

Permanent link to this version

http://hdl.handle.net/11311/756443

RE.PUBLIC@POLIMI
Research Publications at Politecnico di Milano

Post-Print

This is the accepted version of:

P. Masarati, M. Morandini, P. Mantegazza
An Efficient Formulation for General-Purpose Multibody/Multiphysics Analysis
Journal of Computational and Nonlinear Dynamics, Vol. 9, N. 4, 2014, 041001 (9 pages)
doi:10.1115/1.4025628

The final publication is available at https://doi.org/10.1115/1.4025628

Access to the published version may require subscription.

When citing this work, cite the original published paper.

© 2014 by ASME. This manuscript version is made available under the CC-BY 4.0 license
http://creativecommons.org/licenses/by/4.0/

American	Society	of	
Mechanical	Engineers	

	

ASME	Accepted	Manuscript	Repository	
	

Institutional	Repository	Cover	Sheet	

 Pierangelo Masarati

 First Last

ASME Paper Title: An Efficient Formulation for General‐Purpose Multibody/Multiphysics Analysis

Authors: Masarati, P.; Morandini, M.; Mantegazza, P.

ASME Journal Title: Journal of Computational and Nonlinear Dynamics

Volume/Issue __9/4_______________________ Date of Publication (VOR* Online) __Jul. 11th, 2014___

ASME Digital Collection URL:

https://asmedigitalcollection.asme.org/computationalnonlinear/article/doi/10.1115/1

2/An‐Efficient‐Formulation‐for‐GeneralPurpose

DOI: 10.1115/1.4025628

*VOR (version of record)

	

An Efficient Formulation for General-Purpose
Multibody/Multiphysics Analysis

Pierangelo Masarati∗, Marco Morandini, Paolo Mantegazza
Politecnico di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali

mail: {pierangelo.masarati,marco.morandini,paolo.mantegazza}@polimi.it

This paper presents a formulation for the efficient so-
lution of general-purpose multibody/multiphysics prob-
lems. The formulation has been implemented in MB-
Dyn, a free general-purpose multibody solver continu-
ously developed over several years at the Department of
Aerospace Engineering, Politecnico di Milano. The core
equations and details on structural dynamics and finite
rotations handling are presented. The solution phases
are illustrated. Highlights of the implementation struc-
ture are presented, and special features are discussed.

1 INTRODUCTION
Multibody dynamics originated from the need to ana-

lyze complex, multidisciplinary dynamics problems. Sev-
eral formulations have been proposed, derived from clas-
sical approaches to analytical mechanics. After the pio-
neering development of the 1960s and 1970s, pushed by
space race needs and subsequently by a rapid spread into
the aerospace, robotics, mechanical and specifically au-
tomotive industry, multibody dynamics became an indus-
trial tool of general use.

This work does not have the ambition to present a
detailed history of the development of multibody dynam-
ics; for this purpose, the interested reader should con-
sider for example [1, 2] or [3]. It is intended to discuss
a general-purpose formulation developed at the Depart-
ment of Aerospace Engineering of Politecnico di Milano
and implemented in the free solver MBDyn1. This solver
originated from academia, like many others (for example
DYMORE [4], CHRONO::Engine2 [5], and HOTINT3

[6]), and has grown to maturity as a full-featured research
tool.

The project started in the early 1990s as a research
tool for students to familiarize with the dynamics of sys-

∗Corresponding author: Politecnico di Milano, Dipartimento di
Scienze e Tecnologie Aerospaziali, via La Masa 34, 20156 Milano, Italy

1http://www.mbdyn.org/
2http://www.chronoengine.info/
3http://www.hotint.org/

tems of constrained rigid bodies and their numerical in-
tegration. Mechanical problems were initially formulated
as systems of mixed algebraic and first- and second-order
differential equations exploiting the redundant coordi-
nates approach, which expressed the Newton-Euler equa-
tions of motion, with constraints enforced using Lagrange
multipliers. The initial implementation was in Fortran 77,
and made limited use of external libraries for basic oper-
ations like linear algebra on sparse matrices.

Later on, the need to model significantly more
complex multidisciplinary problems led to a substantial
rewriting of the formulation, expressing all differential
equations in first-order form. Starting from 1996, the
implementation was substantially refactored, moving to
C++ (despite the language and free compilers being in an
early stage of maturity at that time), to extensively exploit
the inherent abstraction of object-oriented programming.

In 2001, MBDyn was formally released as free soft-
ware under GNU’s General Public License4. Over the
years it has been continuously maintained and developed
by the core developers at Politecnico di Milano, with
significant contributions coming from independent users,
thanks to the open development paradigm granted by the
choice to “go free”. Development addressed several ar-
eas: parallelization, real-time simulation, co-simulation
ranging from loose interaction with block diagram solvers
including multirate integration strategies to tight coupling
with computational fluid-dynamics. Development was,
and is, often driven by applied research needs, which are
mainly related but not limited to the aerospace field.

The core formulation is described in Section 2. High-
lights of the implementation are discussed in Section 3.
The core problem solver is described in Section 4. Spe-
cial features are described in Section 5 and strengths and
weaknesses are discussed in Section 6.

4http://www.gnu.org/licenses/licenses.html

ASME J. Comput. Nonlinear Dyn. MONTH YYYY V(N), doi:10.1115/1.4025628

1

2 FORMULATION
A generic dynamical problem is formulated as a sys-

tem of implicit Differential-Algebraic Equations (DAE),

r(y, ẏ, t) = 0 (1)

integrated in time using implicit A/L stable linear multi-
step integration schemes,

yk = ∑
i=1,2

aiyk−i +h ∑
i=0,2

biẏk−i. (2)

A prediction-correction approach is used. The state y(0)k
is predicted using Eq. (2), based on an extrapolation of its

derivative ẏ(0)k . The perturbation of Eq. (2),

∂yk = hb0∂ẏk, (3)

is used in the iterative solution of the correction phase,

(
hb0r/y + r/ẏ

)
∂ẏ =−r(y(j)

k , ẏ(j)
k , tk) (4a)

ẏ(j+1)
k += ∂ẏ (4b)

y(j+1)
k += hb0∂ẏ (4c)

(operator (·)/y indicates partial derivative with respect
to y; operator += , increment-assignment, is mutuated
from the C/C++ programming languages).

A model is logically formulated in terms of nodes
and elements, resembling the structure of Finite Ele-
ments. Nodes contribute to “public” entries of the state
y; elements contribute to equations, i.e. provide r (resid-
ual) and hb0r/y + r/ẏ (Jacobian matrix). Elements may
require, and thus instantiate, “private” entries of y (for ex-
ample, elements implementing kinematic constraints re-
quire Lagrange multipliers) and write the corresponding
contributions to equations.

Specialized scalar nodes are used for discrete scalar
fields (temperature, pressure, electric voltage) and for ab-
stract states. Structural nodes, described in the next Sec-
tion, originally provided both displacement and rotation
in space; displacement-only nodes have been recently
added, mainly to support membrane elements. They will
be used to investigate absolute nodal coordinate formula-
tions.

2.1 Structural Dynamics
Structural dynamics are dealt with using specialized

nodes. Both static and dynamic structural nodes cre-
ate the corresponding force (and moment) equilibrium
equations. Dynamic nodes also include momentum (and
momenta moment) in the state, and create equations for
momentum (and momenta moment) definition. The dis-
placement field is discretized using structural displace-
ment nodes. Their state is the position of the node, x;
that of dynamic nodes also includes the momentum βββ.

The rotation field is discretized using structural nodes,
which inherit from the displacement-only nodes and add
rotation-related variables and methods. Their state is spe-
cially dealt with by considering the rotation matrix R in
incremental manner, which is updated using the (incre-
mental) Cayley-Gibbs-Rodriguez (CGR) [7] vector rota-
tion parameters g in the state vector y. The momenta mo-
ment is also present in the state of dynamic nodes. The
handling of rotations is a key aspect in the formulation; it
is discussed in detail in Section 2.2.

Each dynamic node adds to vector r the definitions
of momentum and momenta moment, namely

mẋ+ωωω× s = βββ (5a)

s× ẋ+Jωωω = γγγ (5b)

using the mass m, the static moment s = mbCM (bCM be-
ing the center of mass offset), and the inertia moment with
respect to the node, J = JCM +mbCM ×bCM×T . The in-
ertia contributions are written in Eqs. (5) by those ele-
ments that contribute to the inertia of the node (e.g. point
masses, rigid bodies). The handling of the angular veloc-
ity, ωωω, is discussed in Section 2.2.

Moreover, each structural node adds the force and
moment equilibrium equations to vector r. They are for-
mulated according to the Virtual Work Principle (VWP);
the contribution of moment mi and force fi for the virtual
rotation θθθδi and displacement δxi of point i, in xi = x+bi,
associated with that of the corresponding node, θθθδ and δx,
namely θθθδi = θθθδ and δxi = δx+θθθδ ×bi, is

δW = δxT
i fi +θθθT

δimi

= δxT fi +θθθT
δ (bi × fi +mi) (6)

where θθθδ = ax(δRRT) is the node virtual rotation; then

β̇ββ = ∑
i

fi (7a)

γ̇γγ+ ẋ×βββ = ∑
i
(bi × fi +mi) . (7b)

The generic forces and moments fi and mi may depend on
the states of the system (for example in the case of elas-
tic forces); bi is the distance between the node and the
point of application of force fi. Configuration-dependent
forces and moments include contributions associated with
deformable components, like lumped linear and angular
springs (including an original spring element with the
unique feature of being truly independent from the or-
dering of the connectivity, unlike other known implemen-
tations, see [8, 9] for details), an original finite volume
formulation for geometrically exact beams [10], nonlin-
ear finite element shells [11], and Component Mode Syn-
thesis (CMS) elements. Unlike the previously mentioned
elements, membranes [12] may use displacement-only
nodes. Displacement-only nodes do not create Eqs. (5b)

ASME J. Comput. Nonlinear Dyn. MONTH YYYY V(N), doi:10.1115/1.4025628

2

Fig. 1. Tiltrotor rotor model.

and (7b). The left-hand side of Eqs. (7) is zero for static
nodes. Placing momentum and momenta moment in the
state confines the contribution of inertia-related elements
into Eqs. (5); Eqs. (7) are unaffected.

The reason for choosing Newton-Euler equations
written through the VWP instead of other, perhaps more
elegant, formalisms, is motivated by the need to accom-
modate rather different problems in a monolithic solver.
Essential configuration-dependent non-conservative gen-
eralized forces (e.g. those originating from aerodynam-
ics) contribute to the Jacobian matrix in an intrinsically
non-symmetric manner, thus breaking any possibility to
exploit noteworthy structures of conservative mechanical
problems.

2.2 Handling of Rotations
Rotations are handled in incremental manner. The

orientation of each node is stored in an orientation ma-
trix, R. During the prediction phase from time tk−1 to tk,
the relative CGR orientation parameters g and their time
derivatives are computed from the relative orientation be-
tween times tk−2 and tk−1 and the corresponding angular
velocities. The predicted value of the orientation param-
eters is used to predict the orientation matrix at time tk as

R(0)
k . During the correction phase, the orientation of the

node is expressed as Rk = RΔR(0)
k , with RΔ = R(gΔ) and

R(g) = I+
4

4+gT g

(
g× +

1
2

g×g×
)
. (8)

As a consequence, the rotation associated with RΔ is
of the order of magnitude of the correction parameters,
which in principle is o(hN), where N is the order of accu-
racy of the multistep method (N = 2 in the present case).

This approach has been termed updated-updated,
since it can be interpreted as an updated Lagrangian ap-
proach in which the metrics of the problem are referred to
the predicted orientation for the current time step rather
than to the converged orientation for the previous time
step. The advantage of referring orientations to the pre-
dicted value may not be apparent; consider the case of
systems with non-negligible reference angular velocity, ΩΩΩ
(from the beginning, the driving application of MBDyn
has been the aeroelasticity of helicopter rotors [13–15];
for example, Figure 1 shows a detailed aeroelastic model

of the rotor of a tiltrotor). In such case, the order of mag-
nitude of the relative orientation parameters referred to
the converged orientation for the previous time step would
be O(‖ΩΩΩ‖h). For accuracy reasons, typical values of time
step h are of the order of 1/100 of the rotation period, T ;
as a consequence, ‖ωωω‖h ≈ 2π/100 ∼= 0.06, a number that
can be much larger than h3, the order of the correction.

The angular velocity, ωωω = ax(ṘRT) = G(g)ġ, is

ωωωk = ωωωΔ +RΔωωω(0)
k , (9)

with

G(g) =
4

4+gT g

(
I+

1
2

g×
)
, (10)

and ωωωΔ =G(gΔ)ġΔ; ωωω(0)
k is the predicted angular velocity.

Consider now the perturbations of the rotation-
related entities, which are required for the computation
of the Jacobian matrices r/y and r/ẏ. The perturbation of
the orientation matrix yields

G(gΔ)∂gΔ = ax(∂RkRT
k) = ax(∂RΔRT

Δ). (11)

Considering that gΔ is o(h2), higher-order terms can
be neglected when the Jacobian matrices are computed.
This simplification is highlighted in the formulas us-
ing the operator

uu
=, which indicates an equality ap-

proximated thanks to the updated-updated approach as-

sumptions. For example, ∂Rk
uu
= ∂gΔ ×R(0)

k , since both

RΔ
uu
= I and G(gΔ)

uu
= I. Similarly, ∂ωωωk

uu
= ∂ġΔ −ωωω(0)

k ×
∂gΔ, since ∂(G(gΔ)ġΔ) = H(gΔ, ġΔ)∂gΔ +G(gΔ)∂ġΔ, and
H(gΔ, ġΔ)

uu
= 0 (operator H is defined for example in

[16,17]). Furthermore, considering Eq. (3), ∂gΔ = hb0∂ġΔ

and thus ∂ωωωk
uu
= (I−hb0ωωω(0)

k ×)∂ġΔ. The updated-updated
simplifications are used only for the computation of con-
tributions to the Jacobian matrices; the residual is com-
puted using the exact formulas.

Solution prediction at time tk is performed setting
gk−1 = 0 and ġk−1 = ωωωk−1, since G(gk−1) = G(0) ≡ I.
Then gk−2 = g(Rk−2RT

k−1) and ġk−2 = G−1(gk−2)ωωωk−2.
The backward relative orientation Rk−2RT

k−1 must be lim-
ited (formally, less than π/2 radian to avoid the singular-
ity of G−1, but practically much less); this assumption
holds in practice as long as the amount of rotation be-
tween two time steps is limited by accuracy considera-
tions. The reference orientation is computed using the

predicted g(0)k , R(0)
k = R(g(0)k)Rk−1, as well as ωωω(0)

k =

G(g(0)k)ġ(0)k . At this point, the orientation parameters and
their time derivatives are reset again, as for the correction
their updated-updated counterparts, gΔ, are used.

Moment equilibrium equations ∑m = 0 are energet-
ically conjugated with virtual rotations, θθθδ = GΔ(gΔ)δgΔ.
By producing equations energetically conjugated with the

ASME J. Comput. Nonlinear Dyn. MONTH YYYY V(N), doi:10.1115/1.4025628

3

virtual perturbation of the rotation parameters, δgΔ, one
would need to write moment equilibrium as θθθT

δ ∑m =
δgT

ΔGT
Δ(gΔ)∑m. The linearization of the right-hand side

would require the linearization of G(g) as well. By di-
rectly considering moment equilibrium, this is avoided at
the cost of breaking the symmetry of the matrices, which
is lost in any case when non-conservative loads and gen-
eral multidisciplinary terms, e.g. hydraulic elements, are
present.

3 IMPLEMENTATION STRUCTURE
The code is mainly written in C++; the main classes

deserve a mention. The DataManager class handles the
model. It stores all nodes and elements, and provides
the methods AssRes() and AssJac() that respectively
assemble the residual vector r and the Jacobian matrix
(cr/y + r/ẏ). The class ImplicitStepIntegrator de-
fines the integration scheme. Its method Advance()
drives the integration from a time step to the next one.
Through the Residual() and Jacobian() methods it
provides access to the DataManager’s AssRes() and
AssJac(). The base class NonlinearSolver, through
its method Solve(), defines the interface that must
be provided by the iterative nonlinear problem solution
methods, such as the NewtonRaphsonSolver or the
Gmres matrix free solver. To actually solve the prob-
lem, a NonlinearSolver requires a pointer to a (lin-
ear) SolutionManager class that abstracts the concept
solving a linear system of equations. For direct solvers,
this class actually stores the (often sparse) matrix and
makes use of appropriate LinearSolver subclasses, i.e.
the classes that actually encapsulate one of the many lin-
ear solver libraries supported by MBDyn. Significant ex-
amples are UMFPACK [18], KLU [19], and a dense stor-
age sparse solver specialized for relatively small prob-
lems [20]. Each linear solver requires a specific stor-
age scheme for the Jacobian matrix. For this reason the
SparseMatrixHandler base class is in charge of ab-
stracting the concept of sparse matrix, with optimiza-
tions aiming at saving the matrix compaction process cost
across subsequent assemblies when the sparsity pattern
does not change, and supporting multi-thread assembly
on Symmetric Multi-Processor (SMP) architectures [21].

All the required classes are owned by a Solver class
that drives the solution of each specific problem following
the scheme sketched in Fig. 2. The initial value problem
solver is discussed in detail in the next Section, along with
its real-time variant, whereas the inverse dynamics solver
is briefly discussed in Section 5.3.

For isolation reasons, elements do not directly access
the Jacobian matrix (which, in principle, may not exist)
nor the residual vector. Elements act on temporary stor-
age (either dense or sparse) which are later assembled in

Solver S;

stores:

DataManager PDM;

ImplicitStepIntegrator ISI;

SolutionManager SM;

stores:

SparseMatrix SPM;

LinearSolver LS;

NonlinearSolver NS;

calls: ISI.Advance();

calls: NS.Solve();

calls:

ISI.Residual();

calls: DM.AssRes();

ISI.Jacobian();

calls: DM.AssJac(SM.SPM);

SM.Solve();

calls: LS.Solve(SM.SPM);

Fig. 2. Solution call graph

the global storage. This can also occur in a concurrent
manner exploiting multi-threading on SMP architectures.

Facilities are provided in support to common func-
tionalities. Constitutive laws are abstracted and gener-
alized, exploiting C++ templates to provide similar laws
for different dimensionalities (e.g. scalar for unidimen-
sional viscoelastic elements, three-dimensional for linear
and angular ones, six-dimensional for beams).

Generic parameter-dependent functions are ab-
stracted in drives, either scalar or multi-dimensional. The
default parameter is the current time. Drives are used
for example as the multipliers of external forces, the pre-
scribed motion in rheonomic constraints, the prestrain in
constitutive laws, and more. Drives can be pipelined to
produce complex functions of functions.

The model is described in terms of nodes and ele-
ments through a textual input file that is parsed at the be-
ginning of the analysis. The parser embeds a mathemat-
ical expression evaluator that provides simple yet exten-
sible mathematical capabilities, including strongly typed
variable declaration. Fully parametric, hierarchical mod-
els can be defined using mathematical expression evalu-
ation. The possibility to hierarchically define reference
systems greatly supports the construction of kinemati-
cally consistent models. Repetitive models can be gen-
erated by duplicating the definition of the repeated com-
ponents. Several types of entities, including constitutive
laws and drives, can be declared and reused throughout
the model.

4 PROBLEMS AND SOLUTION PHASES
Different types of analyses can be performed. The

main one solves an Initial Value Problem (IVP), either
static or dynamic. All analyses require a model to operate
on; the model is encapsulated in a DataManager object.

ASME J. Comput. Nonlinear Dyn. MONTH YYYY V(N), doi:10.1115/1.4025628

4

The constrained mechanics IVP is formulated as

Mẋ−βββ = 0 (12a)

β̇ββ+φφφT
/xλλλφ +ψψψT

/ẋλλλψ = f(x, ẋ, t) (12b)

φφφ(x, t) = 0 (12c)

ψψψ(x, ẋ, t) = 0, (12d)

where vector f contains generic forces and moments, pos-
sibly dependent on the configuration (e.g. produced by
viscoelastic elements), and λλλφ, λλλψ are the Lagrange mul-
tipliers associated with holonomic and non-holonomic
constraint equations. Its linearization, required for the
Newton-like iterative solution process, yields
⎡
⎢⎢⎣

M −hb0I 0 0
−(hb0f/x + f/ẋ) I hb0φφφT

/x hb0ψψψT
/ẋ

hb0φφφ/x 0 0 0
ψψψ/ẋ 0 0 0

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

∂ẋ
∂β̇ββ
∂λ̇λλφ
∂λ̇λλψ

⎫⎪⎪⎬
⎪⎪⎭

= RHS.

(13)

In the symbolic representation of Eq. (13) terms like
(Mẋ)/x∂x, related to the possible dependence of the mass
matrix M on the configuration x, have been omitted for
clarity, although they are present in the implementation.
In order to improve the scaling of the matrix, the lin-
earized problem is actually reformulated as
⎡
⎢⎢⎣

M −hb0I 0 0
−(hb0f/x + f/ẋ) I φφφT

/x ψψψT
/ẋ

φφφ/x 0 0 0
ψψψ/ẋ 0 0 0

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

∂ẋ
∂β̇ββ
∂λλλφ
∂λλλψ

⎫⎪⎪⎬
⎪⎪⎭

= RHS′,

(14)

where the equations that express holonomic constraints
are divided by hb0, as suggested for example in [22].
Moreover, the integrals of the Lagrange multipliers,
which do not explicitly appear in the equations, are ac-
tually used as primary unknowns. As a consequence, hb0

is removed from the last two columns of the matrix.
The DataManager directly produces the matrix and

the right-hand side of Eq. (14) when the AssJac() and
AssRes() methods are called.

Each analysis may need to perform specific solution
phases. Typical solution phases are:

1. initial assembly: ensure consistency of model’s state;
2. derivatives: compute the derivatives of the state;
3. first step: use a self-starting algorithm;
4. subsequent steps.

In most cases, the first solution phase, called initial as-
sembly, is dedicated to checking the consistency of the
model as input by the user. It is dealt with internally by
the data manager to ensure that the initial state of the sys-
tem complies with the algebraic equations (e.g. the kine-
matic constraints). The remaining phases are dealt with

by specialized solvers for each type of problem. In the
following, the phases associated with IVP are discussed;
other problem types are discussed in Section 5.

4.1 Initial Assembly
Kinematic constraint equations that express holo-

nomic constraints are collected in vector φφφ(x, t)= 0. They
need to be satisfied up to the first derivative. The equa-
tions that express non-holonomic constraints are collected
in vector ψψψ(ẋ,x, t) = 0. The constraint equations need to
be satisfied by the initial position and velocity x0, ẋ0 = v0.
This requires that consistent initial conditions be provided
from the beginning. However, in many cases this is not
practical; an automatic procedure is needed to restore
consistency by determining a relaxed initial configura-
tion. For this purpose, a dedicated procedure is envisaged,
in which the constraint equations are enforced and, at the
same time, the departure from the initial configuration is
penalized by matrices Kp, Kv, namely

Kp (x−x0)+φφφT
/xλλλφ = fp (15a)

Kv (ẋ−v0)+φφφT
/xλλλ′

φ +ψψψT
/ẋλλλ′

ψ = fv (15b)

φφφ(x, t0) = 0 (15c)

ψψψ(ẋ,x, t0) = 0 (15d)

φφφ/xẋ+φφφ/t = 0. (15e)

Equation (15a) penalizes departure from the prescribed
initial position and orientation, whereas Eq. (15b) penal-
izes departure from the prescribed initial linear and an-
gular velocities. The right-hand side terms fp, fv can be
interpreted as external loads (e.g. dead weight, springs,
and so on), that may be used to bias and thus further in-
fluence this solution phase. The position and velocity are
solved simultaneously to give the solver the opportunity
to trade position and velocity adjustments, since all con-
straint functions, Eqs. (15c) and (15d), depend on the po-
sition, and the non-holonomic and the derivative of the
holonomic ones, Eqs. (15d) and (15e), also depend on the
velocity. The resulting x, ẋ represent the new, consistent
initial values of the configuration.

4.2 Derivatives
In an explicit ODE problem ẏ = r(y, t), the initial

value of the state derivative is directly ẏ(t0) = r(y(t0), t0).
When written in implicit form, r(y, ẏ, t) = 0, a nonlinear
problem must be solved, e.g. by resorting to a Newton-
like iterative process, r/ẏ∂ẏ = −r, ẏ += ∂ẏ. This is not
possible when the problem is DAE, since by definition r/ẏ
is structurally singular, whereas the matrix pencil (sr/y +
r/ẏ) is not for |s|> 0.

In a constrained mechanics problem of the form of
Eq. (12) the “derivatives” are actually βββ (according to

ASME J. Comput. Nonlinear Dyn. MONTH YYYY V(N), doi:10.1115/1.4025628

5

Eq. (12a)), β̇ββ, such that the corresponding accelerations
ẍ comply with the constraints, and the Lagrange multi-
pliers λλλφ and λλλψ. The direct solution requires one to dif-
ferentiate the constraint equations (twice the holonomic,
once the non-holonomic) [23]. To avoid the complexity of
this approach, and significantly the need to formulate and
implement the derivatives of the constraint equations, a
different procedure has been designed. The original prob-
lem of Eq. (4a) is solved, but only the entries of y and ẏ
corresponding to “derivatives” (i.e. βββ, β̇ββ, λλλφ, λλλψ) are up-
dated according to Eqs. (4b) and (4c), the others are left
untouched.

A linear analogy can be found by modifying the orig-
inal problem with the addition and subtraction of the Ja-
cobian matrix of the problem,(

cr/y + r/ẏ
)

∂ẏ =−r+
((

cr/y + r/ẏ
)− r/ẏ

)
∂ẏ, (16)

which is then solved in an iterative manner,

∂ẏ(j+1) =−(
cr/y + r/ẏ

)−1 r

+
(

I− (
cr/y + r/ẏ

)−1 r/ẏ

)
∂ẏ(j). (17)

The iterative process converges to the correct value
as long as the spectral radius5 of matrix I − (cr/y +

r/ẏ)
−1r/ẏ = (cr/y+r/ẏ)

−1cr/y is less than unity, and con-
vergence is faster the smaller the spectral radius is. The
value of c is tuned to improve the convergence rate.

4.3 First Step and Subsequent Ones
The first step requires a self-starting integration

scheme. The Crank-Nicolson formula is used,

yk = yk−1 +
h
2
(ẏk + ẏk−1) , (18)

i.e. Eq. (2) with a1 = 1 and b0 = b1 = 1/2, which is
unconditionally stable and second-order accurate. This
method is not suitable for the integration of DAEs be-
cause it does not produce any algorithmic dissipation;
however, in this context it is only used for one step.

The subsequent steps are performed using an orig-
inal A/L stable linear multistep algorithm. The algo-
rithm is formulated according to Eq. (2). The coefficients
are chosen in order to guarantee second-order accuracy
(three conditions) and asymptotic roots of the character-
istic polynomial

(1−hλb0)ρ2 − (a1 +hλb1)ρ− (a2 +hλb2) = 0 (19)

coincident for |hλ| → ∞ and converging to a prescribed
value |ρ∞| (two conditions) when solving a purely oscil-
latory problem ẏ= λy= jωy. This makes the tuning of al-
gorithmic dissipation possible. The resulting coefficients

5The modulus of the largest eigenvalue.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

|ρ
|

|hλ|

C-N, Newmark
BDF-1
BDF-2

HHT α=-0.26
present ρ=0.58

Fig. 3. Spectral radius of integration scheme.

are

b0 = δ/α+α/2

a1 = 1−β b1 = β/2+α/2− (1+α)δ/α (20)

a2 = β b2 = β/2+δ

with

α = (tk − tk−1)/(tk−1 − tk−2) (21)

β = α
(2+α)(1−|ρ∞|)2 +2(1+α)(2|ρ∞|−1)

2(1+α)− (1−|ρ∞|)2 (22)

δ =
α2(1−|ρ∞|)2

2(2(1+α)− (1−|ρ∞|)2)
(23)

A-stability (unconditional stability) is obtained by choos-
ing 0≤ |ρ∞| ≤ 1. When |ρ∞| ≡ 0 the method is equivalent
to second-order Backward Difference Formulas (BDF),
which are L-stable; |ρ∞|=

√
21−4 ∼= 0.58 minimizes the

third-order remainder. Numerical experiments show that
such value represents an optimal trade-off between accu-
racy and algorithmic dissipation. Figure 3 compares the
spectral radius of the present method with that of well-
known methods: Crank-Nicolson (C-N), Newmark, first
and second order Backward Difference Formulas (BDF-
1, BDF-2), and Hilbert-Hughes-Taylor (HHT) with the
same |ρ∞|.

5 SPECIAL PROBLEMS

5.1 Real-Time Solver
Support for Real-Time Simulation (RTS) has been

introduced in the initial value solver. RTS indicates the
capability to perform time marching analysis within strict
scheduling. The motivation is to exploit general-purpose
simulation capabilities, generality of model topology and
model, and software reuse without the need to resort

ASME J. Comput. Nonlinear Dyn. MONTH YYYY V(N), doi:10.1115/1.4025628

6

to specialized solvers in a hardware-in-the-loop environ-
ment, for example to interact with an actual control sys-
tem, where the simulation replaces the process to be con-
trolled. To this end, the simulation needs to be scheduled
periodically in tight real time, and at the same time to in-
teract with external processes.

Scheduling is obtained either using POSIX prim-
itives (specifically, the clock_nanosleep() sys-
tem call), or primitives provided by RTAI6, the Real-
Time Application Interface for Linux (specifically, the
rt_task_wait_period() call).

Inter-process communication is obtained using
UNIX sockets with POSIX scheduling, or real-time mail-
boxes with RTAI, either locally or over the Ethernet, in
the latter case possibly using RT-Net7. Non-blocking
communication is used to allow each process to stick as
much as possible to its own scheduling, possibly at the
cost of occasional overruns and missed communication.

In principle, RTS requires fixed cost to advance by
one time step. This is no longer guaranteed when it-
eratively solving implicit nonlinear problems, as in the
present case. Implicit integration is however needed when
dealing with DAE problems, as mandated by the redun-
dant coordinates approach. Moreover, redundant coor-
dinates may result in large sets of equations (the size
of a constrained mechanics problem is 12× nbodies plus
6×nbodies −ndof for the constraint equations, as opposed
to ndof for minimal coordinates approaches). As a conse-
quence, the size and the complexity of the model need to
be carefully tailored, considering the required time step
and the computational resources.

The built-in dense-storage sparse solver [20] has
been specifically developed for this application to guar-
antee the maximum efficiency in matrix access and linear
solution of problems with 50 to 2000 equations (in many
tests, the LAPACK dense solver can be more efficient be-
low 50 equations, whereas UMFPACK and KLU can be
more efficient above 2000 equations). Further details on
implementation and applications are given in [24, 25].

5.2 Cosimulation
Cosimulation is the capability to perform a coopera-

tive task among multiple peers, exchanging information
required by each task to complete the analysis. Sev-
eral forms of cosimulation are supported. A very gen-
eral form consists in communicating with a peer task us-
ing unidirectional sockets. MBDyn provides input and
output sockets, respectively wrapped under the drive and
the element interface, which can be interpreted as multi-
channel streams (either blocking or non-blocking). UNIX
local and inet sockets are supported for batch simulation,

6http://www.rtai.org/
7http://www.rtnet.org/

whereas real-time mailboxes are supported for hard real-
time scheduling of the execution. Local sockets (and RT
mailboxes) are used in cosimulation with tasks running
on the same host machine (possibly SMP), whereas inet
sockets (and RT mailboxes) are used in cosimulation with
tasks running on different machines. Such cosimulation
is inherently explicit, since the input values remain con-
stant for the duration of the iterative solution of each time
step; similarly, values are output only after convergence.
Cosimulation applications with this type of communica-
tion have been developed between one or multiple con-
current multibody simulations and block diagram simula-
tion tools like Simulink and Scicos/Scicoslab, also imple-
menting several multirate integration strategies [26, 27].

A rather sophisticated interface has been developed
for multidomain cosimulation, like fluid-structure inter-
action, with possibly incompatible interfaces between do-
mains. Typically, the multibody domain is made of sets
of nodes (e.g. those of a flexible helicopter or wind tur-
bine rotor blade modeled using beams). The fluid domain
is made of structured or unstructured grids. The physi-
cal interface is a surface. Domain interfacing requires the
capability to map the configuration of the multibody do-
main into that of the interface of the other domain. The
problem is formulated as an optimization using moving
least squares on a compact meshless support provided by
radial basis functions. The mapping provides a robust
means to interpolate the configuration of points belong-
ing to the two domains, xp = H xm (subscript (·)m refers
to the multibody domain; (·)p refers to the peer domain).
Given the linear nature of the mapping operator H (·),
only Cartesian point mapping is considered. On the struc-
tural domain side, whenever rotations are involved (e.g.
when using structural nodes), they are mapped by con-
sidering a set of dummy points rigidly offset from each
multibody node. Velocities (and accelerations, if needed)
are mapped accordingly, ẋp = H ẋm. By prescribing that
the virtual work is conserved across the mapping one ob-
tains δW = δxT

mfm = δxT
p fp, which implies fm = H T fp.

Matrix H only needs to be computed once based on the
nominal domain interfaces, using the algorithm proposed
in [28]. It is subsequently used for matrix-vector multi-
plications, either direct or transposed, exploiting its of-
ten considerable sparsity. Figure 4 illustrates a flexible
flapping wing, modeled using nonlinear shell elements,
in cosimulation with a CFD solver [29].

Interaction requires to:

• (optional) compute the configuration of offset points;
• map the configuration onto the peer points;
• send the configuration of mapped points;
• receive the forces acting on mapped points;
• map back forces on multibody domain;
• (optional) reduce the forces to the multibody nodes;

ASME J. Comput. Nonlinear Dyn. MONTH YYYY V(N), doi:10.1115/1.4025628

7

xp = H xm

fm = H T
fp

Fig. 4. Mesh (left) to multibody model (right) communication pat-

tern for a typical flapping wing fluid-structure coupled simulation.

Communication can occur once per time step, either using
the configuration at the end of the previous step or the pre-
dicted (i.e. extrapolated) one for the current time step, in
what is called loose (i.e. explicit) coupling; alternatively,
communication can also occur during the iterations of the
nonlinear problem solution, thus realizing a thoroughly
tight (thus implicit) coupling.

Data are communicated using a simple native proto-
col implemented in MBDyn and in a free peer commu-
nication library, libmbc, distributed with the code. The
library is implemented in C, with interfaces in C++ and
Python. Embedding the communication library in peer
software is straightforward; interface with several CFD
solvers has been developed for applications in aerospace
[29, 30] and wind energy [31, 32].

5.3 Inverse Kinematics/Inverse Dynamics
Specific solution strategies have been developed for

robotics applications, which encompass the capability to
perform inverse kinematics and inverse dynamics (IK/ID)
of mechanisms with rather general topology. The focus
is on solving IK problems and, in some cases, on solving
ID problems for actuator sizing and mechanism control
based on feedforward and feedback linearization. Two
approaches have been considered, one based on control
constraint [33, 34]. and the other on a staggered IK/ID
solution [35, 36]. A comparison between the two ap-
proaches on a real case of industrial interest is discussed
in [37].

A control constraint problem is formulated as

Mẍ−BT u = f (24)

ϑϑϑ(x) = ααα(t), (25)

where the generalized control forces u need to be de-
signed in order to prescribe the control constraint ϑϑϑ(x) =
ααα(t) (“passive” constraints φφφ(x) = 0 are omitted for sim-
plicity). The theoretical details of the problem are dis-
cussed in [33,34] and references therein; the realization of
the control has been obtained by developing two compan-
ion elements. The first element implements the prescribed
motion ϑϑϑ(x) = ααα(t), whereas the second one applies the

related generalized force through the Lagrange multiplier
associated with the control constraint by introducing an
appropriate matrix B. The resulting problem is DAE; the
corresponding differential index8 is at least three, in case
the so-called orthogonal realization condition of matrix
ϑϑϑ/xM−1BT being non-singular is met. Otherwise, a tan-
gent realization is needed, and the index of the DAE is
greater than three. The problem is treated as a normal
initial value one, although of possibly high index.

The staggered approach is treated as a special prob-
lem, called inverse dynamics, with a dedicated solver.
The IK phase requires the solution of three specialized
kinetostatic problems that are trivial in case of fully de-
termined problems, whereas in case of underdetermined
problems they can be cast into the minimization of cost
functions augmented by kinematic constraints, namely

J(x) =
1
2
C (x−xergo)+λλλφ ·φφφ+λλλϑ · (ϑϑϑ−ααα) (26a)

J′(ẋ) =
1
2

ΔẋT MΔẋ+λλλ′
φ · φ̇φφ+λλλ′

ϑ ·
(
ϑ̇ϑϑ− α̇αα

)
(26b)

J′′(ẋ) =
1
2

ΔẍT MΔẍ+λλλ′′
φ · φ̈φφ+λλλ′′

ϑ ·
(
ϑ̈ϑϑ− α̈αα

)
(26c)

where C is a cost function usually constructed from anal-
ogy with potential energy associated with straining of
elastic components that penalize undesired motions like
departing from a reference configuration or approaching
obstacles, and Δẋ = ẋ− ẋref, with reference velocity and
acceleration predicted using backward finite differences.
Underdetermined problems can be solved, eliminating the
indetermination through a careful choice of the cost func-
tions. Details on Eqs. (26) are given in [36]. As long as
kinematics are computed up to second-order derivatives,
the ID problem is solved as{

λλλφ
u

}
=

[
φφφT
/x BT

]−1
(f−Mẍ) , (27)

which is defined as long as all joints are actuated. This
approach has been successfully used for robotics [35–37]
and biomechanical applications [38, 39]. Figure 5 shows
an example robotic application in which the staggered
IK/ID procedure was used to compute the joint trajecto-
ries required to perform a prescribed end effector task.
The robot has 7 degrees of freedom, and the position and
the axis of the tool are prescribed, making the system un-
derdetermined by 2 degrees of freedom. The bottom plot
shows the same analysis with ergonomy functions penal-
izing the proximity to a point in space, to induce obstacle
avoidance. ID is used to implement feedforward control.

Figure 6 shows a model of the left arm of a helicopter
pilot, with detailed muscles, holding the collective control

8For a definition of differential index see for example [22].

ASME J. Comput. Nonlinear Dyn. MONTH YYYY V(N), doi:10.1115/1.4025628

8

Fig. 5. PA10-like robot performing prescribed nominal (top) and

obstacle avoidance (bottom) trajectories.

Fig. 6. Helicopter pilot arm holding the collective control inceptor

at 10%, 50%, and 90%.

inceptor. The IK procedure is used to determine the con-
figuration of the arm. The ID procedure is used to deter-
mine the joint torques and contribute to the determination
of the muscular activation required to perform the task.

5.4 Customization
Entities of several types can be implemented as run-

time loadable modules, whose portability is taken care of
by GNU’s LTDL library9. Elements, drives, constitutive
laws and other features are stored in containers that asso-
ciate their name with a pointer to a functional object that
instantiates an entity of the given type. User-defined mod-
ules must export a C function, module init(), that is
invoked when the module is loaded and is typically used
to register those functional objects in the containers.

Among the methods that user-defined classes derived
from the Elem class can provide, those directly related to
solution phases are illustrated in (simplified) pseudo-code
in Fig. 7. Missed convergence is treated separately, e.g.
when adapting the time step.

Elements (and nodes) can access the state and its
derivative prior to and after prediction. Apart from con-
tributing to the residual and Jacobian matrix, they can up-
date their internal state after each iteration and upon con-
vergence, and contribute to the output.

Other methods make it possible to extract informa-
tion during the analysis, for example to produce custom
output or to feed information about the state of an element
into other elements. Such features have been generalized
through a common interface, with textual names for each

9libltdl, http://www.gnu.org/software/libtool/

SolutionManager SM;
ElementsContainer E;
VectorHandler x, xp, Dxp, r;
MatrixHandler J;

foreach (e in E) e.BeforePredict(x, xp);
Predict(x);
foreach (e in E) e.AfterPredict(x, xp);

while(1) { // solve one time step
foreach (e in E) r += e.AssRes(x, xp);
if (Test(r)) break;

if (new_matrix) { // only if needed
foreach (e in E) J += e.AssJac(x, xp, c);

}

Dxp = SM.Solve(J, r); xp += Dxp; x += c*Dxp;
foreach (e in E) e.Update(x, xp);

}

foreach (e in E) e.AfterConvergence(x);
if (output) {

foreach (e in E) e.Output();
}

Fig. 7. Pseudo-code of nonlinear problem iterative solution.

published value, that can be referenced in the input, in
drives, and in expressions evaluated run-time.

Several non-core functionalities are provided using
run-time modules distributed with the software. Such
modules provide several specialized constitutive laws
(hydraulic and elastomeric dampers, continuous contact
[40], muscles [38,39]) and elements (aircraft wheel, heli-
copter and cycloidal rotor induced velocity, contact with
friction as nonsmooth event formulated in co-simulation
as a linear complementarity problem [40]). A special
module independently developed by Reinhard Resch, an
ingenious user, supports the definition of drives, constitu-
tive laws and elements as Octave10 functions.

6 POINTS OF STRENGTH AND LIMITATIONS
Among the points of strength of the formulation are

undoubtedly its multidisciplinarity and efficiency. The in-
tegrated solution of aerodynamic, electric, thermal and
hydraulic domains along with the core multibody domain,
support the analysis of rather complex multidisciplinary
problems. Real-time and cosimulation capabilities sup-
port easy and seamless interfacing with problems ranging
from complex control systems to external fluid-dynamic
codes.

However, the otherwise excellent core multibody li-
brary lags behind other codes with respect to the simula-
tion of contacts. Contact detection and simulation is be-
ing addressed, but the current capabilities are rather poor

10http://www.gnu.org/software/octave/

ASME J. Comput. Nonlinear Dyn. MONTH YYYY V(N), doi:10.1115/1.4025628

9

compared for example with CHRONO::Engine.
The lack of a graphical pre-processor and the some-

what primitive graphical post-processor is another limi-
tation. Recent efforts from independent users to exploit
Blender as pre- and postprocessor11 are partially address-
ing the issue. This gap is well compensated by the versa-
tility of the input file structure, which makes the definition
of really complex models possible without the need to re-
sort to their graphical representation.

Novice users sometimes find the initial assembly
and derivative solution phases difficult to understand and
manage, especially when confronted with errors resulting
from inconsistently input models. The redesign and im-
provement of these phases is under consideration.

All in all, the object-oriented implementation so far
made the maintenance and improvement of the code pos-
sible over the years. The decision to store state-dependent
data inside the element classes appeared to be a double-
edged sword. In fact, it is one of the reasons that com-
plicate the task of migrating an element between different
processes during a MPI run, and that so far prevented the
reliable support of the restart functionality.

References
[1] Schiehlen, W., 1997, “Multibody system dynamics: Roots

and perspectives,” Multibody System Dynamics, 1(2), pp.
149–188, doi:10.1023/A:1009745432698.

[2] Shabana, A. A., 1997, “Flexible multibody dynam-
ics: Review of past and recent developments,”
Multibody System Dynamics, 1(2), pp. 189–222,
doi:10.1023/A:1009773505418.

[3] Shabana, A. A., 1998, Dynamics of Multibody Systems,
Cambridge University Press, Cambridge, MA, second ed.

[4] Bauchau, O. A. and Kang, N. K., 1993, “A multibody for-
mulation for helicopter structural dynamic analysis,” Jour-
nal of the American Helicopter Society, 38(2), pp. 3–14.

[5] Anitescu, M. and Tasora, A., 2010, “An iterative approach
for cone complementarity problems for nonsmooth dy-
namics,” Computational Optimization and Applications,
47(2), pp. 207–235, doi:10.1007/s10589-008-9223-4.

[6] Gerstmayr, J., Dorninger, A., Eder, R., Gruber, P., Reis-
chl, D., Saxinger, M., Schörgenhumer, M., Humer, A.,
Nachbagauer, K., Pechstein, A., and Vetyukov, Y., 2013,
“HOTINT — a script language based framework for the
simulation of multibody dynamics systems,” Proceedings
of ASME IDETC/CIE, Portland, OR.

[7] Bauchau, O. A. and Trainelli, L., 2003, “The vectorial pa-
rameterization of rotation,” Nonlinear Dynamics, 32(1),
pp. 71–92, doi:10.1023/A:1024265401576.

[8] Masarati, P. and Morandini, M., 2010, “Intrinsic de-
formable joints,” Multibody System Dynamics, 23(4), pp.
361–386, doi:10.1007/s11044-010-9194-y.

11http://sourceforge.net/projects/blenderandmbdyn/,
another example of the fruitful interaction with users granted by the
free software development model.

[9] Bauchau, O. A., Li, L., Masarati, P., and Morandini,
M., 2011, “Tensorial deformation measures for flexible
joints,” J. of Computational and Nonlinear Dynamics,
6(3), doi:10.1115/1.4002517.

[10] Ghiringhelli, G. L., Masarati, P., and Mantegazza,
P., 2000, “A multi-body implementation of finite vol-
ume beams,” AIAA Journal, 38(1), pp. 131–138,
doi:10.2514/2.933.

[11] Masarati, P., Morandini, M., Quaranta, G., and Vescovini,
R., 2011, “Multibody analysis of a micro-aerial vehicle
flapping wing,” Multibody Dynamics 2011, J. C. Samin
and P. Fisette, eds., Brussels, Belgium.

[12] Masarati, P., Morandini, M., and Solcia, T., 2012, “A
membrane element for micro-aerial vehicle fluid-structure
interaction,” 2nd Joint International Conference on Multi-
body System Dynamics, P. Eberhard and P. Ziegler, eds.,
Stuttgart, Germany.

[13] Ghiringhelli, G. L., Masarati, P., Mantegazza, P., and
Nixon, M. W., 1999, “Multi-body analysis of the 1/5 scale
wind tunnel model of the V-22 tiltrotor,” American He-
licopter Society 55th Annual Forum, vol. 2, Montreal,
Canada, pp. 1087–1096.

[14] Ghiringhelli, G. L., Masarati, P., Mantegazza, P., and
Nixon, M. W., 1999, “Multi-body analysis of a tiltrotor
configuration,” Nonlinear Dynamics, 19(4), pp. 333–357,
doi:10.1023/A:1008386219934.

[15] Masarati, P., Piatak, D., Quaranta, G., Singleton, J., and
Shen, J., 2008, “Soft-inplane tiltrotor aeromechanics in-
vestigation using two comprehensive multibody solvers,”
Journal of the American Helicopter Society, 53(2), pp.
179–192, doi:10.4050/JAHS.53.179.

[16] Merlini, T. and Morandini, M., 2004, “The heli-
coidal modeling in computational finite elasticity. part
II: multiplicative interpolation,” International journal
of solids and structures, 41(18–19), pp. 5383–5409,
doi:10.1016/j.ijsolstr.2004.02.026.

[17] Merlini, T. and Morandini, M., 2013, “On successive dif-
ferentiations of the rotation tensor. An application to non-
linear beam elements,” Journal of Mechanics of Materials
and Structures, in press.

[18] Davis, T. A., 2004, “Algorithm 832: Umfpack, an
unsymmetric-pattern multifrontal method,” ACM Trans-
actions on Mathematical Software, 30(2), pp. 196–199.

[19] Davis, T. A. and Palamadai Natarajan, E., 2010, “Algo-
rithm 907: KLU, a direct sparse solver for circuit simula-
tion problems,” ACM Transactions on Mathematical Soft-
ware, 37(3), pp. 36:1–17, doi:10.1145/1824801.1824814.

[20] Morandini, M. and Mantegazza, P., 2007, “Using dense
storage to solve small sparse linear systems,” ACM Trans-
actions on Mathematical Software, 33(1), pp. 5:1–12,
doi:10.1145/1206040.1206045.

[21] Mantegazza, P., Masarati, P., Morandini, M., and Quar-
anta, G., 2007, “Computational and design aspects in
multibody software development,” Multibody Dynamics,
J. C. Garcia Orden, J. M. Goicolea, and J. Cuadrado, eds.,
vol. 4, Springer, pp. 137–158, doi:10.1007/978-1-4020-
5684-0 7.

[22] Brenan, K. E., Campbell, S. L. V., and Petzold, L. R.,
1989, Numerical Solution of Initial-Value Problems in

ASME J. Comput. Nonlinear Dyn. MONTH YYYY V(N), doi:10.1115/1.4025628

10

Differential-Algebraic Equations, North-Holland, New
York.

[23] Leimkuhler, B., Petzold, L. R., and Gear, C. W., 1991,
“Approximation methods for the consistent initialization
of differential-algebraic equations,” SIAM Journal on Nu-
merical Analysis, 28(1), pp. 205–226.

[24] Masarati, P., Attolico, M., Nixon, M. W., and Mantegazza,
P., 2004, “Real-time multibody analysis of wind-tunnel ro-
torcraft models for virtual experiment purposes,” Amer-
ican Helicopter Society 4th Decennial Specialists’ Con-
ference on Aeromechanics, Fisherman’s Wharf, San Fran-
cisco, CA.

[25] Morandini, M., Masarati, P., and Mantegazza, P., 2005,
“Performance improvements in real-time general-purpose
multibody virtual experimenting of rotorcraft systems,”
31st European Rotorcraft Forum, Firenze, Italy.

[26] Cavagna, L., Fumagalli, A., Masarati, P., Morandini, M.,
and Mantegazza, P., 2011, “Real-time aeroservoelastic
analysis of wind-turbines by free multibody software,”
Multibody Dynamics: Computational Methods and Appli-
cations, W. Blajer, K. Arczewski, J. Fraczek, and M. Wo-
jtyra, eds., vol. 23, Springer, pp. 69–86, doi:10.1007/978-
90-481-9971-6 4.

[27] Solcia, T. and Masarati, P., 2011, “Efficient multirate sim-
ulation of complex multibody systems based on free soft-
ware,” ASME IDETC/CIE 2011, Washington, DC, USA,
DETC2011-47306.

[28] Quaranta, G., Masarati, P., and Mantegazza, P., 2005,
“A conservative mesh-free approach for fluid structure
interface problems,” Coupled Problems 2005, Santorini,
Greece.

[29] Alioli, M., Morandini, M., and Masarati, P., 2013, “Cou-
pled multibody-fluid dynamics simulation of flapping
wings,” Proceedings of ASME IDETC/CIE, Portland, OR,
DETC2013-12198.

[30] Malhan, R., Baeder, J., Chopra, I., and Masarati, P., 2013,
“Investigation of aerodynamics of flapping wings for MAV
applications using experiments and CFD-CSD analysis,”
American Helicopter Society 5th International Specialists
Meeting on Unmanned Rotorcraft and Network Centric
Operations, Scottsdale, Arizona, USA.

[31] Masarati, P. and Sitaraman, J., 2011, “Tightly coupled
CFD/multibody analysis of NREL unsteady aerodynamic
experiment phase VI rotor,” 49th AIAA Aerospace Sci-
ences Meeting, Orlando, Florida.

[32] Sitaraman, J., Gundling, C., Roget, B., and Masarati,
P., 2013, “Computational study of wind turbine perfor-
mance and loading response to turbulent inflow condi-
tions,” American Helicopter Society 69th Annual Forum,
Phoenix, Arizona, Paper No. 339.

[33] Fumagalli, A., Masarati, P., Morandini, M., and
Mantegazza, P., 2011, “Control constraint realiza-
tion for multibody systems,” J. of Computational
and Nonlinear Dynamics, 6(1), p. 011002 (8 pages),
doi:10.1115/1.4002087.

[34] Masarati, P., Morandini, M., and Fumagalli, A., in press,
“Control constraint of underactuated aerospace systems,”
J. of Computational and Nonlinear Dynamics.

[35] Fumagalli, A. and Masarati, P., 2009, “Real-time inverse

dynamics control using general-purpose multibody soft-
ware,” Multibody System Dynamics, 22(1), pp. 47–68,
doi:10.1007/s11044-009-9153-7.

[36] Masarati, P., in press, “Computed torque control of redun-
dant manipulators using general-purpose software in real-
time,” Multibody System Dynamics, doi:10.1007/s11044-
013-9377-4.

[37] Morandini, M., Masarati, P., Bargigli, L., and Vaccani, L.,
2012, “Feedforward control design from general-purpose
multibody analysis for an original parallel robot concept,”
2nd Joint International Conference on Multibody System
Dynamics, P. Eberhard and P. Ziegler, eds., Stuttgart, Ger-
many.

[38] Masarati, P. and Quaranta, G., 2013, “Coupled bioaeroser-
voelastic rotorcraft-pilot simulation,” Proceedings of
ASME IDETC/CIE, Portland, OR, DETC2013-12035.

[39] Masarati, P., Quaranta, G., and Zanoni, A., in
press, “Dependence of helicopter pilots’ biodynamic
feedthrough on upper limbs’ muscular activation pat-
terns,” Proc. IMechE Part K: J. Multi-body Dynamics,
doi:10.1177/1464419313490680.

[40] Fancello, M., Masarati, P., and Morandini, M., 2013,
“Adding non-smooth analysis capabilities to general-
purpose multibody dynamics by co-simulation,” Proceed-
ings of ASME IDETC/CIE, Portland, OR, DETC2013-
12208.

ASME J. Comput. Nonlinear Dyn. MONTH YYYY V(N), doi:10.1115/1.4025628

11

	FronteRivista
	Repository Form_MASARATI2
	MASAP_OA_05-14

