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Abstract - We extend a multi-state physics model (MSPM) framework for component 

reliability assessment by including semi-Markov and random shock processes. Two 

mutually exclusive types of random shocks are considered: extreme and cumulative. 

The former leads the component to immediate failure, whereas the latter influences 

the component degradation rates. General dependences between the degradation and 

the two types of random shocks are considered. A Monte Carlo simulation algorithm 

is implemented to compute component state probabilities. An illustrative example is 

presented and a sensitivity analysis is conducted on the model parameters. The results 

show that our extended model is able to characterize the influences of different types 

of random shocks onto the component state probabilities and the reliability estimates. 

 

 

 

 

 

 

 

 

 

 

 

                                                             

Y.H.Lin and Y.F.Li are with the Chair on Systems Science and the Energetic 

Challenge, European Foundation for New Energy-Electricite’ de France, Ecole 

Centrale Paris–Supelec, 91192 Gif-sur-Yvette, France (e-mail: yanhui.lin@ecp.fr; 

yanfu.li@ecp.fr; yanfu.li@supelec.fr) 

E. Zio is with the Chair on Systems Science and the Energetic Challenge, European 

Foundation for New Energy-Electricite’ de France, Ecole Centrale Paris–Supelec, 

91192 Gif-sur-Yvette, France, and also with the Politecnico di Milano, 20133 Milano, 

Italy (e-mail: enrico.zio@ecp.fr; enrico.zio@supelec.fr; enrico.zio@polimi.it) 



2 
 

 

Acronyms 
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Notations 

𝑺   The states set of component degradation processes 

𝜏𝑖   The residence time of component being in the state i since the last 

    transition 

𝜽   The external influencing factors 

𝜆𝑖,𝑗(𝜏𝑖, 𝜽) The transition rate between state i and state j 

𝑡   Time 

(𝑡, 𝑡 + ∆𝑡) Infinitesimal time interval   

𝑋𝑘    The state of the component after k transitions 

𝑇𝑘   The time of arrival at 𝑋𝑘  of component 

𝑃(𝑡)  The state probability vector 

𝑝𝑖(𝑡)  The probability of component being in state i at time t 

𝑅(𝑡)  The component reliability 

𝑁(𝑡)  The number of random shocks occurred until time 𝑡 
μ    The constant Arrival rate of random shocks  

𝜏𝑖,𝑚
′    The residence time of the component in the current degradation state i 

after m cumulative shocks 

𝑝𝑖,𝑚(𝜏𝑖,𝑚
′ ) The probability that one shock results in extreme damage 

𝜆𝑖,𝑗
(𝑚)(𝜏𝑖,𝑚

′ , 𝜽)  The transition rates after m cumulative random shocks 

𝑺′   The state space of the integrated model 

𝜆(𝑖,𝑚),(𝑗,𝑛)(𝜏𝑖,𝑚
′ , 𝜽) The transition rate between state (𝑖, 𝑚) and state (𝑗, 𝑛) 

𝑓(𝑖,𝑚),(𝑗,𝑛)(𝜏𝑖,𝑚
′  | 𝑡, 𝜽) The transition probability density function 

𝑃(𝑖,𝑚)(𝜏𝑖,𝑚
′  | 𝑡, 𝜽)  The probability that, given that the component arrives at the  

     state (𝑖, 𝑚) at t and 𝜽, no transition will occur in (𝑡, 𝑡 + 𝜏𝑖,𝑚
′ ) 

𝜆(𝑖,𝑚)(𝜏𝑖,𝑚
′ , 𝜽)  The conditional probability that, given that the component is in  

the state (𝑖,𝑚) at time t, having arrived there at time 𝑡 − 𝜏𝑖,𝑚
′ ,  

and 𝜽, it will depart from (𝑖, 𝑚) during (𝑡, 𝑡 + 𝑑𝜏𝑖,𝑚
′ ) 

𝜓(𝑖,𝑚)(𝜏𝑖,𝑚
′  | 𝜃)  The probability density function for τi,m

′  in the state (i,m),  

given 𝜽  

𝜋(𝑖,𝑚),(𝑗,𝑛)(𝜏𝑖,𝑚
′  | 𝜽) The conditional probability that, for the transition out of state  

(𝑖,𝑚) after holding time 𝜏𝑖,𝑚
′  and 𝜽, the transition arrival  

state will be (𝑗, 𝑛) 

𝑁𝑚𝑎𝑥  The maximum number of replications 

�̂�(𝑡) = {𝑝�̂�(𝑡), 𝑝𝑀−1̂(𝑡),… , 𝑝0̂(𝑡)}  The estimation of the state probability  

vector 

𝑣𝑎𝑟𝑝�̂�(𝑡)  The sample variance of estimated state probability 𝑝�̂�(𝑡) 

𝛿   The predetermined constant which controls the influence of the  

degradation onto the probability 𝑝𝑖,𝑚(𝜏𝑖,𝑚
′ ) 
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휀    The relative increment of transition rates after one cumulative shock  

happens 

 

 

1. INTRODUCTION 

Failures of components generally occur in two modes: degradation failures due to 

physical deterioration in the form of wear, erosion, fatigue, etc, and catastrophic 

failures due to damages caused by sudden shocks in the form of jolts, blows, etc 

[1]-[2].  

In the past decades, a number of degradation models have been proposed in the 

field of reliability engineering [3]-[9]. They can be grouped into the following 

categories [9]: statistical distributions (e.g. Bernstein distribution [3]), stochastic 

processes (e.g. Gamma process and Wiener process) [4]-[5], and multi-state models 

[6]-[8].  

Most of the existing models are typically built on degradation data from historical 

collection [3], [5]-[7] or degradation tests [4], which however are suited for 

components of relatively low cost or/and high failure rates (e.g. electronic devices and 

vehicle components) [10]-[12]. In industrial systems, there are a number of critical 

components (e.g. valves and pumps in nuclear power plants or aircraft [13]-[14], 

engines of airplanes, etc.) designed to be highly reliable to ensure system operation 

and safety, but for which degradation experiments are costly. In practice, it is then 

often difficult to collect sufficient degradation/failure samples to calibrate the 

degradation models mentioned above.  

An alternative is to resort to failure physics and structural reliability, to 

incorporate knowledge on the physics of failure of the particular component (passive 

and active) [13-17]. Recently, Unwin et al. [16] have proposed a multi-state physics 

model (MSPM) for modeling nuclear component degradation, also accounting for the 

effects of environmental factors (e.g. temperature and stress) within certain 

predetermined ranges [17]. In a previous work by the authors [9], the model has been 

formulated under the framework of inhomogeneous continuous time Markov chain 

and solved by Monte Carlo simulation. 
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Random shocks need to be accounted for on top of the underlying degradation 

processes, because they can bring variations to influencing environmental factors, 

even outside their predetermined boundaries [18], that can accelerate the degradation 

processes. For example, thermal and mechanical shocks (e.g. internal thermal shocks 

and water hammers) [17], [19]-[20] onto power plant components can lead to intense 

increases in temperatures and stresses, respectively; under these extreme conditions, 

the original physics functions in MSPM might be insufficient to characterize the 

influences of random shocks onto the degradation processes and must, therefore, be 

modified. In the literature, random shocks are typically modeled by Poisson processes 

[1], [18], [21]-[23], distinguishing two main types, extreme shock and cumulative 

shock processes [21], according to the severity of the damage. The former could 

directly lead the component to immediate failure [24]-[25], whereas the latter 

increases the degree of damage in a cumulative way [26]-[27].  

Random shocks have been intensively studied [1]-[2], [22]-[23], [28]-[33]. Esary 

et al. [23] have considered extreme shocks in a component reliability model, whereas 

Wang et al. [2], Klutke and Yang [30], and Wortman et al. [31] have modeled the 

influences of cumulative shocks onto a degradation process. Both extreme and 

cumulative random shocks have been considered by Li and Pham [1], Wang and 

Pham [22]. Additionally, Ye et al. [28] and Fan et al. [29] have considered that high 

severity of degradation can lead to high probability that a random shock causes 

extreme damage. However, the fact that the effects of cumulative shocks can vary 

according to the severity of degradation has also to be considered.  

Among the models mixing the multi-state degradation models and random shocks, 

Li and Pham [1] divided the underlining continuous and monotonically increasing 

degradation processes into a finite number of states and combined them with 

independent random shocks. Wang and Pham [22], further considered the 

dependences among the continuous and monotone (increasing or decreasing) 

degradation processes and between degradation processes and random shocks. Yang et 

al. [33] integrated random shocks into a Markov degradation model. Becker et al. [32] 

combined semi-Markov degradation model, which is more general than Markov 



5 
 

model, with random shocks in a dynamic reliability formulation, where the influence 

of random shocks is characterized by the change of continuous degradation variables 

(e.g. structure strength). To the best knowledge of the authors, this is the first work of 

semi-Markov degradation modeling that represents the influence of random shocks by 

changing the transition rates, which might also be physics functions. 

The contribution of the paper is that it generalizes the MSPM framework to 

handle both degradation and random shocks, which have not been previously 

considered by the existing MSPMs. More specifically: first, we extend our previous 

MSPM framework [9] to semi-Markov modeling, which more generally describes the 

fact that the time of transition to a state can depend on the residence time in the 

current state, and hence is more suitable for including maintenance [34]; then, we 

propose a general random shock model, where the probability of a random shock 

resulting in extreme or cumulative damage, and the cumulative damages, are both 

dependent on the current component degradation condition (the component 

degradation state and residence time in the state); finally, we integrate the random 

shock model into the MSPM framework to describe the influence of random shocks 

on the degradation processes. The rest of this paper is organized as follows. Section 2 

introduces the semi-Markov scheme into the MSPM framework. Section 3 presents 

the random shock model; in Section 4, its integration into MSPM is presented. Monte 

Carlo simulation procedures to solve the integrated model are presented in Section 5. 

Section 6 uses a numerical example regarding a case study of literature, to illustrate 

the proposed model. Section 7 concludes the work. 

 

2. MSPM OF COMPONENT DEGRADATION PROCESSES  

A continuous-time stochastic process is called a semi-Markov process if the 

embedded jump chain is a Markov Chain and the times between transitions may be 

random variables with any distribution [35]. The following assumptions are made for 

the extended MSPM framework [9] based on semi-Markov processes: 
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 The degradation process has a finite number of states 𝑺 = { , , … , } where 

states ‘0’ and ‘M’ represent the complete failure state and perfect functioning 

state, respectively; The generic intermediate degradation states i (0<i<M) are 

established according to the degradation development and condition, wherein 

the component is functioning or partially functioning. 

 The degradation follows a continuous-time semi-Markov process; the 

transition rate between state i and state j, denoted by 𝜆𝑖,𝑗(𝜏𝑖, 𝜽), is a function 

of 𝜏𝑖, which is the residence time of the component being in the current state i 

since the last transition, and 𝜽, which represents the external influencing 

factors (including physical factors).  

 The initial state (at time t = 0) of the component is M. 

 Maintenance can be carried out from any degradation state, except the 

complete failure state (in other words, there is no repair from failure). 

Fig. 1 presents the diagram of the semi-Markov component degradation process. 

 

 

Fig 1. The diagram of the semi-Markov process 

 

The probability that the continuous time semi-Markov process will step to state j 

in the next infinitesimal time interval (𝑡, 𝑡 + ∆𝑡), given that it has arrived at state i at 

time 𝑇𝑛 after n transitions and remained stable in i from Tn until time t , is defined as 

follows, 

 

M M-1 0 1 

  , −1( , ) 

  −1, ( , ) 

 1,0( , ) 

  ,1( ,  ) 

 1, ( , ) 

  −1,0( , ) 

  ,0( ,  ) 

 1, −1( , ) 

𝜆𝑀−1,1  , 𝜽
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𝑃[𝑋𝑛+1 = 𝑗, 𝑇𝑛+1 ∈ [𝑡, 𝑡 + ∆𝑡] | {𝑋𝑘, 𝑇𝑘}𝑘=0
𝑛−1
, (𝑋𝑛 = 𝑖, 𝑇𝑛), 𝑇𝑛 ≤ 𝑡 ≤ 𝑇𝑛+1, 𝜽] 

 = 𝑃[𝑋𝑛+1 = 𝑗, 𝑇𝑛+1 ∈ [𝑡, 𝑡 + ∆𝑡] | (𝑋𝑛 = 𝑖, 𝑇𝑛) , 𝑇𝑛 ≤ 𝑡 ≤ 𝑇𝑛+1, 𝜽] 

                = 𝜆𝑖,𝑗(𝜏𝑖 = 𝑡 − 𝑇𝑛 , 𝜽)∆𝑡, ∀ 𝑖, 𝑗 ∈  𝑺, 𝑖 ≠ 𝑗                 (1)  

where 𝑋𝑘  denotes the state of the component after k transitions and 𝑇𝑘 denotes the 

time of arrival at 𝑋𝑘 . The degradation transition rates can be obtained from the 

structural reliability analysis of the degradation processes (e.g. the crack propagation 

process ([15], [17]), whereas the transition rates related to maintenance tasks can be 

estimated from the frequencies of maintenance activities). For example, the authors of 

[17] divided the degradation process of the alloy metal weld into six states dependent 

on the underlying physics phenomenon, and some degradation transition rates are 

represented by corresponding physics equations. 

The solution to the semi-Markov process model is the state probability vector 

𝑃(𝑡) = {𝑝𝑀(𝑡), 𝑝𝑀−1(𝑡),… , 𝑝0(𝑡)}, where 𝑝𝑖(𝑡) is the probability of the component 

being in state i at time t. Since no maintenance is carried out from the component 

failure state and the component is regarded as functioning in all other intermediate 

alternative states, its reliability can be expressed as 

𝑅(𝑡) =  − 𝑝0(𝑡)                            (2) 

where 𝑝0(𝑡) is the probability of the complete failure state at time t. Analytically 

solving the continuous time semi-Markov model with state residence time-dependent 

transition rates is a difficult or sometimes impossible task, and the Monte Carlo 

simulation method is usually applied to obtain 𝑃(𝑡) [36]-[37]. 

 

3. RANDOM SHOCKS 

The following assumptions are made on the random shock process: 

 The arrivals of random shocks follow a homogeneous Poisson process 

{𝑁(𝑡), 𝑡   } [21] with constant arrival rate  , where the random variable 

𝑁(𝑡) denotes the number of random shocks occurred until time t. The 

random shocks are independent of the degradation process, but they can 

influence the degradation process (see Fig. 2). 
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 The damages of random shocks are divided into two types: extreme and 

cumulative. 

 Extreme shock and cumulative shock are mutually exclusive. 

 The component fails immediately upon occurrence of extreme shocks. 

 The probability of a random shock resulting in extreme or cumulative 

damage is dependent on the current component degradation. 

 The damage of cumulative shocks can only influence the degradation 

transition departing from the current state and its impact on the degradation 

process is dependent on the current component degradation. 

 

 

Fig 2. Degradation and random shock processes 

 

The first five assumptions are taken from [22]. The sixth assumption reflects the aging 

effects addressed in Fan et al.’s shock model [29], where the random shocks are more 

fatal to the component (i.e. more likely lead to extreme damages) when the 

component is in severe degradation states. However, the influences of cumulative 

shocks under aging effects have not been considered in Fan et al.’s model, as in the 

last assumption. In addition, the random shock damage is assumed to depend on the 

current degradation, characterized by three parameters: 1) the current degradation 

state i, 2) the number of cumulative shocks m occurred while in the current 

3
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degradation state since the last degradation state transition, 3) the residence time 𝜏𝑖,𝑚
′  

of the component in the current degradation state i after m cumulative shocks 𝜏𝑖,𝑚
′ ≥0. 

Let 𝑝𝑖,𝑚(𝜏𝑖,𝑚
′ ) denote the probability that one shock results in extreme damage 

(the cumulative damage probability is then  − 𝑝𝑖,𝑚(𝜏𝑖,𝑚
′ )). In case of cumulative 

shock, the degradation transition rates for the current state change at the moment of 

occurrence of the shock, whereas the other transition rates are not affected. Let 

𝜆𝑖,𝑗
(𝑚)(𝜏𝑖,𝑚

′ , 𝜽) denote the transition rates after m cumulative random shocks, where 

𝜆𝑖,𝑗
(0)(𝜏𝑖,0

′ , 𝜽) holds the same expression as the transition rate 𝜆𝑖,𝑗(𝜏𝑖,0
′ , 𝜽) in the pure 

degradation model, and the other transition rates (i.e. m>0) depend on the degradation 

and the external influencing factors. Because the influences of random shocks can 

render invalid the original physics functions, we propose a general model which 

allows the formulation of ‘physics’ functions dependent on the effects of shocks. The 

modified transition rates can be obtained by material science knowledge and/or data 

from shock tests [38]. These quantities will be used as the key linking elements in the 

integration work of next section. 

 

4. INTEGRATION OF RANDOM SHOCKS IN THE MSPM 

Based on the first and second assumptions on random shocks, the new model that 

integrates random shocks into MSPM is shown in Fig 3. In the model, the states of the 

component are represented by pair (i,m), where i is the degradation state and m is the 

number of cumulative shocks occurred during the residence time in the current state. 

For all the degradation states of component except for the state ‘0’, the number of 

cumulative shocks could range from 0 to positive infinity. If the transition to a new 

degradation state occurs, the number of cumulative shocks is set to 0, coherently with 

the last assumption on random shocks. The state space of the new integrated model is 

denoted by 𝑺′ = {( ,  ), ( ,  ), ( , 2),… , ( −  , ), ( −  , ),… , ( , )} . The 

component is failed whenever it reaches (0,0). The transition rate denoted by 

𝜆(𝑖,𝑚),(𝑗,𝑛)(𝜏𝑖,𝑚
′ , 𝜽)  is residence time-dependent, thus rendering the process a 
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continuous time semi-Markov process.  

 

 

 

Fig 3. Degradation and random shock processes 

 

Suppose that the component is in a non-failure state (i,m); then, we have three 

types of outgoing transition rates: 

𝜆(𝑖,𝑚),(0,0)(𝜏𝑖,𝑚
′ , 𝜽) =  ∙ (𝑝𝑖,𝑚(𝜏𝑖,𝑚

′ ))               (3) 

the rate of occurrence of an extreme shock which will cause the component to go to 

state (0,0),  

𝜆(𝑖,𝑚),(𝑖,𝑚+1)(𝜏𝑖,𝑚
′ , 𝜽) =  ∙ ( − 𝑝𝑖,𝑚(𝜏𝑖,𝑚

′ ))           (4) 

the rate of occurrence of a cumulative shock which will cause the component to go to 

state (i,m+1) and  

𝜆(𝑖,𝑚),(𝑗,0)(𝜏𝑖,𝑚
′ , 𝜽) = 𝜆𝑖,𝑗

(𝑚)(𝜏𝑖,𝑗
′ , 𝜽)                (5) 

the rate of transition (i.e. degradation or maintenance) which will cause the 

i

j

𝜆𝑖,𝑗
0
𝜏𝑖,0
′ , 𝜽 𝜆𝑖,𝑗

1
𝜏𝑖,1
′ , 𝜽

0 1 . . . M
μ∙ ( − 𝑝𝑀,0 𝜏𝑀,0

′ )

00

. . . 
. . . 

𝜆𝑗,𝑖
0
𝜏𝑗,0
′ , 𝜽

𝜆𝑗,𝑖
1
𝜏𝑗,0
′ , 𝜽

μ∙ ( − 𝑝𝑀,1 𝜏𝑀,1
′ )

0 1 . . . μ∙ ( − 𝑝𝑖,0 𝜏𝑖,0
′ ) μ∙ ( − 𝑝𝑖,1 𝜏𝑖,1

′ )

0 1 . . . μ∙ ( − 𝑝𝑗,0 𝜏𝑗,0
′ ) μ∙ ( − 𝑝𝑗,1 𝜏𝑗,1

′ )

μ∙ (𝑝𝑖,0 𝜏𝑖,0
′ )

μ∙ (𝑝𝑖,1 𝜏𝑖,1
′ )𝜆𝑖,0

0
𝜏𝑖,0
′ , 𝜽 𝜆𝑖,0

1
𝜏𝑖,0
′ , 𝜽
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component to make the transition to state (j,0).  

The effect of random shocks on the degradation processes is shown in equation (5) 

by using the superscript (𝑚) where 𝑚 is the number of cumulative shocks occurred 

during the residence time in the current state. It means that the transition rate 

functions depend on the number of cumulative shocks. This is a general formulation. 

The first two types (equation (3) and equation (4)) depend on the probability of a 

random shock resulting in extreme damage and in cumulative damage, respectively; 

the last type of transition rates (equation (5)) depends on the cumulative damage of 

random shocks. In this model, we do not directly associate a failure threshold to the 

cumulative shocks, since the damage of cumulative shocks can only influence the 

degradation transition departing from the current state and its impact on the 

degradation process is dependent on the current component degradation. The 

cumulative shocks can only aggravate the degradation condition of the component 

instead of leading it suddenly to failure (which is the role of extreme shocks). The 

effect of the cumulative shocks is reflected in the change of transition rates. The 

probability of a shock becoming an extreme one depends on the degradation condition 

of the component. The extreme shocks immediately lead the component to failure, 

whereas the damage of cumulative shocks aggravates the degradation processes of the 

component. 

The proposed model is based on semi-Markov process and random shocks. Under 

this general structure, as explained in the paragraph above, the physics lies in the 

transition rates of the semi-Markov process. We name it a ‘physics’ model because the 

stressors (e.g. the crack in the case study) that cause the component degradation are 

explicitly modeled, differently from the conventional way of estimating the transition 

rates from historical failure/degradation data, which are relatively rare for the critical 

components. More information about MSPM can be found in [9]. In addition, the 

random shocks are integrated into the MSPM in a way that they may change the 

‘physics’ functions of the transition rates, within a general formulation. 

Similarly to what was said for the semi-Markov process presented in Section 2, 

the state probabilities of the new integrated model can be obtained by Monte Carlo 
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simulation and the expression of component reliability is: 

𝑅(𝑡) =  − 𝑝(0,0)(𝑡)                            (6) 

 

5. RELIABILITY ESTIMATION 

5.1 Basics of Monte Carlo simulation 

The key theoretical construct upon which Monte Carlo simulation is based is the 

transition probability density function 𝑓(𝑖,𝑚),(𝑗,𝑛)(𝜏𝑖,𝑚
′  | 𝑡, 𝜽), defined as follows  

 𝑓(𝑖,𝑚),(𝑗,𝑛)(𝜏𝑖,𝑚
′  | 𝑡, 𝜽)𝑑𝜏𝑖,𝑚

′ ≡ probability that, given that the system arrives at the 

state (𝑖,𝑚) at time t and physical factors 𝜽, the 

next transition will occur in the infinitesimal time 

interval (𝑡 + 𝜏𝑖,𝑚
′ , 𝑡 + 𝜏𝑖,𝑚

′ + 𝑑𝜏𝑖,𝑚
′ ) and will be to 

the state (𝑗, 𝑛) [36].                                      

(7) 

By using the previously introduced transition rates, equation (7) can be expressed as 

𝑓(𝑖,𝑚),(𝑗,𝑛)(𝜏𝑖,𝑚
′  | 𝑡, 𝜽)𝑑𝜏𝑖,𝑚

′ = 𝑃(𝑖,𝑚)(𝜏𝑖,𝑚
′  | 𝑡, 𝜽)𝜆(𝑖,𝑚),(𝑗,𝑛)(𝜏𝑖,𝑚

′ , 𝜽)𝑑𝜏𝑖,𝑚
′      (8) 

where 𝑃(𝑖,𝑚)(𝜏𝑖,𝑚
′  | 𝑡, 𝜽) is the probability that, given that the component arrives at 

the state (𝑖, 𝑚) at time t and physical factors 𝜽, no transition will occur in the time 

interval (𝑡, 𝑡 + 𝜏𝑖,𝑚
′ ) and it satisfies: 

𝑑𝑃(𝑖,𝑚)(𝜏𝑖,𝑚
′  | 𝑡,𝜽)

𝑃(𝑖,𝑚)(𝜏𝑖,𝑚
′  | 𝑡,𝜽)

 = −𝜆(𝑖,𝑚)(𝜏𝑖,𝑚
′ , 𝜽)𝑑𝜏𝑖,𝑚

′               (9) 

where  

𝜆(𝑖,𝑚)(𝜏𝑖,𝑚
′ , 𝜽) = ∑ 𝜆(𝑖,𝑚),(𝑖′,𝑚′)(𝜏𝑖,𝑚

′ , 𝜽)(𝑖′,𝑚′)                (10) 

and 𝜆(𝑖,𝑚)(𝜏𝑖,𝑚
′ , 𝜽)𝑑𝜏𝑖,𝑚

′  is the conditional probability that, given that the component 

is in the state (𝑖,𝑚) at time t, having arrived there at time 𝑡 − 𝜏𝑖,𝑚
′ , and physical 

factors 𝜽, it will depart from (𝑖,𝑚) during (𝑡, 𝑡 + 𝑑𝜏𝑖,𝑚
′ ). 

 Taking the integral at both sides of equation (9) with the initial condition 

𝑃(𝑖,𝑚)( | 𝑡, 𝜽) =  , we obtain 

𝑃(𝑖,𝑚)(𝜏𝑖,𝑚
′  | 𝑡, 𝜽)  = 𝑒𝑥𝑝 [−∫ 𝜆(𝑖,𝑚)(𝑠, 𝜽)𝑑𝑠

𝜏𝑖,𝑚
′

0
]            (11) 

 Substituting equation (11) into equation (8), we obtain 
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𝑓(𝑖,𝑚),(𝑗,𝑛)(𝜏𝑖,𝑚
′  | 𝑡, 𝜽) =  𝜆(𝑖,𝑚),(𝑗,𝑛)(𝜏𝑖,𝑚

′ , 𝜽)𝑒𝑥𝑝 [−∫ 𝜆(𝑖,𝑚)(𝑠, 𝜽)𝑑𝑠
𝜏𝑖,𝑚
′

0
]  (12) 

 To derive a Monte Carlo simulation procedure, equation (12) is rewritten as 

𝑓(𝑖,𝑚),(𝑗,𝑛)(𝜏𝑖,𝑚
′  | 𝑡, 𝜽) =

𝜆(𝑖,𝑚),(𝑗,𝑛)(𝜏𝑖,𝑚
′ ,𝜽)

𝜆(𝑖,𝑚)(𝜏𝑖,𝑚
′ ,𝜽)

∙ 𝜆(𝑖,𝑚)(𝜏𝑖,𝑚
′ , 𝜽)𝑒𝑥𝑝 [−∫ 𝜆(𝑖,𝑚)(𝑠, 𝜽)𝑑𝑠

𝜏𝑖,𝑚
′

0
] 

   = 𝜋(𝑖,𝑚),(𝑗,𝑛)(𝜏𝑖,𝑚
′  | 𝜽) ∙ 𝜓(𝑖,𝑚)(𝜏𝑖,𝑚

′  | 𝜽)                 (13) 

where 

𝜓(𝑖,𝑚)(𝜏𝑖,𝑚
′  | 𝜽) = 𝜆(𝑖,𝑚)(𝜏𝑖,𝑚

′ , 𝜽)𝑒𝑥𝑝 [−∫ 𝜆(𝑖,𝑚)(𝑠, 𝜽)𝑑𝑠
𝜏𝑖,𝑚
′

0
]       (14) 

is the probability density function for the holding time 𝜏𝑖,𝑚
′  in the state (𝑖, 𝑚), given 

the physical factors 𝜽, and 

𝜋(𝑖,𝑚),(𝑗,𝑛)(𝜏𝑖,𝑚
′  | 𝜽) =

𝜆(𝑖,𝑚),(𝑗,𝑛)(𝜏𝑖,𝑚
′ ,𝜽)

𝜆(𝑖,𝑚)(𝜏𝑖,𝑚
′ ,𝜽)

                   (15) 

is regarded as the conditional probability that, for the transition out of state (𝑖, 𝑚) 

after holding time 𝜏𝑖,𝑚
′  and the physical factors 𝜽, the transition arrival state will be 

(𝑗, 𝑛). 

 In the Monte Carlo simulation, for the component arriving at any non-failure state 

(𝑖, 𝑚) at any time t, the process at first samples the holding time at state (𝑖,𝑚) 

corresponding to equation (14), and then determines the transition arrival state (𝑗, 𝑛) 

from state (𝑖,𝑚) according to equation (15). This procedure is repeated until the 

accumulated holding time reaches the predefined time horizon or the component 

reaches the failure state ( , ).  

 

5.2 The simulation procedure 

To generate the holding time 𝜏𝑖,𝑚
′  and the next state (𝑗, 𝑛) for the component 

arriving in any non-failure state (𝑖, 𝑚) at any time t, one proceeds as follows: two 

uniformly distributed random numbers u1 and u2 are sampled in the interval [0, 1]; 

then, 𝜏𝑖,𝑚
′  is chosen so that 

∫ 𝜆(𝑖,𝑚)(𝑠, 𝜽)
𝜏𝑖,𝑚
′

0
𝑑𝑠 = ln ( /𝑢1)                   (16) 

and (𝑗, 𝑛) = 𝑎∗ that satisfies 

∑ 𝜆(𝑖,𝑚),𝑘(𝜏𝑖,𝑚
′ , 𝜽) < 𝑢2𝜆(𝑖,𝑚)(𝜏𝑖,𝑚

′ , 𝜽) ≤𝑎∗−1
𝑘=0 ∑ 𝜆(𝑖,𝑚),𝑘(𝜏𝑖,𝑚

′ , 𝜽)𝑎∗

𝑘=0 (17) 
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where 𝑎∗ represents one state in the ordered sequence of all possible outgoing states 

of state (𝑖, 𝑚).The state 𝑎∗ is determined by going through the ordered sequence of 

all possible outgoing states of state (𝑖,𝑚) until the equation (17) is satisfied. The 

algorithm of Monte Carlo simulation for solving the integrated MSPM on a time 

horizon [ , 𝑡𝑚𝑎𝑥] is presented as follows: 

 

Set 𝑁𝑚𝑎𝑥 (the maximum number of replications) and 𝑘 =   

While 𝑘 < 𝑁𝑚𝑎𝑥  

Initialize the system by setting 𝑠 = ( ,  ) (initial state of perfect performance), 

setting the time 𝑡 =   (initial time) 

Set 𝑡′ =   (state holding time) 

While 𝑡 < 𝑡𝑚𝑎𝑥 

Calculate the equation (10) 

Sample a 𝑡’ by using equation (16) 

Sample an arrival state (𝑗, 𝑛) by using equation (17) 

Set 𝑡 = 𝑡 + 𝑡′ 

Set 𝑠 = (𝑗, 𝑛) 

If 𝑠 = ( , ) 

then break 

End if 

End While 

Set 𝑘 = 𝑘 +   

End While □ 

 

The estimation of the state probability vector �̂�(𝑡) = {𝑝�̂�(𝑡), 𝑝𝑀−1̂(𝑡),… , 𝑝0̂(𝑡)} at 

time 𝑡 is done as, 

�̂�(𝑡) =
1

𝑁𝑚𝑎𝑥
{𝑛𝑀(𝑡), 𝑛𝑀−1(𝑡),… , 𝑛0(𝑡)}               (18) 

where {𝑛𝑖(𝑡)|𝑖 =  ,… , , 𝑡 ≤ 𝑡𝑚𝑎𝑥} is the total number of visits to state i at time t, 

with sample variance [39] defined as follows 
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𝑣𝑎𝑟𝑝�̂�(𝑡) = 𝑝�̂�(𝑡)( − 𝑝�̂�(𝑡))/(𝑁𝑚𝑎𝑥 −  )              (19) 

 

6. CASE STUDY AND RESULTS 

6.1 Case study 

We illustrate the proposed modeling framework on a case study slightly modified 

from an Alloy 82/182 dissimilar metal weld in a primary coolant system of a nuclear 

power plant in [17]. The MSPM of the original crack growth is shown in Fig. 4. 

 

 
 

Fig 4. MSPM of crack development in Alloy 82/182 dissimilar metal welds 

 

where 𝜑𝑖  and 𝜔𝑖  represent the degradation transition rate and maintenance 

transition rate, respectively. Except for 𝜑5,𝜑4, 𝜑4′ and 𝜑3, all the other transition 

rates are assumed to be constant. The expressions of the variable transition rates are as 

follows: 

𝜑5 = (
𝑏

𝜏
) ∙ (

𝜏5

𝜏
)
𝑏−1

                            (20) 

𝜑4 = {

𝑎𝐶𝑃𝐶

�̇�𝑀𝜏4
2(1−𝑃𝐶(1−𝑎𝐶/(𝑢�̇�𝑀)))

,      𝑖𝑓 𝜏4 > 𝑎𝐶/�̇�𝑀

 ,                      𝑒𝑙𝑠𝑒
              (21) 

𝜑4′ = {

𝑎𝐷𝑃𝐷

�̇�𝑀𝜏4
2(1−𝑃𝐷(1−𝑎𝐷/(𝑢�̇�𝑀)))

,      𝑖𝑓 𝜏4 > 𝑎𝐷/�̇�𝑀

 ,                      𝑒𝑙𝑠𝑒
              (22) 

𝜑3 = {

1

𝜏3
,      𝑖𝑓 𝜏3 > (𝑎𝐿 − 𝑎𝐷)/�̇�𝑀

 ,        𝑒𝑙𝑠𝑒.                               
                     (23) 

φ5

5

2

4

3

0

1

5:  Initial state
4: Micro Crack
3:  Radial Crack
2:  Circumferential crack
1:  Leak State
0:  Ruptured state

ω2

ω4

ω3

ω 

φ4

φ4’

φ2

φ 

φ3



16 
 

The other transition rates and the parameters values are presented in Table I below.   

   

Table I Parameters and constant transition rates [17] 

 

b –Weibull shape parameter for crack initiation model 2.0 

τ – Weibull scale parameter for crack initiation model   4 years 

𝑎𝐷 – Crack length threshold for radial macro-crack 10 mm 

𝑃𝐷 – Probability that micro-crack evolves as radial crack   0.009 

�̇�𝑀 – Maximum credible crack growth rate 9.46 mm/yr 

𝑎𝐶  – Crack length threshold for circumferential macro-crack 10 mm 

𝑃𝐶 – Probability that micro-crack evolves as circumferential crack   0.001 

𝑎𝐿 – Crack length threshold for leak   20 mm 

ω4 – Repair transition rate from micro-crack   1 x10-3 /yr 

𝜔3 – Repair transition rate from radial macro-crack   2 x10-2 /yr 

𝜔2 – Repair transition rate from circumferential macro-crack   2 x10-2 /yr 

𝜔  – Repair transition rate from leak   8 x10-1 /yr 

𝜑
 
 – Leak to rupture transition rate   2x10-2 /yr 

𝜑
2
 – Macro-crack to rupture transition rate  1x10-5 /yr 

 

 The random shocks correspond to the thermal and mechanical shocks (e.g. 

internal thermal shocks and water hammers) [17], [19]-[20] to the dissimilar metal 

welds. The damage of random shocks can accelerate the degradation processes, and 

hence, increase the rate of component degradation. Note that Yang et al [33] have 

related random shocks to the degradation rates in their work. To assess the degree of 

impact of shocks, we may use 1) physics functions for the influence of random shocks 

through material science knowledge; 2) transition times, speed of cracking 

development and other related information obtained from shock tests [38]. We set the 

occurrence rate  =   5⁄ 𝑦−1 and the probability of a random shock becoming 

extreme shock 𝑝𝑖,𝑚(𝜏𝑖,𝑚
′ ) =  − 𝑒𝑥𝑝 [−𝛿𝑚(6 − 𝑖) (2 − 𝑒−𝜏𝑖,𝑚

′
)] , taking the 

exponential formulation from Fan et al.’s work [29]. In this formula, we use 

𝑚(6 − 𝑖)(2 − 𝑒−𝜏𝑖,𝑚
′
) to quantify the component degradation. It is noted that the 

quantity 2 − 𝑒−𝜏𝑖,𝑚
′

 ranges from 1 to 2, representing the relatively small effect of 

𝜏𝑖,𝑚
′  onto the degradation situation in comparison with the other two parameters 𝑚 

and i, and 𝛿  is a predetermined constant which controls the influence of the 
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degradation onto the probability 𝑝𝑖,𝑚(𝜏𝑖,𝑚
′ ). In this study, we set 𝛿 =  .    . The 

value of 𝛿 was set considering the balance between showing the impact of extreme 

shocks and reflecting the high reliability of the critical component. In addition, we 

assume the corresponding degradation transition rates after m cumulative shocks to be 

𝜆𝑖,𝑗
(𝑚)(𝜏𝑖,𝑚

′ , 𝜽) = ( + 휀)𝑚𝜆𝑖,𝑗(𝜏𝑖,𝑚
′ , 𝜽), where 휀 =  .3 is the relative increment of 

transition rates after one cumulative shock happens, and the formulation ( + 휀)𝑚 is 

used to characterize the accumulated effect of such shocks. In order to characterize 

the increase of the transition rates, in the case study we have used the parameter 휀 to 

represent the relative increment of degradation transition rate after one cumulative 

shock occurs. For the sake of simplicity, but without loss of generality in the 

framework for integration, we assume that the values of 휀 for each cumulative shock 

are equal. But the model can handle different 휀s for different stages of the crack 

process. 

 

6.2 Results and analysis 

The Monte Carlo simulation over a time horizon of 𝑡𝑚𝑎𝑥 = 8  years is run 

𝑁𝑚𝑎𝑥 =   
6 times. The results are collected and analyzed in the following sections.   

 

6.2.1 Results of state probabilities 

The estimated state probabilities without and with random shocks throughout the 

time horizon are shown in Figs. 5 and 6, respectively. 
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Fig 5. State probabilities obtained without random shocks 

 

 

 

Fig 6. State probabilities obtained with random shocks 

 

Comparing the above two Figures, it can be observed that as expected the random 

shocks drive the component to higher degradation states than the micro-crack state. 

The numerical comparisons on the state probabilities w/o random shocks at year 80 

are reported in Table II. It is seen that except for the micro-crack state probability, all 

the other state probabilities at year 80 have increased due to the random shocks, with 

the increase in leak probability being the most significant. 
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Table II Comparison of state probabilities w/o random shocks  

(at year 80) 

 

State  Probability without 

random shocks 

Probability with 

random shocks 

Relative 

difference 

Initial  3.52e-3 9.82e-3 180.00% 

Micro-crack 0.9959 0.9661 -2.99% 

Circumferential crack  3.05e-4 7.28e-3 2286.89% 

Radial crack  1.00e-4 7.75e-3 7650.00% 

Leak  1.30e-5 2.59e-3 19823.08% 

Rupture state  2.06e-4 7.00e-3 3298.06% 

 

The fact that the probability of the initial state (compared with no random shocks) at 

80 years has increased is attributed to the maintenance tasks. All the maintenance 

tasks lead the component to the initial state and the repair rates from radial 

macro-crack state, circumferential macro-crack state and leak state are higher than 

that from micro-crack state. The shocks generally increase the speed of the component 

to step back to further degradation states from where it steps to the initial state more 

quickly. In summary, this phenomenon is due to the combined effects of shocks. 

 

6.2.2 Results of component reliability 

The estimated component reliabilities with and without random shocks throughout the 

time horizon are shown in Fig. 7, respectively. At year 80, the estimated component 

reliability with random shocks is 0.9930, with sample variance equal to 6.95e-9. 

Compared with the case without random shocks (reliability equals to 0.9998, with 

sample variance 2.00e-10), the component reliability has decreased by 0.68%.  
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Fig 7. Component reliability estimation w/o random shocks. 

 

6.2.3 Analysis of the extreme shocks 

Table III presents the frequencies of different numbers of random shocks occurred per 

simulation trial. The most likely number is around 5, which is consistent with our 

assumption on the value of the occurrence rate ( =  / 5𝑦−1) of random shocks. 

 

Table III Frequency of the number of random shocks occurred per trial  

(mission time t = 80 years) 

 

Nb of random 

shocks/trial 

0 1 2 3 4 5 6 7 8 9 >9 

Percentage (%) 0.63 3.14 8.00 13.55 17.15 17.56 14.91 10.83 6.87 3.90 3.45 

 

In total, 6973 trials ended in failure, among which 4531 trials (64.98%) are 

caused by extreme shocks. Table IV reports the number of trials ending with extreme 

shocks, for different numbers of cumulative shocks occurred per trial. 

 

Table IV Number of trials ended with extreme shocks for different numbers of 

cumulative shocks (mission time t = 80 years) 

 

Nb of cumulative 

shocks per trial 
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0 6345 0 

1 31739 367 

2 80292 633 

3 135676 812 

4 171526 809 

5 175569 743 

6 148844 500 

7 108101 332 

8 68579 172 

9 38964 90 

10 19569 43 

11 8998 19 

>11 5798 11 

 

The influence of the number of cumulative shocks occurred per trial on the 

probability of the next random shock being extreme is shown in Fig. 8: as expected, 

the larger the number of cumulative shocks the higher the probability of extreme 

shock. 

 

 

 

Fig 8. Probability of the next random shock being extreme as a function of the 

number of cumulative shocks occurred per trial. 

 

The influence of the degradation state on the probability of the next random shock 

being extreme is shown in Fig. 9: as expected, the likelihood of extreme shocks is 

higher when the component degradation state is closer to the failure state. 
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Fig 9. Probability of the next random shock being extreme as a function of the 

degradation state of the component. 

 

6.2.4 Influence of cumulative shocks on degradation 

In order to characterize the influence of cumulative shocks on the degradation 

processes, we set to 0 the probability of a random shock being extreme, so that all 

random shocks will be cumulative. The estimated state probabilities are shown in Fig. 

10. 

 

 

 

Fig 10. State probabilities obtained with cumulative shocks only. 
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The state probabilities with cumulative shocks exhibit similar patterns as those in Fig. 

6; only the rupture state probability has decreased due to the lack of extreme shocks. 

The numerical comparisons on the state probabilities without random shocks and with 

cumulative shocks at year 80 are reported in Table V. 

 

Table V Comparison of state probabilities without random shocks and with 

cumulative shocks  

(at year 80) 

 

State  Probability without 

random shocks 

Probability with 

cumulative shocks 

Relative difference 

Initial  3.52e-3 9.94e-3 184.11% 

Micro-crack  0.9959 0.9704 -2.56% 

Circumferential crack  3.05e-4 7.05e-3 2210.16% 

Radial crack  1.00e-4 7.52e-3 7419.00% 

Leak  1.30e-5 2.76e-3 21161.54% 

Rupture  2.06e-4 2.70e-3 1212.62% 

 

As for the case with random shocks, cumulative shocks have a similar influence on 

the state probabilities. In Fig. 11, we compare the estimated component reliability 

with cumulative shocks with the other two estimated probabilities of Fig. 7. At year 

80, the estimated component reliability with cumulative shocks is 0.9973 and the 

sample variance equals to 2.69e-9. Considering cumulative shocks only, the 

component reliability has decreased by 0.26%. 
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Fig 11. Component reliability w/o random shocks and with only cumulative 

shocks. 

 

6.3 Sensitivity analysis 

With the model specifications of Section 6.1, two important parameters are: the 

constant 𝛿 in 𝑝i,m(𝜏i,m
′ ) and the relative increment 휀 in 𝜆𝑖,𝑗

(𝑚)(𝜏𝑖,𝑚
′ , 𝜽). To analyze 

the sensitivity of the component reliability estimates to these two parameters, we take 

values of 𝛿 within the range [0.0001, 0.0002] and 휀 within the range [0.2, 0.4].  

Fig. 12 shows the estimated component reliabilities with different combinations of 

the two parameters. In general, the component reliability decreases when any of the 

parameters increases. In fact, higher 𝛿 in 𝑝i,m(𝜏i,m
′ ) leads to higher probability of 

the random shock being extreme, which is more critical to the component, and higher 

relative increment 휀 in 𝜆𝑖,𝑗
(𝑚)(𝜏𝑖,𝑚

′ , 𝜽) results in larger degradation transition rates. 

We can also see from the Figure that in this situation, when the same percentage of 

variation applies to the two parameters, 휀  is more influential than 𝛿  on the 

component reliability. The corresponding variances of the estimated component 

reliability computed using equation (19) are shown in Fig. 13, where it is seen that the 

high reliability estimates have low variance levels. 

 

0 10 20 30 40 50 60 70 80
0.99

0.992

0.994

0.996

0.998

1

Time

C
o
m

p
o
n
e
n
t 
re

li
a
b
il
it
y

 

 

without random shocks

with random shocks

with cumulative shocks



25 
 

 

 

Fig 12. Component reliability estimate as a function of 휀 and 𝛿 (at year 80). 

 

 

 

Fig 13.Variance of component reliability estimate as a function of   and   

(at year 80).  

 

7. CONCLUSIONS 

An original, general model of a degradation process dependent on random shocks 

has been proposed and integrated into a MSPM framework with semi-Markov 

processes, which also considers two types of random shocks: extreme and cumulative. 

General dependences between the degradation and the effects of shocks can be 

considered.  
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A literature case study has been illustrated to show the effectiveness and modeling 

capabilities of the proposal, and a crude sensitivity analysis has been applied to a pair 

of characteristic parameters newly introduced. The significance of the findings in the 

case study considered is that our extended model is able to characterize the influences 

of different types of random shocks onto the component state probabilities and the 

reliability estimates. 
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