 
evolution law describing the rate at which the cohesive stiffness is 
degraded during the analysis. In the performed numerical analysis, 
the direct tensile strength of AAC has been set equal to fct = 0.54 MPa, 
in order to correctly represent the mean value of the cracking load Pcr 
registered during the three tests (reported in Fig. 11a–c). As can be 
seen, this value of direct tensile strength fct is approximately equal to 

0.9 fct,fl, being  fct,fl the flexural

(b)

geometry and dimensions; (b) experimental load P–deflection δ curve and ESPI images
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Fig. 14.AAC deep-beam: (a) comparison between numerical and experimental curves in terms of applied load P vs. crackmouth opening displacement CMOD; (b) numerical crack pattern
at peak load (point A).
tensile strength provided by three-point bending tests on beams.
For the cohesive law, an exponential relation has been chosen, having
the form:

σ ¼ 1−d wð Þ½ � � f ct ð4Þ

whereσ is the cohesive stress, fct is thedirect tensile strength of AAC and
d is a damage parameter having the form:

d wð Þ ¼ 1−e−α� wwu

1−e−α ð5Þ

being wu the failure displacement, set equal to 0.08 mm, and α = 5 an
exponential parameter. These latter variables have been calibrated so
as to obtain the mean experimental value of fracture energy GF

(Fig. 11a–c). This exponential law has been plotted in Fig. 11d,
where it is also compared with other bilinear strain-softening rela-
tions for AAC based on experimental wedge-splitting tests (on spec-
imens characterized by an average density of about 400 kg/m3),
available in the literature [4].

In order to trace the softening branch, the numerical analysis has
been performed by adopting the Riks method [36]. The comparison
be-tween the so obtained numerical curve and the experimental ones
is reported in Fig. 12a, in terms of applied load P vs. crack mouth
opening displacement CMOD. As can be seen, the good agreement
between calculated and experimental responses suggests that the
adopted exponential law is able to realistically describe crack
formation and propagation in AAC. Finally, Fig. 12b shows a
comparison between experimental and numerical crack pattern at
peak load (point A in Fig. 12a). In more detail, the ESPI image has

been compared to the

Fig. 15. AAC deep-beam: comparison between experimental an
crack pattern provided by the extended finite element analysis in
terms of the variable STATUSXFEM, representing the status of each
enriched element in the mesh. In particular, this variable is equal to 1
if the element is completely cracked, 0 if the element contains no crack
and it is variable between 1 and 0 if the element is partially cracked. As
can be seen, the adopted XFEM procedure is able to correctly represent
crack propagation into the AAC matrix, also providing a good estimate
of crack depth hw.

4. AAC deep-beam behavior: experimental test and numerical 
modeling by XFEM

In order to further validate the proposed approach, an additional
three-point test has been carried out under CMOD control on an AAC
deep-beam; also in this case, the ESPI setup has been used so as to
observe cracking onset and propagation. Fig. 13a shows the effective
geometry of the considered specimen, characterized by the presence
of a notch in the central part of its bottom edge; this permits a
symmetric behavior avoiding mixed mode cracking complications. The
adopted test instrumentation is the same already described in the
previous paragraph for beams. The obtained experimental curve is
reported in Fig. 13b in terms of applied load P vs. midspan deflection
δ; the samefigure also shows the ESPI images corresponding to the
cracking load Pcr, as  well as to a load equal to 15.6 kN, at which the
crack tip exits from the visual field. Consequently, in this case it has
not been possible to measure the crack depth corresponding to the
peak load Pu.

This experimental test has been subsequently modeled by XFEM, by
following the same procedure already described in Section 3.2.Alsoin
this case a structured mesh formed by 5 mm side square CPS4R ele-

ments has been adopted. AAC mechanical behavior has been again

d numerical crack patterns for an applied load P = 15.5 kN.
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described through a linear elastic law (assuming E = 1320 MPa and ν
= 0.38, as for beams), coupled to the XFEM-based cohesive segments
method for the modeling of cracking growth. The adopted direct
tensile strength, as well as the cohesive law is the same as determined
on beams (see Section 3.2). It should be remarked that in this case the
sche-matization of boundary conditions is slightly different from that
de-scribed for beams, since the horizontal translation of the roller was
partially prevented during the test, so determining the appearance of
an arch effect and an increase in the experimental peak load. In order
to correctly catch these aspects, the roller has been constrained with a
non-linear spring, whose stiffness has been properly calibrated on the
basis of the experimental behavior of the support. The interaction be-
tween the AAC specimen and the steel plates and between these latter
and the rollers has been instead schematized through the same inter-
face laws already adopted for the beam. The analysis has been carried
out under load control.

The obtained results are depicted in Fig. 14a, in terms of applied load
P vs. crack mouth opening displacement CMOD.Ascanbeobserved,the
proposed approach allows providing a correct estimate of the peak
value, even if the numerical model is not able to catch the softening
branch, which is very steep. The obtained numerical crack pattern at
peak is reported in Fig. 14b, through the STATUSXFEM variable. Other
comparisons between experimental and numerical results are shown in
Fig. 15 in terms of crack pattern at an applied load P = 15.5 kN (as
already mentioned, for higher loads the crack tip exits from the ESPI
visual field), highlighting the capability of the performed simulation to
represent crack propagation. Results seem to confirm that the proposed
cohesive law combined with an XFEM procedure can represent a useful
tool for the modeling of cracking development in AAC walls.

5. Conclusions

The present work aims to investigate and model cracking develop-
ment in AAC beams and deep-beams. First, the problem has been
experimentally afforded, by carrying out a series of tests devoted to
material characterization both in compression and in flexure (through
the execution of three-point bending tests), taking into account the
effect of different shapes and dimensions of the investigated samples.
The so obtained results have been subsequently adopted in extended
finite element analyses, in order to calibrate a proper cohesive law for
AAC, suitable for the modeling of cracking onset and propagation in
infill and bearing walls under static loads. The main conclusions of this
work can be so summarized:

− Being equal the material density and the moisture content, the sta-
tistical variability of AAC mechanical properties (compressive and
tensile strengths, elastic modulus and Poisson coefficient) is rather
limited (below 10%); furthermore, even changing the shape and di-
mensions of tested samples, the obtained values have a quite limited
scatter (e.g., compressive strength of small walls is about 20% lower
than that measured on standard cubes). This implies that the me-
chanical properties measured on standard specimens are quite rep-
resentative of the behavior of full-scale walls (a correction factor
should be probably introduced in some cases), as well as of the be-
havior of nonstandard specimens which can be extracted from
existing buildings (these latter, in general, may be indeed different
in shape and dimensions from standard samples).

− Load–displacement curves obtained from three-point bending tests
under CMOD control on AAC beams show a limited scatter and pro-
vide a value of the fracture energy GF almost equal to 5–6 N/m,
which is quite similar to other results obtained in the technical liter-
ature by means of wedge-splitting tests.

− On the basis of the experimental results, an exponential cohesive
law has been calibrated through inverse extended finite element
analysis. This law has subsequently been applied in the simulation
of a three-point test on an AAC deep-beam, whose behavior is
more similar to full scale infill panels.

The proposed model appears to be able to correctly catch both the
peak load and the experimental crack pattern development, as revealed
by the comparison with ESPI images. The obtained cohesive law can be
then applied for the analysis of full scalewalls, in order to study cracking
development under static loads, which is a quite common problem in
residential buildings.

Nomenclature
All the symbols/variables are defined as they appear in the text.
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