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Abstract—The digitalization of the electric grid is a major
trend in today’s energy industry and, especially with smart
grid implementations, it is driving the innovation process in the
whole sector. In particular, advanced analytics applications, e.g.,
prognostics, decision systems, and energy efficiency management,
are gaining more and more importance for the involved players.

This paper proposes a framework for the operation and
support of circuit breakers during their entire operational life,
i.e., components replacement and maintenance strategies. This is
done by means of tools from the field of artificial intelligence, i.e.,
Probabilistic Graphical Models (PGMs). PGMs provide an easy
and intuitive way to model dependencies and causalities, thus,
an actionable solution for companies operating on the field.

Index Terms—Probabilistic Graphical Model (PGM), Bayesian
Network (BN), Decision Network (DN), Circuit Breaker (CB)

I. INTRODUCTION

One of the strongest trends in today’s competitive landscape

is digitalization, and industrial companies that rely on assets

are facing new challenges in finding new algorithms and

models to extract useful insights from the big amount of

data collected on the field [1]. In this respect, the energy

sector makes no exception and this transformation finds one

of its best definitions in the smart grid concepts [2]. The

digitalization offers new opportunities to the involved players,

opportunities that are likely to become a need in the years

to come. In particular, advanced analytics applications for

enhancing reliability, productivity and planning are extremely

hot topics [3]–[5].

When dealing with insights and analytics applications it is

fundamental to ensure their sustainability at company level [6].

The applications, in fact, have to be, first, easily integrated

in existing processes and products, and, second, easy to

use. Furthermore, given the nature of the applications, the

framework on which they are built should be able to integrate

additional company-specific insights and expertise. For all

these reasons, a particular field of Artificial Intelligence (AI),

i.e., Probabilistic Graphical Models (PGMs), seems particu-

larly promising for employment in these scenarios [7], [8].
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A PGM is a declarative representation of a real world

model. PGMs may refer to either Bayesian Networks (BNs) or

Markov Networks (MNs). The use of BNs in modelling and

analysis of complex systems has gained in the last few years

more and more interest [8]. This is due to the great advantage

of PGMs over other AI frameworks, i.e., the human readability

of the resulting models and the efficient inference processes.

This work proposes a BN-based framework for the optimal

operation and support of Circuit Breakers (CBs) during their

operational life.

CBs are an extremely critical elements in an electric system

and a lot of research has been done to better understand the

ageing of CBs for maintenance optimization and reliability

assessment [9]–[11].

In general, because of the difficulties to create theoretical

models describing the failure modes in CBs, data-driven

approaches have always been of great interest, in particular

in their probabilistic versions [12], [13].

The framework proposed in this paper is composed of:

- A BN to be used during the inspection of CBs, i.e., a sup-

port system to decide which elements to prioritize first,

starting from the elements with higher fault probability

rather than from the less critical ones.

- A Decision Network (DN), i.e., a BN with random vari-

ables as well as decision nodes, that exploits probabilistic

information in a decision making process by following

the Maximum Expected Utility (MEU) principle [14],

[15]. The aim is to support the operator in deciding

whether or not to replace a CB or update only few

components. This, because of the serious implications

from both a technical and economic points of view,

implies the possibility to plan potentially years ahead

the complete or partial replacement of CBs, with clear

advantages.

The potential benefit of the framework proposed in this pa-

per can be clearly understood if it is considered the definition

of Reliability Centered Maintenance (RCM) according to [16]:

RCM is used to determine what failure manage-

ment strategies should be applied to ensure a system

achieves the desired levels of safety, reliability, en-



vironmental soundness, and operational readiness in

the most cost-effective manner.

RCM aims at enhancing system dependability, i.e., the

behavior of a system, in terms of reliability, availability,

maintainability, safety and security.

The proposed method has the objective of being a sup-

port to management strategies definition and, in doing that,

overcoming the main limitations of classical approaches to

dependability modeling and analysis [17]–[19].

The rest of this paper is organized as follows: Section II

deals with the definition of the BN describing a CB. Section

III is a preliminary proof of concept of the proposed method

starting from data publicly available; for the inference and

modelling part an open-source Python library has been used

[20]. Finally, Section IV concludes the paper.

The choice of not disclosing any company-specific data is

done because of the confidential and strategic nature of the

data involved.

II. A NAIVE BAYESIAN MODEL FOR CIRCUIT BREAKERS

A. Failures in Circuit Breakers

The choice of not disclosing company-specific data because

of their confidential and strategic nature means that, in this

work, publicly-available data have been used. The considered

dataset is the result of a data collection campaign done by the

European Distribution System Operators (DSOs) [21].

In particular, the circuit breakers of interest are all the

single-pressure SF6 CBs placed in service during the period

01/01/1983 - 01/01/1992, installed outdoor in non-metal en-

close, spring operated, with a rated voltage Vn = 63 − 100
kV.

In [21], two different types of failures are defined, i.e., major

and minor failures. A major failure is a complete failure of the

CB with the loss of one or more of its fundamental functions.

On the contrary, a minor failure is a failure that does not imply

the loss of a fundamental function.

For both the minor and major failures the relevant failure

rates have been calculated. The failure rate for a specific com-

ponent xi (FRxi ) is defined as the ratio between the number

of failures and the considered time interval (failures/time)

weighted by the percentage of faults due to xi over the entire

population of the report (pxi
). It is important to notice that the

entire population of the report, i.e., all the Medium Voltage

(MV) CBs, is larger than the considered subset of CBs, i.e.,

the single-pressure SF6 CBs placed in service during the

period 01/01/1983 - 01/01/1992, installed outdoor in non-metal

enclose, spring operated, with a rated voltage Vn = 63− 100
kV. The component-specific failure rate is, thus, calculated as:

FRxi = pxi ·
failures

time
(1)

The considered components or subsystems are the follow-

ing: making and breaking units (MBU), auxiliary interrupters

and resistors (AIR), main insulation to earth (MIE), tripping

and closing circuits (TCC), auxiliary switches and drives

(ASD), contactors, relays, heaters, fuses, thermostats (CRH),

TABLE I
LIST OF CIRCUIT BREAKER COMPONENTS AND THEIR MAJOR AND MINOR

FAILURE RATES

Failure rates [failure/circuit-breaker-year]
Component Major Failure Minor Failure

MBU 0,0015 0,0021
AIR 0,0001 0,0001
MIE 0,0006 0,0046
TCC 0,0011 0,0003
ASD 0,0008 0,0005
CRH 0,0008 0,0012
GDS 0,0004 0,0024
CMP 0,0015 0,0041
ESt 0,0008 0,0016
CEl 0,0010 0,0025

ADD 0,0010 0,0011
MTr 0,0004 0,0003
Other 0,0007 0,0012

gas density supervision (GDS), compressor, motors, and pump

(CMP), energy storage (ESt), control elements (CEl), actuator

and damping device (ADD), and mechanical transmission

(MTr). All the other elements and subsystems have been

aggregated together because either their individual failure rates

are too small alone or there are not enough data to characterize

them.

Table I shows the failure rates for each component divided

into major and minor failures.

B. Naive Bayesian Model

The definition of a descriptor for a real-world CB is of

paramount importance for our application, and the model we

chose is a BN in its naive implementation. A naive Bayesian

model assumes that all the basic events in the model are

independent.

Despite the strong independence assumption, the naive

Bayesian models are largely used in applications where models

are learned from data with a large number of features and a

small number of instances [7]. A serious implication of the

independence assumption that must be taken into account in

the definition of the problem is the degradation in the diagnos-

tic performance when the number of features increases. This

is mainly due to violations of the conditional independence

assumption [22].

Figure 1 shows an example of a naive BN: the nodes (ovals)

are the model variables, while the edges correspond to direct

probabilistic interactions. In the proposed application, the

variables (events) are the components of the CB, e.g., damping

device, main insulation to earth, breaking unit. Each node

represents a basic component, whose probability of being or

not in a fault state are described by the well-known exponential

distribution. Each variable is modelled as a Boolean one, i.e.,

the variable is either in an operational state (TRUE state) or

in a failure state (FALSE state).

Table II shows the probability associated to a generic

variable xi in the system of interest. The probability that

the element xi is operational is described by an exponential

distribution with parameter λ, the failure rate. The choice of
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Fig. 1. Example of a naive Bayesian network

TABLE II
ELEMENT PROBABILITY DEFINITION

P(xi = Working) P(xi = Failed)

e−λt 1− e−λt

the exponential distribution over the Weibull one is mainly

driven by the data currently available to the authors. As new

data are collected a Weibull-based approach will be used, as

it proves to be more accurate [23].

Once that the failure probabilities for each element have

been determined is possible to define the tabular Conditional

Probability Distribution (CPD) for the entire system, in this

case the CB.

Table III shows the resulting CPD. It is obtained as the truth

table for an OR-gate with Common Cause Failure (CCF) [8],

[24]. This means that if at least one component fails, then, the

entire system fails. This is done for safety purposes since a

failure in any part of a CB poses a serious threat to operators

as well as electric equipments.

Furthermore, if all the components are working correctly

the probability of a CB failure is not zero but 0.5%. This is

done because the complexity of the considered system is high

and there is not enough information to describe all the possible

dependencies and factors affecting the system, thus, in order to

avoid the construction of a more complex and detailed model,

a CCF is introduced.

Finally, another advantage of this type of modelling is in the

limited size and complexity of the resulting BN. This means

that exact inference algorithms can be employed. Exact infer-

ence algorithms, in fact, feature an exponential complexity in

the size of the graph. In this work the Variable Elimination

TABLE III
CIRCUIT BREAKER NOISY-OR TABULAR CPD DEFINITION

All components xi are Working At least one component xi is Failed
P(CB = Working) 0.995 0
P(CB = Failed) 0.005 1

(VE) is employed [7].

C. Decision Network

The decision process is implemented by integrating in the

naive Bayesian model some decision elements. From a MEU

point of view, this can be described by the following equations:

U1 =P (CB = F ) · U(CB) (2)

U2 =P (CB = F |xi = T ) · U(CB) + U(xi) (3)

where P (CB = F ) is the probability that the CB is in

failed condition, U(CB) is the utility associated with the

failure of the CB, i.e., the economic value of the fault.

P (CB = F |xi = T ) is the conditional probability that, given

that the element xi is working correctly, the CB is in a failed

condition. Finally, U(xi) is the utility associated with element

xi, i.e., the economic value associated with the replacement

of the component xi.

Therefore, Eq. (2) represents the expected utility associated

with the fault of the CB. While Eq. (3) is the expected

utility associated with the fault of the CB, if component xi

is replaced. It is important to notice that this could also mean

(i) the replacement of the whole CB (ii) the replacement of

more than one component.

Finally, the output of the decision process is calculated as:

MEU = U1 − U2 (4)

A MEU > 0 means that the replacement of the component is

profitable while a MEU < 0 means that, given the uncertainties

involved, there is no reason to replace the considered element.

Finally, a MEU = 0 means that the impact of doing or not

doing the replacement is the same.

III. CASE STUDY

Starting from the failure rates calculated in Section II-A and

the model described in Section II-B, it is possible to calculate

the major and minor failure probabilities. Fig. 2 shows the

failure probabilities for a CB over a time interval equal to

50 circuit-breaker years, where t = 1 circuit-breaker year is

the installation year while t = 50 circuit-breaker year is the

decommissioning year.

Let us consider a CB operating on the field, that has been

operational for 20 years and now it is in a failure state. The

proposed framework can be used to do inference on the CB

in order to define the components’ failure probabilities and,

hence, it helps the operator in prioritizing the most critical

components. The inference to be done amounts to calculate

the following probabilities:

P (xi = F |CB = F ) ∀i (5)

Table IV shows the resulting major and minor components

failure probabilities for a 20-year-old circuit breaker. The

inspection procedure is defined by sorting this probabilities

in a descending order, in doing so, the inspection procedure

is customized on the CB of interest.
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Fig. 2. Overall CB failure probabilities versus circuit-breaker years

TABLE IV
COMPONENTS FAILURE PROBABILITIES

Component Major Failure Minor Failure
MBU 0.1528 0.1153
AIR 0.0103 0.0056
MIE 0.0617 0.2465
TCC 0.1125 0.0168
ASD 0.0820 0.0279
CRH 0.0820 0.0665
GDS 0.0412 0.1314
CMP 0.1528 0.2208
ESt 0.0820 0.0883
CEl 0.1024 0.1368

ADD 0.1024 0.0610
MTr 0.0412 0.0168
Other 0.0719 0.0665

Fig. 3 shows the graphical representation of the sorted

inspection procedure. The resulting inspection sequence, in

the presence of an unknown failure, is obtained by summing

up the probabilities for a major and minor failure and, then,

sorting them in a descending order. In particular, we can isolate

four main possible drivers in the CB failure, i.e., compressor,

motors, and pump, main insulation to earth, making breaking

units and control elements.

This kind of analysis, triggered by the failure of the CB,

is able to reduce downtime due to unexpected maintenance.

In particular, it becomes useful for CBs whose elements have

been replaced or repaired during their life, in this case, in fact,

it is not so trivial to determine which element is more likely

to be in a fault state.

Let us now consider that the aforementioned failed CB was

installed in a production plant as the main CB for a production

line. In such a plant, it is likely that similar CBs are installed

as main protection for other production lines. Therefore, in the

presence of a CB failure, there is interest in guaranteeing a safe

operation for the other production lines and in understanding

whether or not corrective actions should be taken to reduce

the risk of other faults.
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Fig. 3. Failure probabilities and resulting inspection list

TABLE V
CIRCUIT BREAKER COMPONENTS REPLACEMENT ASSOCIATED UTILITIES

Component Utility
MBU 5000
AIR 4000
MIE 4000
TCC 3000
ASD 3000
CRH 2000
GDS 2000
CMP 2000
ESt 2000
CEl 1000

ADD 1000
MTr 1000
Other 1500

In order to do that, there is the need to calculate the utility

associated with different replacement strategies, as in (2 - 3).

Table V defines a set of dummy utilities associated to the

replacement of the CB components. The utility associated to

a major failure are assumed to be equal to 100k-unit and 50k-

unit for a minor failure.

Now, it is possible to calculate the utility for different re-

placement strategies. For the sake of clarity, in this case study,

we have considered the replacement of only one component

at a time but, in principle, more than one component could be

replaced. Table VI shows the resulting MEUs for different

replacement strategies in the presence of major and minor

failures.

Fig. 4 is a graphical representation of the resulting MEUs.

From the figure, it emerges that the most promising strategy for

the mitigation of minor failures is the replacement of the main

insulation to earth. However, it turns out that doing mainte-

nance on the control elements and/or compressor, motors, and

pump is the best strategy for the mitigation of both major and

minor failures.

IV. CONCLUSION

This work proposes an advanced analytics framework to

support smart operation of circuit breakers throughout their



TABLE VI
MEU COMPARISON FOR DIFFERENT REPLACEMENT STRATEGIES

Replaced Component MEUmajor MEUminor

MBU -2540 -3620
AIR -3830 -3935
MIE -3020 1350
TCC -1200 -2805
ASD -1700 -2675
CRH -700 -1220
GDS -1350 -420
CMP 460 750
ESt -700 -955
CEl 630 650

ADD 630 -285
MTr -350 -805
Other -360 -720
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Fig. 4. Maximum Expected Utilities per type of failure per component

entire operational life.

The main advantage of the framework proposed is in its

ease of reading and interpreting the knowledge it conveys;

BNs, in fact, allows an intuitive definition of the structure

of the probabilistic relationships underlying the model. Thus,

the resulting output can be easily checked and understood by

human operators.

Finally, it is important to notice that, even though this work

focuses on CBs, the proposed framework can be, in principle,

scaled and reproduced for other systems of interest, e.g., power

converters, data acquisition systems, PV plants, and many

more.
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