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Fig. 1. Primary system with a TMD: lumped-parameters representation (a) and equivalent forces (b).
and a spring with an elastic constant k (Fig. 1); such is the one used in this present paper. It should be noted that in Fig. 1, 
mPS, cPS, and kPS are respectively the mass, the damping coefficient and the elastic coefficient of the system to be controlled, 
while m, c, and k are respectively the mass, the damping coefficient and the elastic coefficient of the TMD. fk and fd are the 
elastic and damping force exchanged by the two systems respectively. Finally, x1, x2, and x3 are respectively 
the displacement of mPS, m and the constraint. Their first and second derivatives (represented respectively by a single 
dot and by two dots) are the corresponding velocities and accelerations.

In this situation, the basic principle of the TMD is that its eigenfrequency should be tuned to the resonance frequency of 
the system to be controlled, herein referred to as Primary System (PS). This tuning allows to attenuate the vibrations of the 
PS at such eigenfrequency. Modelling the PS as a sdof system, the whole structure composed by the PS and the TMD is as 
shown in Fig. 1a.

In Fig. 1a, the values of m, c, and k must be set so that the eigenfrequency of the TMD is tuned to the eigenfrequency of 
the PS, as abovementioned. If the disturbance is random (as in the case considered in this paper), a proper value for c should 
be calculated, so that the vibration of the PS is minimised within a frequency range around its resonance frequency.

Although TMDs can be very effective in reducing vibrations of the PS and optimisation of their features is widely studied 
(e.g. [2,3]), they do suffer from a major drawback: they cannot adapt their dynamic characteristics. Sometimes this 
disadvantage can constitute a critical problem, especially when the PS undergoes significant changes of its modal behaviour. 
For instance, major variations of the environmental temperature can cause significant changes in the eigenfrequency value 
of the PS, or even of the TMD itself, thus causing a mistuning between the resonance frequency of the PS and that of the 
TMD. Such a mistuning can render the TMD ineffective in reducing vibration.

Given the situation herein premised, great effort has gone into designing Adaptive TMDs (ATMDs), i.e. able to change 
their own modal characteristics in order to follow eventual changes of the modal behaviour of the PS. When a new ATMD is 
designed, the device is expected to be able to change either its eigenfrequency or its damping, and some devices are 
required and designed to change both parameters. The choice of which parameter must be adapted depends on the 
application and on the disturbance taken into account. The specific performance required of the ATMD leads to different 
approaches in its design, employing different solutions. Various different physical principles have been used to render a 
TMD adaptive, some of which are listed here:
�
 Longbottom et al. [4] and Long et al. [5] used pneumatic springs, whose stiffness can be tuned by changing the air
pressure;
�
 Bonello et al. [6] and Gsell et al. [7] used piezo-ceramic actuators;

�
 Carneal et al. [8] and Brennan [9] used servo-actuators;

�
 Carpineto et al. [10] employed the hysteresis of short steel wire ropes;

�
 Weber et al. [11,12] used magnetorheological dampers;

�
 Heuss et al. [13] used piezoelectric transducers;

�
 Savi et al. [14], Aguiar et al. [15], Tiseo et al. [16], Mani and Senthilkumar [17], Zuo and Li [18], Rustighi et al. 

[19,20], Ozbulut et al. [21], Mavroidis [22], Senthilkumar and Umapathy [23], and Williams et al. [24,25], used shape
memory alloys (SMA) to design and construct ATMDs capable of changing their eigenfrequency and, overall, to dampen 
vibrations in light structures, on account of the unique characteristics of such materials.

We have found this latter approach particularly promising, since SMAs are ever more widely used in engineering, they 
have physical properties which can be employed for vibration reduction, and they are cheaper than other materials. 
Furthermore, they are often produced in lightweight shapes (e.g. wires); this feature is crucial because it allows to construct 
adaptive devices avoiding load effects in light structures.

The aforementioned physical principles can be used to change either the eigenfrequency of the ATMD or its damping, 
and some can be even used for both these goals. Some more facts should be pointed out on the issue of damping adaptation. 
There are, in fact, other possible approaches to designing an adaptive damper and they have already been discussed in 
literature, including – yet not purposely considering – applications in ATMDs. Also these principles can be employed in 
rendering the TMD damping adaptive. For example, magnetic (e.g. [26]), liquid (e.g. [27,28]), or mechanical devices (e.g.
[29]) can be employed. Also electro-magnetic principles, such as eddy currents, can be used. Eddy current dampers are 
effective in damping vibrations and are simple to model and drive compared to other kinds of aforementioned dampers (see



Section 3). Furthermore, they can be built with different shapes and sizes in order to fit them to different kinds of PSs. This 
makes them suitable for practical applications in vibration control.

This paper presents a new ATMD for light structures, which relies on the use of SMAs and eddy currents. The referenced 
works (e.g. [20]) employ SMAs to build beams, whose eigenfrequency can be changed by changing the material's Young's 
modulus (further details are provided in the following section). These beams, rigidly connected to the PS, constitute the 
TMD. Although these TMDs are effective, they do suffer some limitations: the range of adaptation of their eigenfrequency is 
limited, they require the use of high performance SMAs, and often the layout of the ATMD does not allow to add a device to 
change the damping as well. Thus, we see the scope for further improvements. Particularly, the goals of this paper are as 
follows:
1.
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achieving a range of adaptation of the ATMD eigenfrequency of at least 50% of its nominal value. This is achieved by using
SMA wires, instead of SMA beams;
2.
 the TMD layout must not require high-performance SMAs (i.e. it must work properly with any kind of SMA material);

3.
 the ATMD must be able to adapt its eigenfrequency as well as its damping. Such a goal is achieved by designing an ATMD

relying not only on SMAs, but also on an additional element (i.e. an eddy current damper).

These improvements would allow to properly attenuate the vibrations in a system subject to random excitation, which is
the case considered in this paper. Indeed, the possibility to follow eventual changes of the PS and to adapt the damping of
the ATMD are crucial features of any attempt to attenuate vibrations due to random disturbances.

The paper is organised as follows:
�
 Section 2 presents the main properties of SMAs, highlighting those considered and employed in the present work;

�
 Section 3 presents the physical principle chosen to adapt the damping of the ATMD;

�
 Section 4 shows the layout of the new ATMD and explains how a wide range of the ATMD resonance frequency is

achieved. The main parameters influencing the working principle of the ATMD are here introduced as well. Furthermore, 
this section explains how the three abovementioned goals for the new ATMD are achieved;
�
 Section 5 provides details of the model developed to simulate the behaviour of the ATMD based on SMAs;

�
 Section 6 presents the algorithms employed to adapt the modal behaviour of the ATMD;

�
 Section 7 shows the experimental test set-up used to verify the effectiveness of the new ATMD;

�
 Section 8 presents a comparison between the results achieved by experimental tests and those obtained by numerical 

simulations.

2. Shape memory alloys

This section discusses the main features of SMAs [30], which are considered suitable for the purpose of the present paper 
and, more generally, to act on the dynamics of mechanical systems. The specific material used in this paper is Nitinol [30], 
constituted of nickel and titanium.

The main characteristic of SMAs is the possibility to change their composition between austenite and martensite phases 
by applying proper temperature and stress values. Fig. 2 clearly expounds the features of the SMAs. SMAs can assume three 
phases: detwinned martensite (DM), twinned martensite (TM), and austenite (AU). In Fig. 2, σs is the stress value at which
Fig. 2. SMA working principle.

le 1
hnical data of the SMA material used, obtained by experimental tests.

s Af Ms Mf CA CM Hcur α Ew,DM Ew,AU

8.6 1C 78.9 1C 55.2 1C 42.7 1C 9.90 MPa/1C 6.83 MPa/1C 4.39% 10�6 1C�1 32.1 GPa 39.5 GPa



the transformation from twinned to detwinned martensite starts at environmental temperature, while σf is the value at 
which the transformation is completed. As is the temperature value at which the transformation from twinned martensite to 
austenite starts at null stress, while Af is the value at which the transformation is completed. Ms is the temperature value at 
which the transformation from austenite to twinned martensite starts at null stress, while Mf is the value at which the 
transformation is completed. CA and CM are the angular coefficients of the transformation lines.

Table 1 presents the values of the parameters shown in Fig. 2 for the SMA wires used in the present work, identified by 
means of experimental tests. In this table, Hcur is the current maximum transformation strain (i.e. the strain due to the 
change of shape between TM and DM), α is the thermal expansion coefficient, Ew,DM and Ew,AU are the Young's moduli of the 
DM and AU phases respectively.

Fig. 2 shows that the shape of the SMA can be changed by applying a stress value higher than σs (transformation from TM 
to DM) and that the original shape can be recovered by increasing the temperature (transformation from DM to AU). Then, by 
changing the temperature, it is possible to change phase between DM and AU and thus change shape. Fig. 2 illustrates that 
the shape in the TM and AU phases is the same (i.e. the unstrained shape).

The manner in which the properties of the SMA are employed in the new ATMD shall be explained in Section 4. At this 
point it is useful to point out that the abovementioned properties of the SMAs are used to change the eigenfrequency of the 
ATMD. The damping properties instead are changed employing an additional device, as explained in Section 3.

More extensive information about properties of SMAs can be found in [30].

3. Physical principle employed to adapt damping

There are several physical principles (as discussed in Section 1) which can be used to adapt the damping of the ATMD (i.e. 
to adapt c). Among these, the authors of these papers have focused on the principles which allow to generate a viscous 
damping force (i.e. a force proportional to velocity), do not require contact between two or more components, have a linear 
control law, and allow to use low-weight components. These characteristics are found in inductive and eddy current devices. 
The latter solution was adopted in this paper, also on account of the ease of design of such actuators. The reliability of 
damping devices based on eddy currents has already been proven by different works in literature (e.g. [31–33]).

The basic components of the damper are a coil, in which a DC current id flows, and a cylinder made of conducting material: 
the current flows through the coil generating a magnetic field so that, when the cylinder moves within it, a force fd is generated 
acting in opposition to the relative velocity [33]. Fig. 3 explains the device layout and how the magnetic field is generated.

The damping force fd assumes the following expression [33]:

f d ¼ �2πaB
2πaB
2πaρ
hagd

0
@

1
A_xd (1)

where a and d are respectively the inner radius and the thickness of the cylinder, hag is the height of the air-gap, ρ is the
resistively of the cylinder material, B is the magnetic field in which the cylinder is immersed, and _xd is the relative velocity
between the cylinder and the coil. Therefore, the damping coefficient is

cd ¼
2πahagdB

2

ρ
(2)

The magnetic field B can be changed by changing the value of the current flowing in the coil. According to Eq. (2), this causes 
a change of the damping coefficient cd. The relation between the current id and the magnetic field B can be calculated by 
solving the magnetic circuit and it has the following form [33]:

B¼ Nid
AagΘ

(3)

where N is the number of turns of the coil, Aag is the area of the air-gap, and Θ is the reluctance of the magnetic circuit.
Fig. 3. Layout of the eddy current damper.



4. Layout of the new adaptive tuned mass damper

This section discusses the layout of the newly proposed ATMD, and the method employed to achieve extended frequency 
range is illustrated in particular.

The SMA-based ATMDs described in most of the referenced works are constituted by cantilever beams. The principle 
employed is the transformation between TM and AU, which can be achieved by changing the temperature of the SMA, 
without applying any stress (Fig. 2). Such a transformation determines a change of the Young's modulus of the SMA, which 
in turn determines a change of eigenfrequency of the beams and thus of the ATMDs.

This paper's proposition is to construct the ATMD with a central mass m linked to the PS by four SMA wires (Fig. 4). By 
means of elastic elements (Fig. 4), these wires are subject to pre-stress (and thus a pre-strain) above the value of σf (Fig. 2) in 
order to achieve the condition of DM. Then, the working principle of the ATMD relies on the transformation between DM and 
AU by means of a temperature change, which allows to change the shape (i.e. the length chiefly) of the wires and thus the 
axial tensile load F they are subject to. The change of the axial load F allows the change of the eigenfrequency of the ATMD 
[34]. Therefore, the working principle can be summarised as follows: a change of temperature causes a change of shape and 
consequently also a change of stress on the SMA wires. Particularly, when the wires are heated from DM to AU, they recover 
their initial shape (Fig. 2), thus their length decreases, and this causes a stretch of the spring and an increase of the axial load. 
Conversely, when the wires are cooled form AU to DM, their length increases and thus the springs shorten and the axial load 
decreases.

The new configuration here proposed allows to achieve a much wider frequency range of adaptation than would be 
possible by using cantilever beams. According to [34], the following relation is valid for the value of the first eigenfrequency 
ω1 of a cantilever beam:

ω1 �
ffiffiffiffiffi
Eb

p
(4)

where Eb is the beam's Young's modulus. Relying for example on the beam used in [20,19], the Young's modulus was 59 GPa 
for AU and 40 GPa for TM. In these conditions, the possible variation of the ATMD eigenfrequency Rω is

Rω¼ω1;AU�ω1;TM

ω1;TM
� 100¼

ffiffiffiffiffiffiffiffiffiffiffi
Eb;AU

p
ffiffiffiffiffiffiffiffiffiffiffi
Eb;TM

p �1

 !
� 100¼ 21% (5)

where ω1;AU and ω1;TM are the value of the first eigenfrequency when the material is in AU and TM phases respectively. And
Eb;AU and Eb;TM are the value of the Young's modulus of the beam when the material is in AU and TM phase respectively.

As for the new configuration proposed, the following relation is valid for ω1, according to [34,35]

ω1 �
ffiffiffi
F

p

Lwhð Þn (6)

where Lwh is the length of the SMA wire strained by the axial load F produced by the spring. n is a constant dependent on the 
boundary conditions of the wire; it is set to 0.5 throughout this whole section of the paper, because the other possible values 
(e.g. 1 [34]) achieve very similar results. Eq. (6) can be rearranged and expressed in terms of stress σw and strain εw on the 
wires:

ω1 �
ffiffiffi
F

p

Lwhð Þ0:5
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
σwAw

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lw εwþ1ð Þ

p (7)

where Lw is the length of the unstrained SMA wire and Aw is the double of the cross-section Aw1 of the SMA wires (the
change of cross-section due to strain is considered negligible to the purpose of the present paper). The reason for using Aw in
Fig. 4. Layout of ATMD based on SMA wires: top view (a) and lateral view (b).



place of Aw1 is that the SMA wires are two for each side of the ATMD. Then, Rω can be achieved by means of Eq. (7):

Rω¼ω1;AU�ω1;DM

ω1;DM
� 100¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εw;DMþ1
� �

σw;AU

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εw;AUþ1
� �

σw;DM

q �1

0
B@

1
CA� 100 (8)

The values of stress and strain at which the SMA wires work in AU and DM phases must be known to solve Eq. (8) and find 
the value of Rω. The values of σw,AU (i.e. the maximum stress value) and σw,DM (i.e. the minimum stress value) are set to 200 
and 50 MPa respectively, since the operating stress range for the SMA wires suggested by the manufacturer is below 250 
MPa. Furthermore, 50 MPa is over σf (Fig. 2). The strain can be expressed by the following general relation, according to [30]:

εw ¼ εewþεtwþεthw ¼ σw

Ew
þHcur σð Þþα T�T0ð Þ (9)

where εew is the elastic strain component, εtw is the strain component due to the thermo-elastic martensitic transformation 
[30] (i.e. the strain due to the change of shape from TM to DM. See Fig. 2), εwth is the strain component due to the thermal
expansion, Ew is the Young's modulus of the SMA wires (Table 1), Hcur σð Þ is the current maximum transformation strain [30]
(i.e. the strain due to the change of shape from TM to DM. See Table 1) [30], α is the thermal expansion coefficient of the SMA 
wires (Table 1), T is the temperature, and T0 is the reference temperature (i.e. the environmental temperature of 20 1C). 
Relying on Eq. (9), we may obtain the expression of εw;DM and εw;AU:

εw;DM ¼ σw;DM

Ew;DM
þHcur σð Þ; εw;AU ¼ σw;AU

Ew;AU
þα TAU;200�T0
� �

(10)

In fact, the phase of the material is DM at environmental temperature (Fig. 2) and thus the thermal component can be 
neglected, while when the SMA wire is in AU phase it has recovered its original shape (Fig. 2) and thus εtw is null. TAU,200 is the 
temperature above which AU is the only existing phase at a stress of 200 MPa.

Relying on the data of the SMA wires used in this work (Table 1), identified by means of experimental tests, Eq. (10) can 
be substituted into Eq. (8) so that Rω can be calculated. The result is about 103%, which is much higher than the 21% of Eq. (5) 
and satisfies the goal set out in Section 1.

This demonstrates that the proposed layout and use of SMA wires allow to achieve a wide range of the eigenfrequency of 
the ATMD. Furthermore, the result of Eq. (8) mostly depends on the ratio between the two values of stress. This highlights 
another advantage of the proposed layout as compared to the other approaches referenced (Eq. (5)). Indeed, this stress ratio 
can be high enough to have a wide frequency range, regardless of the kind of SMA used. Conversely, the referenced 
approaches require high-performance SMAs to increase the adaptation frequency range, meaning that the difference 
between Eb;AU and Eb;TM must be as high as possible. In fact, it is easier to find SMA wires with a high stress ratio, rather than 
with a high difference between Eb;AU and Eb;TM.

The key elements of the application herein presented are the elastic springs shown in Fig. 4, which allow to produce a 
change of F when the change of shape takes place during the transformation between DM and AU. Since the stress range for 
the material used in this work is 50–200 MPa, the springs are designed to have an elastic constant so that
�
 they generate a stress of 50 MPa in the wires, at environmental temperature, in order to have the SMA wires in
DM phase;
�
 they guarantee a stress value of 200 MPa (i.e. the maximum stress value set in the case here considered) at 103.91 1C (i.e.
TAU,200). In fact, this is the temperature above which the SMA wires are in AU phase at 200 MPa. This temperature was
estimated by means of experimental tests carried out on the wires employed.

The value of the constant K of each spring was calculated by imposing the equality between the displacement u of the 
outer end of the SMA wire, and the stretch q of the spring (exploiting the symmetry of the system; see Fig. 5):

u¼ �q (11)

If the axial load F is changed from a situation of equilibrium (i.e. from F1 to F2, F2 �F1 ¼ ΔF), then u and q are non-null 
quantities and a change of stress σw takes place (i.e. Δσw). Consequently, there is change of the strain (i.e. Δεw). Vice versa, if 
a Δεw occurs, a change of axial force F occurs as well. Thus, the following relations can be written according to Eq. (11):

ΔF ¼ΔσwAw1 ¼ Kq¼ �Ku¼ �KΔεwLw ) Δεw ¼ �ΔσwAw1

KLw
(12)
Fig. 5. Scheme for calculating K (view from the front side).
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Therefore, if the phase of the wires is changed from DM to AU, the following expression is achieved (relying on Eqs. (10) and  (12)):

�ðσw;AU�σw;DMÞAw1

KLw
¼ σw;AU

Ew;AU
þα TAU;200�T0
� �� �

� σw;DM

Ew;DM
þHcur σð Þ

� �
(13)

Rearranging Eq. (13), the following expression is achieved:

K ¼ σw;DM�σw;AU
� �

Aw1
σw;AU
Ew;AU

�σw;DM
Ew;DM

þα TAU;200�T0
� ��Hcur σð Þ

� �
Lw

(14)

Eq. (14) allows to calculate the value of K by filling in all the required variables. The value obtained is 14628.5 N/m. 
The value used for Lw was 50 mm. The rational for this choice will be clarified in Section 7.

5. Model of the new adaptive tuned mass damper

According to Fig. 1b, two forces are exchanged between the TMD mass and the PS: an elastic force fk, which depends on 
the relative displacement x between m and mPS (i.e. x¼x2�x1), and a damping force fd, which depends on the relative 
velocity x_ between m and mPS. The whole system is governed by the following dynamic equations:

mPS €x1þcPS _x1þkPSx1� f k x; tð Þ� f d _x; tð Þ ¼ cPS _x3þkPSx3
m€x2þ f k x; tð Þþ f d _x; tð Þ ¼ 0

(
(15)

This system represents the case in which the vibration of the PS is due to ground excitation. If a force acts directly on the 
PS, it must simply replace the right-hand-side of the first equation.

The following sections discuss how these two forces, fk and fd, are generated and can be modelled. The damping force fd is 
generated by the principle of eddy currents, while the elastic force fk is generated by means of SMA wires.

5.1. Elastic force

Considering the ATMD mass in Fig. 6 (in which the system symmetry is employed and in which the first mode of the 
ATMD is considered) subject to the axial load Fn acting on the SMA wires, the angle of each wire, above the horizontal, can 
be expressed as

λ¼ tan �1 x
Lwh

� �
(16)

where Lwh is the length of the wires when subject only to axial load F produced by the spring, without considering any other
static or dynamic load. Thus, Lwh can be expressed as (employing Eq. (9))

Lwh ¼ εwþ1ð ÞLw ¼ σw

Ew
þεtwþα T�T0ð Þþ1

� �
Lw (17)

Therefore, fk is

f k x; tð Þ ¼ 4Fn tð Þ sin tan �1 x
Lwh

� �� �
(18)

The term 4 in Eq. (18) is due to the fact that two wires act on each side of m. Fn represents the variable value of F due to
the static and dynamic loads (i.e. Fn¼FþΔF, the symbol Δ expresses the changes due to the static and dynamic loads).
Fixing the temperature of the wires and thus Lwh, the following relation is obtained:

Lwd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þL2wh

q
(19)

where Lwd is the length of the SMA wires subject to Fn and to vertical motion.
This variable can also be expressed as (employing Eq. (9))

Lwd ¼ Δεþ1
� �

Lwh ¼ ΔεewþΔεtwþΔεthw þ1
� �

Lwh ¼
Δσw

Ew
þΔεtwþΔεthw þ1

� �
Lwh ¼

ΔF
EwAw1

þΔεtwþΔεthw þ1
� �

Lwh (20)
Fig. 6. Definition of the angle λ



where the symbol Δ again expresses the changes due to the static and dynamic loads.
Combining Eqs. (19) and (20) and assuming the temperature is fixed (i.e. Δεwth ¼ 0) and that the value of ΔF is not high

enough to produce change of material phase (i.e. Δεtw ¼ 0), the following equation is obtained:

ΔF
EwAw1

þ1
� �

Lwh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þL2wh

q
) ΔF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þL2wh

q
�Lwh

Lwh
EwAw1

(21)

Substituting Eq. (21) into Eq. (18), the following expression is obtained:

f k x; tð Þ ¼ 4 Fþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þL2wh

q
�Lwh

Lwh
EwAw1

0
@

1
A sin tan �1 x

Lwh

� �� �
(22)

Such an expression can be formulated as a Taylor series [36] around the position of equilibrium x0:

f k x; tð Þ � f k x0ð Þþdf k
dx

				
x0

x�x0ð Þþ1
2
d2f k
dx2

					
x0

x�x0ð Þ2þ⋯þ 1
n!
dnf k
dxn

				
x0

x�x0ð ÞnþO xnþ1� �
(23)

The position x0 can be obtained by solving the static equilibrium mg¼ fk(x0) (where g is the gravity acceleration). This 
equation was evaluated both in the AU and DM phases, and in both cases x0 is very close to zero (about 0.3 mm for DM and 
0.12 mm for AU). Hence, x0 was set to zero here (the solution of the static equilibrium requires to know all the parameters 
of the system. Some of them were already given in Table 1 and in the previous sections; others, such as m, will be given 
in Section 7). Therefore, x0 is set to zero from here on, in this paper.

Finally, substituting Eq. (22) into Eq. (23) and ignoring terms higher than the third order, the dynamic part of fk can be 
approximated as

f k x; tð Þ ¼ 4
F
Lwh

x� F

2L3wh

�EwAw1

2L3wh

!
x3

" #
(24)

In the present application Eq. (24) can be simplified considering only the linear term in x, because the cubic term proves 
to be negligible. Therefore

f k x; tð Þ ¼ 4
F
Lwh

x (25)

Eq. (24) shows that the elastic force depends on F, Lwh, and Ew. These three variables depend on the phase of the SMA 
wires and such a phase can be AU, DM, or a combination of the two, depending on the temperature and stress on the wires. 
The next sections (5.1.1 and 5.1.2) describe how to change the three variables by means of the Joule effect. In fact, a current 
iw runs through the wires and this generates heat by Joule effect. The consequent change of temperature T causes a change 
of phase and thus a change of F, Lwh, and Ew. Section 5.1.1 shows how to link T to F, Lwh, and Ew. Then, Section 5.1.2 
discusses how to describe the relationship between iw and T. Therefore a global model will be expounded, explaining how to 
relate the control variable iw and the elastic force fk.

5.1.1. Material model: stress–temperature relation
A key aspect to consider, in order to properly describe the behaviour of the SMA wires, is the relationship which links the 

temperature on a wire T and its stress σw. A change of T can cause a change of shape (i.e. length) and thus a change of the 
axial load produced by the spring (Fig. 4). Elucidating the relation between T and σw, also the relation between T and the 
variables F, Lwh and Ew can be calculated.

The starting point for such a model is the Experimentally-Based 1-D Material Model [30], which relies on the martensite 
volume fraction ξ (i.e. ξ¼0 when the material is fully austenitic, and ξ¼1 when it is fully martensitic) and is based on the 
following hypotheses:
1. T
he Young's modulus of the SMA material Ew is linearly dependent on ξ:

Ew ¼ Ew;AU�ξ Ew;AU�Ew;DM
� �

(26)
2.
 The thermal expansion coefficient α is constant

3.
 The transformation strain linearly depends on ξ:

εtw ¼ ξHcur (27)
4.
 The starting and ending transformation temperatures (i.e. Mσ
s ; M

σ
f ; A

σ
s ; A

σ
f ) linearly depend on σw:

Mσ
s ¼Msþ

σw

CM
; Mσ

f ¼Mf þ
σw

CM
; Aσs ¼ Asþ

σw

CA
; Aσf ¼ Af þ

σw

CA
(28)



5. T
he value of ξ during the transformations from martensite to austenite (i.e. T_ 40) is described as [30]
ξ¼
1; TrAσs
Aσf �T
Af �As

; Aσs oToAσf

0; TZAσf

8>>><
>>>:

(29)

And for the transformation from austenite to martensite (i.e. _To0) by

ξ¼
0; TZMσ

s
Mσ

s �T
Ms �Mf

; Mσ
f oToMσ

s

1; TrMσ
f

8>><
>>: (30)

Eqs. (29) and (30) are valid only for transformations starting from a homogenous material and they do not take into 
account partial transformation. This model (particularly Eqs. (29) and (30)) has been refined in the herein study so to take 
into account also transformations starting from non-homogeneous material (partial transformations).

This new formulation assumes that a transformation can start from a non-homogeneous material. The starting martensite 
volume fraction is indicated as ξ�1 and the new formulation for transformations from martensite to austenite (i.e. T_ 40) is

ξ¼
ξ�1; TrAσs
Aσf �T
Af �As

ξ�1; Aσs oToAσf

0; TZAσf

8>>><
>>>:

(31)

And for transformations from austenite to martensite (i.e. _To0), it is

ξ¼
ξ�1; TZMσ

s
Mσ

s �T
Ms �Mf

1�ξ�1
� �þξ�1; Mσ

f oToMσ
s

1; TrMσ
f

8>><
>>: (32)

Now Eqs. (31) and (32) can be used to find the relation between T and σw. Relying on Eq. (9) and Eq. (12), a generic 
equation describing the behaviour of the material due to a change of temperature is described as

� σw�σw;0
� �

Aw1

KLw
¼ σw

Ew
� σw;0

Ew;DM
þα T�T0ð Þþεtw�εtw;0 (33)

where σw,0 indicates the stress at environmental temperature (i.e. 50 MPa, see Section 4) and εtw;0 ¼ Hcur. On the grounds of 
Eqs. (26) and (27), Eq. (33) can be written as

σw Tð Þ ¼
σw;0

Aw1
KLw

þ 1
Ew;DM

� �
�α T�T0ð ÞþHcurð1�ξÞ

Aw1
KLw

þ 1
Ew;AU �ξ Ew;AU �Ew;DMð Þ

¼ yþbT (34)

The constants b and y are defined in Appendix A. When the material is out of the transformation region, ξ is at a constant 
value ξ� 1 and the stress depends linearly on the temperature T, because of the effect of thermal expansion. On the contrary, 
when the material is under transformation, ξ is described by the second condition of Eq. (31) for transformations from DM to 
AU, or of Eq. (32) for transformations from AU to DM. Therefore, the expression of σw(T) is achieved by substituting the 
second condition of Eq. (31), or the second condition of Eq. (32), into Eq. (34). The following relation is achieved for 
transformation from AU to DM:

σw Tð Þ ¼
� b1;dþb2;dT
� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1;dþb2;dT
� �2�4adðc1;dþc2;dTþc3;dT

2Þ
q

2ad
(35)

And the following for transformation from DM to AU:

σw Tð Þ ¼
� b1;iþb2;iT
� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1;iþb2;iT
� �2�4aiðc1;iþc2;iTþc3;iT

2Þ
q

2ai
(36)

The terms in Eqs. (35) and (36) are given in Appendix B.
Therefore, Eqs. (34)–(36) describe the relationship between σw and T. Once the value of σw(T) has been calculated, the 

value of F and Lwh can be computed as (see Eq. (17))

F ¼ Aw1σw Tð Þ; Lwh ¼
σwðTÞ
Ew

þα T�T0ð ÞþHcurξ
� �

þ1

 �

Lw (37)



The relationship between Ew and T can be found by means of Eqs. (31), (32), and (26). 
Finally the elastic force fk can be computed by means of either Eq. (24) or Eq. (25).
The final task herein set out to meet is how to control T. This is achieved by heating, by means of Joule effect, and by 

cooling by means of convection. The thermal model linking the current iw supplied to the wires and T is described in the 
following Section 5.1.2.

5.1.2. Thermal model
The temperature T of the SMA wires can be changed employing two different principles: the Joule effect for heating, and 

convection for cooling. The first law of thermodynamics [37] can be applied to each wire:

ρcp
dT
dt

¼ σw
dεw
dt

�hsw;ext

Vw
T�T0ð ÞþRwi

2
w tð Þ

Vw
(38)

where ρcp is the thermal capacity per unit of volume of the SMAwire, h is the convection coefficient of air, sw,ext is the outer
surface of each wire, Rw is the electric resistance of each wire, and Vw is the volume of each wire.

According to Eq. (12), the first term of the right-hand side of Eq. (38) can be rearranged as

σw
dεw
dt

¼ σw
dεw
dσw

dσw

dT
dT
dt

¼ σw
�Aw1

KLw

dσw

dT
dT
dt

(39)

As for Eq. (39), the term dσwdT can be calculated differentiating Eq. (34) for extra-transformation temperature changes, Eq.
(35) for temperature changes during transformations from AU to DM, and Eq. (36) for temperature changes during 
transformations from DM to AU. The following formulations are achieved:
�
 Extra-transformation:

dσw

dT
¼ b (40)
�
 Transformation from AU to DM:

dσw

dT
¼ 2b2;d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
As;dþTðBs;dþCs;dTÞ

p þBs;dþ2Cs;dT

4ad
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
As;dþTðBs;dþCs;dTÞ

p (41)
�
 Transformation from DM to AU:

dσw

dT
¼ 2b2;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
As;iþTðBs;iþCs;iTÞ

p þBs;iþ2Cs;iT

4ai
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
As;iþTðBs;iþCs;iTÞ

p (42)
The terms in Eqs. (41) and (42) are explained in Appendix C.
Then, Eq. (39) can be rearranged by using Eqs. (40) and (34) for extra-transformation temperature changes, Eqs. (41) and 

(35) for temperature changes during transformations from AU to DM and Eqs. (42) and (36) for temperature changes during 
transformations from DM to AU. Finally, Eq. (38) can be rewritten as
�
 Extra-transformation:

ρcp
dT
dt

¼ �Aw1

KLw
ðyþbTÞbdT

dt
�hsw;ext

Vw
T�T0ð ÞþRwi

2
w tð Þ

Vw
(43)

Where the term ξ in the constants b and y is fixed to ξ�1.
�
 Transformation from AU to DM:

ρcp
dT
dt

¼ �Aw1

KLw

� b1;dþb2;dT
� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

As;dþBs;dTþCs;dT
2

q
2ad

2b2;d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
As;dþTðBs;dþCs;dTÞ

p þBs;dþ2Cs;dT

4ad
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
As;dþTðBs;dþCs;dTÞ

p dT
dt

�hsw;ext

Vw
T�T0ð ÞþRwi

2
w tð Þ

Vw
(44)
�
 Transformation from DM to AU:

ρcp
dT
dt

¼ �Aw1

KLw

� b1;iþb2;iT
� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

As;iþBs;iTþCs;iT
2

q
2ai

2b2;i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
As;iþTðBs;iþCs;iTÞ

p þBs;iþ2Cs;iT

4ai
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
As;iþTðBs;iþCs;iTÞ

p dT
dt

�hsw;ext

Vw
T�T0ð ÞþRwi

2
w tð Þ

Vw
(45)

Eqs. (43)–(45) describe the link between the control variable iw and the temperature T of the SMA wires.



 
 

 
 
 
 
 

5.2. Damping force

Section 5.1 and its subsections have described how to link the control variable (i.e. iw) to the elastic force acting on the PS. 
This present section faces the same issue relatively to the damping force fd. The physical principle used to generate and 
change damping in the ATMD is that of eddy currents (see Section 3).

Eqs. (2) and (3) have illustrated how to generate a damping force ud ¼ cd _x. In the present application a slight modification 
has been introduced: in fact, a permanent magnet (generating a magnetic field Bmp) has been introduced in addition to the 
coil producing the main variable magnetic field. This provides two benefits. Firstly, it allows to always have a base level of 
damping, which can then be increased making current flow through the coil. Moreover, the number of turns of the coil N 
and the current id necessary to obtain a given value of damping force fd can both be reduced, consequently resulting in a 
simplification of the damper construction and fewer problems associated with heating.

The electrical equivalent of the coil can be represented as the series of an inductance and a resistance. Such a circuit is 
supplied by a voltage source and thus the dynamic equation governing the circuit is

Lc
did tð Þ
dt

þRcid tð Þ ¼ V tð Þ (46)

where Lc is the inductance due to the coil, Rc is the resistance due to its turns, and V is the supplied voltage.
Employing Eqs. (2) and (3), the force fd can be expressed as

f d ¼
�2πahagd Nid

AagΘ
þBmp

� �2
 �
ρ

_x ) cd ¼
2πahagd

Nid
AagΘ

þBmp

� �2
 �
ρ

(47)

Eqs. (46) and (47) link the control variable V and the damping force fd. Indeed, Eq. (46) allows to calculate id for a certain 
supplied V(t) and then Eq. (47) allows to compute the force fd produced by id.

6. Control algorithms

This section describes the control strategies devised to adapt the ATMD natural frequency and damping to the 
characteristics of the PS. Two different kinds of algorithms (APP1 and APP2 herein) were developed and tested to adapt the 
behaviour of the ATMD: they are described in Sections 6.1 and 6.2. In both the approaches, first the eigenfrequency of the 
ATMD is tuned and then the damping is adjusted. The first of the two strategies is based on an on-line identification of the 
PS features and on the consequent adaptation of the ATMD. The second strategy does not require any identification and is 
based on the shape of the power-spectrum of the vibration of the PS.

6.1. First control algorithm

The first approach (APP1) requires to estimate the dynamic parameters of the PS and to tune those of the ATMD in order 
to satisfy the optimisation criterion suggested in [38]. This approach requires an on-line estimation of different variables of 
the systems (Section 6.1.1) and the measurement of x1, x2, and x3 (Fig. 1).

The optimal values of the dynamic features of the ATMD as a function of the PS characteristics are given in Ref. [38]:

ωATMD ¼ ωPS

1þ m
mPS

; ξATMD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 m
mPS

8 1þ m
mPS

� �
vuut ) cATMD ¼ 2mωATMD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 m
mPS

8 1þ m
mPS

� �
vuut (48)

where ωPS is the eigenfrequency of the PS, while ωATMD and ξATMD are the eigenfrequency and the non-dimensional damping 
ratio of the ATMD, respectively. The conditions of Eq. (48) are for an undamped PS and thus valid in the practical applications 
where the damping of the PS (i.e. ξPS) is low. In the test-case herein used (see Section 7), the damping was low enough. If this 
were not the condition, different formulas for the optimal values can be used (e.g. [2]).

Employing Eq. (25) and the first condition of Eq. (48), the optimal value of F is

Fopt ¼
ω2

PSm
2
PSLwhm

4 mþmPSð Þ2
(49)

Therefore, the controller must tune F in order to make it as close as possible to Fopt and F can be changed by adjusting iw (see
Section 5.1). The second condition of Eq. (48) provides the optimal value for the damping of the ATMD (Eqs. (46) and (47));
such a value can be reached by controlling the current id and thus the voltage V.

The procedure described above evidences that an on-line estimation of mPS and ωPS (Eq. (48)) is required (i.e. they are
assumed to be unknown a priori). Then, two different choices are viable: using a model-based control to adapt F and c, or
else a non-model-based control. The latter option has herein been opted for (i.e. non-model-based control), although the
models in Section 5 have been validated as well (see Section 8). The use of a model-based controller would have required to
employ Eqs. (34)–(36) to link σw and T, and Eqs. (43)–(45) to link T and the control variable iw, which would have made for a
much more complicated implementation of the controller itself. On the contrary, the non-model-based approach allows to



 
 

 
 
 

 
 

 
 

employ a simpler controller in practical applications, though a model-based controller could eventually be employed and 
would still prove reliable.

The values of m and of Lwh are known. In fact, although Lwh changes with temperature T (Eq. (37)), these changes are so 
small that they can be neglected in Eq. (49). The value of Lwh is thus fixed to a nominal value (see Section 7) when 
computing Fopt.

The following section describes how to estimate on-line mPS, ωPS, and the actual values of F and c. Then Sections 6.1.2 and 
6.1.3 explain the kind of control used to drive the SMA wires and the eddy current damper, in order to reach the optimal 
values of Eqs. (48) and (49).

6.1.1. On-line estimation of parameters
Employing Eq. (15), the two of them can be summed, giving a further equation in which the terms dependent on fk and fd 

are removed. The second equation of the system can be rearranged employing Eq. (25). Finally, the following system of 
equations (expressed in matrix form) is obtained:

€x1 ¼ ½ð�m€x2�cPS _x1þcPS _x3Þ ðx3�x1Þ�
m�1

PS

ω2
PS

" #

€x2 ¼ _x1 � _x2
m

� �
4 x1 � x2ð Þ
Lwhm

� �h i c

F


 �
8>>>><
>>>>:

(50)

The first equation of this system can be used to estimate mPS and ωPS, while the second is employed to estimate c and F. In
this paper the accelerations are measured, and velocities and displacements are computed by integrating acceleration signals.
All the terms in the raw vectors are assumed to be known, while those in the column vectors as unknown.

The algorithm used for on-line estimation is the gradient estimator [39]. Such a method requires to compare a measured
signal (i.e. €x1 for the first equation of system 50 and x€2 for the second one) with an estimate of this signal dependent on the
unknown parameters (i.e. this estimate is achieved by means of the equations in system 50 in this case). The convergence of
the algorithm allows to obtain an on-line estimate of the values of mPS, ωPS, c, and F.

It is worth remarking that the measured signals are band-pass filtered around the resonance frequency of interest (cut-
off frequencies equal to 10 and 30 Hz in this case, see Section 7) before being processed in order to remove the influence of
the other modes of the PS. Obviously, this requires to have a rough knowledge of the eigenfrequency value associated to the
mode to control.

6.1.2. Control of the SMA wires
As soon as the value of F and Fopt are achieved by means of the on-line estimation procedure and Eq. (49), the control of the

SMA wires is activated in order to make F reach Fopt. Then, this control continuously works thanks to a continuous estimation
of the actual value of F, mPS, ωPS, and Fopt.

The control strategy chosen to drive the current iw is a gain-scheduling control [39], in which two regions were identified 
relying on an error signal. This error e(t) is defined as

e tð Þ ¼ Fopt tð Þ�F tð Þ (51)

The two regions are defined as
�
 Region 1: e(t)4tol

�
 Region 2: e(t)o�tol
where tol is a fixed tolerance value. The interval 7tol is centred around zero.
In both the regions a proportional integral control was used:

iw tð Þ ¼ iw0þkpcwe tð Þþkicw

Z
e tð Þdt (52)

where iw0 is a constant current (its value depends on the region the controller is working in), kpcw is the proportional
coefficient of the controller, and kicw is its integral coefficient. Both the values of kpcw and kicw depend on the region the
controller is working in.

Before continuing, it is worth explaining why a gain-scheduling approach was chosen. In theory, a proportional integral
control without gain-scheduling could be employed for controlling the SMAwires. Nevertheless, gain-scheduling is a proper
tool for making the adaptation of the ATMD faster and more effective. The first advantage provided by such an approach is
that kpcw and kicw can be fixed to different values in the two mentioned regions; this aspect is important since the two
physical phenomena used to change the temperature of wires are different: the Joule effect to heat and convection to cool.
This difference requires different values of kpcw and kicw to be used in the two regions, to optimise the performances of the
controller. Furthermore, when a mistuning between the PS and the ATMD takes place (i.e. |e(t)|40) and the sign of the
signal e(t) changes, the phase of the SMA wires must be changed to reach tuning again. Therefore, the idea is to quickly



change the value of iw in order to ensure fast adaptation. Since there are two phases of the SMA wires, two regions are
defined (see above) and the following criteria are used:
�
 When the axial load is too high (i.e. e(t)o �tol, see Eq. (51)), the temperature T and the current iw must be lowered. Thus, 
the value of iw0 in this region should be low, allowing to shift quickly towards DM (this causes the wires to increase their 
length: thus the springs shorten and the axial load decreases).
�

 
 
 

 
 
 

When the axial load is too low (i.e. e(t)4tol, see Eq. (51)), the temperature T and the current iw must be increased. Thus, 

the value of iw0 in this region should be high, allowing to shift quickly towards AU (this causes the wires to decrease their 

length: thus the springs stretch and the axial load increases).

This allows to avoid the use of a derivative term in the controller. In fact, a derivative term would have allowed a faster
adaptation but could cause errors in the steady state condition [40]. The use of the gain-scheduling approach, as here 
discussed, allows to avoid using the derivative term, even ensuring fast adaptation.

In the considered test-case (see Section 7), the values of iw0 in the two regions have been chosen so to drive the system 
quickly towards the transformation regions, as already mentioned: iw0 must have values by which the temperature T is 80 1C 
for region 1 (i.e. towards AU) and 75 1C for region 2 (i.e. towards DM) (Fig. 7). The electric current values corresponding to 
these temperatures were calculated by means of Eq. (38) in steady state condition (i.e. with the derivative terms equal to 
zero) and resulted to be 1.05 and 0.95 A respectively. The temperature values (i.e. 75 and 80 1C) were specifically selected 
for the considered test-case (see Section 7): for different applications different values can be used.

When e(t) is close to zero within the fixed tolerance, the controller maintains the last value of supplied current.

6.1.3. Control of the eddy current damper
The eddy current damper is controlled by means of a proportional integral control on the control variable V as well:

V tð Þ ¼ kpcded tð Þþkicd

Z
ed tð Þdt (53)

where kpcd is the proportional coefficient of the controller and kicd is its integral coefficient; ed is an error signal defined as

ed tð Þ ¼ 2mωATMD tð ÞξATMD tð Þ�c tð Þ ¼ cATMD tð Þ�cðtÞ (54)

6.2. Second control algorithm

The second approach (APP2) relies on the shape of the power-spectrum of x1 (see Fig. 1): the heights of the peaks P1 and
P2 (Fig. 8) must be equal (i.e. optimisation of the eigenfrequency of the ATMD in order to achieve the best vibration
reduction at resonance) and the height of point P3 (Fig. 8) must be close to those of P1 and P2, within a certain set tolerance
value (i.e. optimisation of the damping of the ATMD). First the condition on P1 and P2 is resolved and then the height of P3 is  
tuned. APP2 requires to measure only x1 and does not require to carry out an on-line estimation. Since APP2 works on the
shape of the power-spectrum, it is most effective when the random disturbance (as in the case here considered, see Section
1) on the PS is close to white noise over the considered frequency range. This is a reasonable assumption because the
considered frequency range is limited (i.e. few Hertz) in TMD applications. If this should not be the case, the same control 
strategy must be applied to the FRF x1/x3 and the measurement of x3 will be necessary.

Control of the SMA wires has been carried out once again with a gain-scheduling control (Section 6.1.2) in which – in this 
case – the error signal e(t) is defined as

e tð Þ ¼ hP2 tð Þ�hP1 tð Þ (55)
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ed tð Þ ¼ hP2 tð ÞþhP1 tð Þ
2

�hP3ðtÞ (56)

where hP3 is the height of P3.
The power-spectrum is a variable defined by an average procedure [41]. In this case the power-spectra are 

computed with time-windows of 50 s and by 10 averages. These values are closely subordinate to the particular 
system under investigation (see Section 7), since the number of averages needed to achieve a reliable estimation of the 
power-spectrum strongly depends on the signal-to-noise-ratio and the time length on the required frequency resolution.

7. Test case structure

A scheme of the system used for testing the new ATMD is shown in Fig. 9a. It has been designed with the simplest layout 
possible. Fig. 9b shows the PS with the ATMD mounted on it. In case of a generic PS a frame to mount the ATMD should be 
designed as well.

The eddy current damper is constructed by binding the cylinder to the mass of the ATMD and the coil to the PS.
The excitation applied was random and provided by means of an electro-dynamic shaker placed close to the PS and on 
the same substructure. The disturbance produced by the motion of the shaker propagated along the substructure made the 
PS vibrate. Therefore, the disturbance was a base excitation.

Table 2 summarises the nominal data used to design and construct the PS and the ATMD. These data refer to variables 
mentioned in the previous sections. The mode to be controlled is vertical with a resonance frequency at about 19 Hz and an 
associated non-dimensional damping ratio of about 0.48%.

The values of m and Lw were selected in order to place the first eigenmode of the ATMD (Fig. 4) around the resonance to 
be controlled and to have a ratio between mPS and m close to 20, as indicated in the literature.

The four SMA wires are electrically connected in series, so to have the same current iw flowing through them. The electric 
resistance Rw of each SMA wire is about 0.4 Ω.

As for the eddy current damper, the design here proposed allows to reach a damping coefficient cd of about 4.6 N/m/s 
with a supply current id of 1 A (Eq. (47)). It should be remarked that this kind of actuator allows to greatly modify such a 
value merely by changing its geometry and the number of turns of the coil.

8. Experimental tests

This section presents the results of experimental tests aimed at validating the models developed to describe the 
behaviour of the SMA wires (Sections 5.1, 5.1.1 and 5.1.2) and at testing the effectiveness of the control methods proposed 
in Section 6.

First, experimental tests were carried out without the damper (Section 8.1), then also the damper was used and the 
whole ATMD was tested (Section 8.2).

In all the cases accelerometers were used to measure €x1, €x2, and x€3. The technical data of these transducers are provided 
in Table 3. Moreover, the axial load on the SMA wires was monitored by means of strain gauges forming calibrated half 
Wheatstone bridges [42] on the elastic elements of the ATMD (Fig. 9). Finally, also the input currents to the SMA wires and 
the eddy current damper were measured throughout the tests. All the signals were acquired by means of a 24 bit analog‐to‐
digital acquisition board (with anti-aliasing filters on board). The sampling frequency was 2048 Hz. The real-time control of 
the SMA wires and the eddy current damper (as well as the acquisition of the signals) was managed by a Field 
Programmable Gate Array (FPGA) device.

where hP1 and hP2 are the heights of P1 and P2 respectively. The control of the damper is once again proportional integral 
(Section 6.1.3), in which – this time – the error ed(t) is defined as



Fig. 9. PS coupled to the ATMD: (a) representation of the system (the mass of the PS is laid down on four springs), and (b) photo of the actual system (the
picture was taken with a stress in the SMA wires lower than 50 MPa).

Table 2
Nominal data of the experimental set-up.

mPS m Lw Diameter of the SMA wires K N a hag D Bmp

1.95 kg 100 g 50 mm 0.5 mm 14628.5 N/m 500 6 mm 15 mm 1.5 mm 0.179 T
8.1. Tests without the damper

The aim of these experiments was to validate the model describing the behaviour of the SMA wires (Section 8.1.1) and 
to test the effectiveness of the control algorithms used to adapt the eigenfrequency of the ATMD (Section 8.1.2).

8.1.1. Validation of the model
In this test the SMA wires were supplied with two different values of the current iw:
�
 0 A, corresponding to a temperature T equal to the environmental one. In this case the phase of the SMA wires is DM 
(Section 4);
�
 1.55 A, corresponding to a temperature T of about 110 1C (at and above this temperature the transformation into AU is
completed with a stress of about 200 MPa; see Section 4). Hence, in this case the phase of the SMA wires is AU.
Fig. 10 shows the experimental FRFs between x3 and x1 in the two cases and compares them with those achieved using

the numerical model above discussed.

The match is good, proving the numerical model reliable and that it correctly describes the dynamic behaviour of the

whole system (i.e. PSþSMA wires). Furthermore, the value of Rω (Eq. (8)) achieved experimentally resulted equal to 98.3%



(i.e. 27:66 Hz�13:95 Hz
13:95 Hz

� �� 100, indicated by the arrows in Fig. 10). This result is close to the 103% value achieved numerically

(Section 4).
Two final remarks should be brought to notice. The first observation to make is that the maximum current value used to 

achieve the mentioned result for Rω is much lower than 2 A: this means that an extended frequency range can be achieved 
employing a low current, in contrast to most of the referenced works where high currents are needed (e.g. [19]). This is made 
possible by the use of SMA wires, in place of beams. The second observation to make concerns the damping of the whole 
system (PSþSMA wires): Eq. (24) shows that the SMA wires introduce a force related to the relative displacement between 
the ATMD mass and the PS mass. Nevertheless, there also is a damping component, related to the damping of the structure 
composed by the ATMD mass and the SMA wires. This damping force is found to be almost dependent on the relative 
velocity between the ATMD mass and the PS mass [19] for this set-up. Such a force is low if compared to the damping force 
provided by the eddy current damper (the ratio between the two forces is higher than 10; see the details for the eddy current 
damper force in Sections 7 and 8.2). For this reason the authors have decided not to model this additional force which would 
have made the model more complex without adding significant improvements to its accuracy. Nevertheless, it must be taken 
into account when the eddy current damper is switched off, in the case numerical results are required to have special 
accuracy. The damping coefficient related to this additional force can be estimated by different types of tests (e.g. by carrying 
out a modal analysis of the system composed by the ATMD mass, the SMA wires, and the elastic elements, mounted on a rigid 
frame) [19] and the change of the force is almost negligible when changing phase from DM to AU (in agreement with [20]). 
The damping coefficient was estimated equal to 0.2 N/m/s.

8.1.2. Tests of the efficacy of the ATMD to adapt its eigenfrequency
These tests have been carried out following this procedure:
�

Tab
Tec

S

1

the ATMD was mistuned at the beginning of the tests;

�
 the ATMD took a certain amount of time to tune its eigenfrequency;

�
 the PS was changed by adding – or removing – masses (i.e. mPS is changed) by using magnets. This caused a mistuning

between the PS and the ATMD;

�

 

then the ATMD tuned its eigenfrequency again.

The random excitation was provided in the frequency range between 10 and 25 Hz and the corresponding root mean 
square value of €x1 was about 1000 mm/s2 in mistuned conditions.

Fig. 11 shows the time history of iw for three changes of mPS. At point L1 the on-line estimator reaches the steady-state 
and the controller is activated (from t¼0 s  to  t¼L1, iw¼1.05 A, because for time lower than 0 s the SMA wires are not
supplied with current and the actual value of F is assumed to be too low, so that at time 0 s the current is automatically
le 3
hnical data of the accelerometers used in the experiments.
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Fig. 10. FRF of the complete system (PSþATMD) between x3 and x1 (i.e. x1/x3, see to Fig. 1): 0 A supplied (a) and 1.55 A supplied (b).
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Fig. 11. Time history of iw.
tuned to 1.05 A. See Section 6.1.2). At point L2 a mass of 100 g is added to mPS. At point L3 an additional mass of 100 g is 
added to mPS. At point L4 a mass of 200 g is subtracted from mPS.

Fig. 12a and b respectively shows the corresponding FRFs (in steady-state condition) relative to the first tuning and to the 
first addition of a 100 g mass for APP1. The FRFs for the remaining cases are not shown since the results are similar. The 
concordance between the experimental and the numerical results is good, further proving the reliability of the model herein 
developed. Furthermore, the gain-scheduling approach for the control with APP1 proves to be reliable. Hence, the ATMD 
proves to be capable of following the changes of the PS (Fig. 12a and b).

As for APP2, Fig. 12c and d shows the FRFs in steady-state condition for the same changes of mPS (same as of a and b). 
Again the numerical results match the experiments and the control strategy proves to effectively follow the changes of the 
PS. When the variation of the mass mPS is high, employing APP2 makes for a slower adaptation than with APP1. Numerical 
analyses showed that this result is strongly correlated to the signal-to-noise-ratio of the measured acceleration €x1 (i.e. the 
lower the signal-to-noise-ratio is, the slower the adaptation is). Nevertheless, real systems are seldom affected by changes of 
their dynamic features as sudden or high as in this case. Therefore, in practical applications, such a drawback could be often 
neglected.

Table 4 summarises advantages and drawbacks of the two approaches.
Some further facts deserve to be pointed out. The kind of disturbance here taken into consideration is random noise and 
the displacements at resonance are significantly lower in this case than in the case of a mono-harmonic disturbance, 
because of the different frequency distribution of the power of the disturbance. This guarantees a much lower probability of 
having a significant nonlinear behaviour of the ATMD (Eqs. (24) and (25); geometrical nonlinearity) as compared to the case 
of a mono-harmonic excitation. This latter case would probably lead to a significant geometrical nonlinearity. Therefore, a 
random disturbance represents a favourable case under this point of view and it seems reasonable to consider the behaviour 
of the ATMD as nigh linear.

Nevertheless, the model of the ATMD takes into account the nonlinearity as well and it is of general validity. The 
nonlinear term is neglected when the control of the ATMD is taken into account. Two control strategies are proposed (APP1 
and APP2). APP1 is valid as long as the linear approximation is valid and would fail when the nonlinearity tended to become 
significant. Otherwise, APP2 (which works on the shape of a power-spectrum) is expected to work properly also in presence 
of moderate nonlinearity. Indeed, as for the frequency representation of nonlinear structures, random excitation applies a 
linearisation procedure to the behaviour of the structure, which is considered to provide an optimised linear model for the 
test structure [43]. This means that the empirical approach of APP2 should not suffer too much from a moderate nonlinear 
behaviour and would be still able to provide an attenuation of the average vibration of the PS. Of course, when the nonlinear 
behaviour becomes dominant the frequency representation fails and a different control approach must be used, but this is 
considered out of the scope of this paper. Different works on nonlinear TMDs are already available in literature (e.g. [36]) 
and they can be employed to properly drive the features of this ATMD. It may be mentioned that the problem of nonlinearity 
in presence of high displacements does rise in most of the works on TMDs based on SMA referenced in this paper.
8.2. Tests with the damper

These tests have been carried out by adjusting the damping provided by the eddy current damper as soon as the SMA 
wires are tuned (i.e. the eigenfrequency is tuned). For sake of conciseness, only results from a test with APP2 are here 
reported, since similar outcomes resulted by using APP1.



Table 4
Advantages and drawbacks of APP1 and APP2.

APP1 APP2

Advantages: no model of the system is needed, quick tuning of the system,
robust to disturbances

Advantages: 1 signal to measure, no model of the system is needed, easy
to implement

Drawbacks: 3 signals to measure (one of them is either the vibration of
the constraint or the force acting on the PS), implementation more
complex than APP2

Drawbacks: Adaptation time dependent on the signal-to-noise ratio of the
measured signal, the random disturbance must be close to white random
noise
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Fig. 12. FRF between x3 and x1 (i.e. x1/x3, see to Fig. 1): first tuning with APP1 (a), tuning after the addition of the first 100 g with APP1 (b), first tuning with 
APP2 (c), tuning after the addition of the first 100 g with APP2 (d).
Fig. 13a shows the FRF between x3 and x1 (for the case of PS added with a mass of 100 g) after the eddy current damper 
reached the steady-state condition. Although the numerical and experimental FRFs provided in Fig. 13a match closely, the 
current required by the eddy current damper is quite different (0.74 A in the experimental case and 0.45 A in the 
simulations): this is due to inaccuracies in the model of the damper, mainly due to inaccuracies in foreseeing the behaviour 
of the permanent magnet and the value of the magnetic field at the air-gap, which is affected by unpredicted dispersion of 
the flux. Nevertheless, the feed-back algorithm proposed in Section 6.1.3 proved to work properly, achieving a good 
dynamic behaviour in the frequency range around the PS resonance.

Finally, Fig. 13b shows some experimental FRFs between x3 and x1 in order to gain clear understanding of the effect of the 
ATMD. Two of them show the behaviour of the original PS (with the addition of a mass of 200 g): without the ATMD (dash-
dot line in the figure), and with the ATMD mounted and switched off (dotted line). The other two FRFs show the behaviour 
of the PS with the maximum added mass during the tests (i.e. 200 g) with the ATMD mounted and in two different 
configurations: with the SMA wires switched on and in steady state after adaptation and the eddy current damper switched 
off (dashed line), and then with both the devices switched on and in steady state after adaptation (solid line).

It should be noted that the ATMD cannot adapt its dynamic features in case of power failure. This means that the ATMD 
dynamic features must be tuned on those of the PS at environmental temperature (i.e. with no power supply to the SMA 
wires) if a vibration attenuation is desired even in case of power failure. In this scenario, the eigenfrequency of the ATMD 
can follow the changes of the PS eigenfrequency only if this latter parameter increases.
9. Conclusion

This paper has illustrated a new type of adaptive tuned mass damper based on shape memory alloys and eddy current
damping. The former element is used to adapt the eigenfrequency of the device, while the latter to tune the damping.
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Fig. 13. FRF between x3 and x1 (i.e. x1/x3, see to Fig. 1) with the activation of the damping control. The starting condition for figure (a) is that of Fig. 12c (i.e. 
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M. Berardengo et al. / Journal of Sound and Vibration 349 (2015) 18–3836
The device proves to have a wide adaptation range in terms of eigenfrequency (about 100%), achieved by changing the 
axial load of the shape memory alloy wires. The approach does not rely on changing Young's modulus, which would require 
high performance materials. Hence, in the design herein proposed any kind of shape memory alloy can be used to achieve a 
wide frequency range. Furthermore, low values of current are needed to reach this goal.

Two different adaptation strategies have been developed and compared: one relying on closed optimal formulas, and the 
other on an empiric approach. The advantages and drawbacks have been highlighted in both cases. Furthermore, the model 
developed to simulate the dynamic behaviour of the SMA wires has proven to be reliable so that it can be used for model-
based controllers.
This appendix defines the symbols b and y in Eq. (34):

b¼ � α
Aw1
KLw

þ 1
Ew;AU �ξ Ew;AU �Ew;DMð Þ

(A1)

y¼
σw;0

Aw1
KLw

þ 1
Ew;DM

� �
þαT0þHcurð1�ξÞ

Aw1
KLw

þ 1
Ew;AU �ξ Ew;AU �Ew;DMð Þ

(A2)

Appendix B

This appendix defines the symbols in Eq. (35):

ad ¼ GdBd; b1;d ¼ GdAdþ1þHdBd; b2;d ¼ GdCdþBdId; c1;d ¼HdAd; c2;d ¼HdCdþ IdAd; c3;d ¼ CdId (B1)

where

Kn ¼ � Aw1

KLw
þ 1
Ew;DM

� �
; Ad ¼ Ew;AUþΔEξ�1þ

MSΔE
MS�Mf

1�ξ�1
� �

;
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Bd ¼
ΔE

CMðMS�Mf Þ
1�ξ�1
� �

; Cd ¼ � ΔE
ðMS�Mf Þ

1�ξ�1
� �

;

Dd ¼ �Hcurþξ�1H
curþ MSH

cur

MS�Mf
1�ξ�1
� �

; Ed ¼
Hcur

CMðMS�Mf Þ
1�ξ�1
� �

;

Fd ¼ � Hcur

ðMS�Mf Þ
1�ξ�1
� �

; Gd ¼
Aw1

KLw
þEd;

Hd ¼ Knσw;0�αT0þDd; Id ¼ αþFd; ΔE¼ Ew;AU�Ew;DM (B2)

And the symbols in Eq. (36)

ai ¼ GiBi; b1;i ¼ GiAiþ1þHiBi; b2;i ¼ GiCiþBiIi;

c1;i ¼HiAi; c2;i ¼HiCiþ IiAi; c3;i ¼ CiIi;
(B3)

where

Kn ¼ � Aw1

KLw
þ 1
Ew;DM

� �
; Ai ¼ Ew;DMþΔEξ�1þ

AfΔE
Af �As

1�ξ�1
� �

;

Bi ¼
ΔE

CAðAf �AsÞ
1�ξ�1
� �

; Ci ¼ � ΔE
ðAf �AsÞ

1�ξ�1
� �

;

Di ¼ �Hcurþξ�1H
curþAfH

cur

Af �As
1�ξ�1
� �

; Ei ¼
Hcur

CAðAf �AsÞ
1�ξ�1
� �

;

Fi ¼ � Hcur

ðAf �AsÞ
1�ξ�1
� �

; Gi ¼
Aw1

KLw
þEi;

Hi ¼ Knσw;0�αT0þDi; Ii ¼ αþFi; ΔE¼ Ew;AU�Ew;DM (B4)

Appendix C

This appendix defines the symbols in Eq. (41)

As;d ¼ b1;d
2�4adc1;d; Bs;d ¼ 2b1;db2;d�4adc2;d; Cs;d ¼ b2;d

2�4adc3;d (C1)

and Eq. (42)

As;i ¼ b21;i�4aic1;i; Bs;i ¼ 2b1;ib2;i�4aic2;i; Cs;i ¼ b2;i
2�4aic3;i; (C2)
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