
1 Introduction

The vulcanization with sulphur of natural rubber (NR) is particularly complex. This 
is the reason why, despite its first practical application dates back to the second half 
of nineteenth century, its chemical mechanisms are not still completely understood. 
Due to such theoretical lack, it remains difficult to develop efficient numerical tools 
to optimize the vulcanization process of items with big dimensions and to predict 
their final elasto-mechanical properties.

As well known, the crosslink density may be indirectly estimated by means of 
many macroscopic procedures, but the most diffused and simple one is the so-called 
rheome-ter test. A rheometer is a laboratory device where a small rubber sample is 
subjected to constant cure temperature and the torque applied to maintain a constant 
rotation of the moving part (e.g. oscillating disc, moving die, etc.) is measured. The 
torque generally starts to increase very slowly (or decreases) during an “induction” 
period of time, after which the main vulcanization reaction takes place with a 
significantly faster increase of the crosslink density and hence of the measured 
torque within the rheometer. Very frequently, for NR vulcanized with sulphur, it can 
occur that torque reaches a max-imum and then starts to decrease, resulting in 
weaker mechanical properties of the vulcanizate for long curing times. This last 
phenomenon, called “reversion”, is well known for sulfur cured rubbers at high 
vulcanization temperatures (typically above 140 ◦C) and is attributed to the 
formation and subsequent degradation of polysuldic (S–S or more) crosslinks [1–3]. 
Generally, in sulphur vulcanized rubber, it is com-monly accepted that there are 
three types of polysulfidic structures namely C–S–C, C–S2–C and C–Sx–C.

The primary reaction leading to polysulfidic structures involves the formation of 
reactive crosslinking precursors (which can contain between 2 and 8 S–S links) on a 
rubber chain by reaction with sulphurating agents. This precursor can then react 
either with another rubber chain, resulting in a crosslink, or with the same rubber 
chain, by a backbiting reaction resulting in a cyclic structure. In this latter case, the 
polysulfidic structure does not contribute to the increase of the crosslink density.

The evidence for these polysulfidic structures (both crosslinking and cyclic ones) is 
provided by an important physical chemistry literature, obtained by IR, UV, ESR and 
Raman characterizations [4,5] or with chemical methods [6], or by means of solid
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state 13C nuclear magnetic resonance (NMR) studies [7], as done for instance in [8,9]
for EPDM. In this latter case, the polysulfidic structures are consistent with predictions
based on model compounds and the presence of three different allylic positions in the
repeating unit of NR [7]. The percentages of each polysulfidic structure and the value
of x depends on both rubber structure and reaction conditions, the most important
being temperature and curing time [10]. It has been observed experimentally, that in
the initial stage of the reaction, more crosslinking C–Sx–C (x = 4, 5 or more) bonds
are found. It is generally assumed that (C–Sx–C) polysulfidic crosslinks can further
react, leading either to shorter crosslinks (C–S–C), through a so called “maturation
reaction”, or to cyclic polysulfidic structures by backbiting reactions. In such a case,
the crosslink density decreases, and this chemically explains the macroscopically
observed reversion.

In practice, it has been observed that the importance of the reversion depends strictly
on curing temperature. Nevertheless, recent results by Leroy et al. [11] and Milani et al.
[12,13] tend to demonstrate that the ratio between thermally stable (short) and unstable
(long) polysulfidic crosslinks is not significantly influenced by cure temperature.

The existing models that allow predicting such specific behavior regarding the
kinetics of rubber vulcanization, by means of either a mechanistic (model of Coran
[3], Ding and Leonov [14,15]) or a semi-mechanistic (model of Han et al. [16]) base,
suffer from important limitations, such as the need of evaluating kinetic constants by
best fitting numerical procedures on the available experimental data and the generalist
point of view, which does not take into account the actual accelerators present in the
system.

Recently, Leroy et al. [11] derived a phenomenological model with the same formal-
ism of Han et al. [16] and Colin et al. [17], which gives a continuous prediction of the
induction/vulcanization/reversion sequence. Similar approaches following the same
scheme may be also found in [12,13]. Essentially, the phenomenological model pro-
posed in [11] assumes that the during the induction and vulcanization steps, the overall
formation of sulphur crosslinks can be described by a classic Kamal and Sourour for-
mulation [18], which supposes a catalytic and autocatalytic second order apparent
reaction mechanism. Consequently, despite its practical interest for numerical simu-
lations, such a phenomenological model remains not fully predictive, since it does not
allow relating the global reaction kinetics to the current knowledge of the different
individual reactions involved. The procedure has been recently refined by Milani et al.
in [19], where a complex kinetic scheme with seven constants is proposed, describing
reversion by means of the distinct decomposition of single/double and multiple S–S
bonds. The limitation of [19] model remains however the need of solving numerically
a differential equations system, evaluating the kinetic constants by means of a least
squares procedure.

In the present paper, a novel and efficient closed form approach to determine the
degree of vulcanization of NR cured with sulphur in presence of more than one accel-
erator is presented. The general reaction scheme proposed by Han and co-workers for
vulcanized sulphur NR is assumed as the initial base to develop a suitably modified
new model accounting for the single contributions of the different accelerators, focus-
ing in particular on some experimental data [20], where a NR has been vulcanized
at different temperatures (from 150 to 180 ◦C) and concentrations of sulphur, using



TBBS (N terbutyl, 2 benzothiazylsulphenamide) and DPG (N,N diphenyl guanidine) 
as co-agents at variable concentrations.

In the model, chain reactions initiated by the formation of macro-compounds 
responsible for the formation of the unmatured crosslinked polymer are accounted 
for. It is assumed that such reactions depend on the reciprocal concentrations of all 
components and their chemical nature. In presence of two accelerators, reactions are 
assumed to proceed in parallel, making the assumption that there are no cross-reactions 
between the two accelerators. Despite there is experimental evidence of the existence 
of a process by which each accelerator affects the other, the reaction chemistry is still 
not well understood. For this reason, its real effect on vulcanization cannot be trans-
lated into any mathematical model. In any case, even disregarding such interaction, 
authors experienced a good numerical performance of the model on fitting experi-
mental rheometer curves. From the kinetic scheme adopted, a closed form solution is 
found for the crosslink density, with the only limitation that the induction period is 
excluded from computations.

The main novelty of the model stands however in the closed form determination 
of the kinetic constants representing the rates of the single reactions in the kinetic 
scheme adopted. Such very straightforward procedure allows avoiding the utilization 
of numerically demanding least-squares best fitting routines on rheometer experimen-
tal data.

Two series of experiments available, relying into rheometer curves at different 
temperatures and different concentrations of sulphur and accelerators, are utilized 
to evaluate the fitting capabilities of the mathematical model. Very good agreement 
between numerical output and experimental data is experienced in all cases analyzed. 
The evaluation of kinetic constants at three vulcanization temperatures, after proper 
check of the linearity in the Arrhenius space, allows performing numerical simulations 
at curing temperatures outside the range experimentally inspected, making the model 
predictive in all those cases where a wide experimental campaign is not possible.

2 Experimental results

As base for the comprehensive validation of a newly conceived kinetic scheme ad-
hoc developed by the authors, some experimental results [20] consisting of standard 
rheometer curves (MD rheometer tests) for NR vulcanized in various conditions have 
been considered.

The analyses focus on NR with different concentrations of S, TBBS and DPG 
at different temperatures. In particular, the same NR blend, with composition as in 
Table 1, was vulcanized with 9 different S–TBBS–DPG mutual concentrations, at four 
increasing curing temperatures equal to 150, 160, 170 and 180 ◦C. The final aim was to 
conduct a wide sensitivity analysis to have an experimental insight into the role played 
by the mutual concentration of the different accelerations on the (1) vulcanization level 
at the end of curing, (2) reaction velocity after scorch and (3) amount of reversion at 
different temperatures. The experimental campaign was designed in the S–TBBS–
DPG space moving on the corners of the parallelepiped depicted in Fig. 1, with values 
of concentration (in phr) kept from previous experience of the authors in this field. A



Table 1 NR blend composition (in phr) considered in the numerical simulations simulations (zinc octoate
at 3 phr was used in all cases)

Ingredients (3,3,4) blend (1,1,1) blend

NR 100 100

S 3 1

TBBS 3 1

DPG 4 1

NR Natural rubber SMR GP, S soluble sulphur, TBBS N terbutyl 2 benzothiazylsulphenamide, DPG N,N
diphenyl guanidine
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Fig. 1 Sensitivity experimental analysis conducted on a same NR blend. Corners and centroid of the
parallelepiped represent S–TBBS–DPG concentrations experimentally tested at four different temperatures.
Letters A and B represent the experimental % reversion at 8 min at 150 and 180 ◦C, respectively

further set of rheometer curves at different temperatures was obtained considering the
centroid of the parallelepiped, with the aim of evaluating the curing behaviour at an
intermediate situation.

Since the discussion of the experimental results and the systematic application
of the numerical model based on experimental data is the object of a parallel study
[20], here the model is validated only on two corners of the parallelepiped for the
sake of conciseness. In particular, points P1 and P2 in Fig. 1 are considered, cor-
responding to S–TBBS–DPG concentrations equal to 3-3-4 and 1-1-1, respectively.
For the sake of clearness from here ongoing, point P2 system will be named with
NR+(S,TBBS,DPG)(1,1,1) and point P1 with NR+(S,TBBS,DPG)(3,3,4).

In Tables 2 and 3 a synopsis of the main properties exhibited by the rheometer
curves is provided, as for instance time at which the maximum torque is reached, the
value of the maximum torque, accelerators concentrations and curing temperature.

Crude experimental data obtained in the rheometer chamber are provided in Fig. 2
for (NR+(S,TBBS,DPG)(3,3,4) system and Fig. 3 for NR+(S,TBBS,DPG)(1,1,1).



Table 2 Rheometer curves NR+(S,TBBS,DPG)(3,3,4) system

T curing 150 160 170 180

S phr 3 3 3 3

[S] 9.40 × 10−2 9.40 × 10−2 9.40 × 10−2 9.40 × 10−2

TBBS phr 3 3 3 3

[TBBS] 1.02 × 10−2 1.02 × 10−2 1.02 × 10−2 1.02 × 10−2

DPG phr 4 4 4 4

[DPG] 1.89 × 10−2 1.89 × 10−2 1.89 × 10−2 1.89 × 10−2

(TBBS + DPG)/S 2.33 2.33 2.33 2.33

([TBBS] + [DPG])/[S]) 2.47 2.47 2.47 2.47

% reversion 8 min 20 40 56 67

t max [min] 3.2 2 1 0.8

Torque max 6.4 6.4 6.4 6.4

Table 3 Rheometer curves NR+(S,TBBS,DPG)(1,1,1) system

T curing 150 ◦C 160 ◦C 170 ◦C 180 ◦C

S phr 1 1 1 1

[S] 3.12 × 10−2 3.12 × 10−2 3.12 × 10−2 3.12 × 10−2

TBBS phr 1 1 1 1

[TBBS] 0.34 × 10−2 0.34 × 10−2 0.34 × 10−2 0.34 × 10−2

DPG phr 1 1 1 1

[DPG] 0.47 × 10−2 0.47 × 10−2 0.47 × 10−2 0.47 × 10−2

(TBBS + DPG)/S 2 2 2 2

([TBBS] + [DPG])/[S]) 2.1 2.1 2.1 2.1

% reversion 8 min 0 12 30 48

t max [min] 7.75 4.5 2.92 1.61

Torque max 4.2 4.1 3.9 3.77

A normalization of crude experimental curves is necessary to apply the numerical
model proposed hereafter, with the preliminary exclusion of the induction period.

One of the most diffused methods to heuristically link the vulcanization degree
with experimental rheometer torque is the Sun and Isayev [21] procedure. In [21], the
S’(t) torque is used as a measure to calculate the evolution of the vulcanization degree
αexp(t) through the following formula:

αexp(t) = S′(t) − Smin T

Smax T0 − Smin T0

(1)

where:

– Smin T is the minimum value of torque S’ during a cure experiment at temperature
T. Before reaching this minimum value, αexp is considered equal to zero.
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Fig. 2 Experimental rheometer curves, Table 2 dataset 1

– Smin T0 and Smax T0 are the minimum and maximum torque values, obtained for a
cure experiment at a temperature T0 low enough to allow neglecting reversion. In
other words, the low temperature “reversion free” increase of mechanical proper-
ties during cure is taken as a reference, to estimate the influence of reversion at
higher temperatures, which results in a final degree of vulcanization lower than
100 %.

In the present paper, a more straightforward but still effective normalization
approach is adopted, relying into the exclusion from computations of rheometer data
before scorch time and into the normalization of the torque values with the maximum
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Fig. 3 Experimental rheometer curves, Table 3 dataset 2

torque reached at that temperature. In other words, the following formula for αexp(t)
is utilized:

αexp (t) = S′ (t) − Smin T

Smax T − Smin T
(2)

Note that using Eq. (2), αexp (t) is always between 0 and 1 at each temperature, whereas 
using Eq. (1) it may occur that the maximum value of αexp (t) is sensibly lower than 
1, especially for high vulcanization temperatures.

A comparison of the two normalization procedures for the two cases analyzed in 
the paper is provided in Fig. 4. The induction period before the scorch time is still 
present, but no difference occurs if such data are deleted from the computations before
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Fig. 4 Comparison of experimental rheometer curves normalization by means of Eqs. (1) and (2). a
NR+(S,TBBS,DPG)(3,3,4) system. b NR+(S,TBBS,DPG)(1,1,1) system

or after normalization. As can be noted, the difference is practically negligible (lower
than 10 % in the most unfavorable case, NR+(S,TBBS,DPG)(1,1,1) system at 150 ◦C)
for all the curves considered. For this reason, the second normalization procedure is
adopted for the sake of simplicity.

3 Revised kinetic scheme and mathematical closed form model

The basic reaction schemes assumed are classic and refer to existing literature in the
field. Such schemes are known from the scientific literature, as mentioned above, see
for instance [11,14,16,19,22].

As universally accepted, many reactions occur in series and parallel during NR
cured with sulphur. Typically, the chain reactions are initiated by the formation of



macro-radicals or macro-ions representing the intermediate cross-link precursor. Such
reaction is associated to a velocity represented by the kinetic constant k1.

The actual cross-linking proceeds through two pathways, which have been shown to
be additive, namely the formation of the unmatured crosslinked polymer and backbit-
ing. In the first case, multiple S–S bonds on two contiguous polymer chains, whereas
backbiting occurs when S–S bonds in the same back-bond chain. Since a multiple S–S
bond is unstable, unmatured crosslinked polymer evolves either to matured crosslinked
polymer exhibiting a single S or double bond between chains or leading to break of
the bond and hence de-vulcanization, which occurs again with a backbiting of the
bond in the same backbone chain. Potential interactions between DPG and TBBS can
be hardily translated into mathematics and for this reason they are excluded from the
model. All the reactions considered occur with a kinetic velocity depending on the
temperature reaction, associated to each kinetic constant.

Let us assume that ki and k′
i are the i-th kinetic constant associated to TBBS and

DPG respectively and that index 1 (2) refers to concentrations of a chemical quantity
reacting/formed with TBBS (DPG).

Within such assumptions, we adopt for NR the kinetic scheme constituted by the
chemical reactions summarized in the following set of equations:

[TBBS] + [S1]
k0→ [

A∗
1

]

[DPG] + [S2]
k′

0→ [
A∗

2

]

[
A∗

1

] k1→ [
R∗

1

]

[
A∗

2

] k′
1→ [

R∗
2

]
(3)

[
A∗

1

] k2→ [R1]

[
A∗

2

] k′
2→ [R2]

[R1]
k3→

[
RD

1

]

[R2]
k′

3→
[

RD
2

]

In Eq. (3), [S1] and [S2] are sulphur concentrations reacting with TBBS and DPG
respectively,

[
A∗

1

]
and

[
A∗

2

]
the sulphurating agents,

[
R∗

1

]
and

[
R∗

2

]
the stable

crosslinked chain (S–S single bonds), [R1] and [R2] the unstable vulcanized polymer,[
RD

1

]
and

[
RD

2

]
the de-vulcanized polymer fraction (reversion). k0,1,2,3 and k′

0,1,2,3
are kinetic reaction constants. Here it is worth emphasizing that k0,1,2,3 and k′

0,1,2,3
are temperature dependent quantities, hence they rigorously should be indicated as
k0,1,2,3 (T ) and k′

0,1,2,3 (T ), where T is the absolute temperature. In what follows, for
the sake of simplicity, the temperature dependence will be left out.

Once established the stoichiometric ratio between sulphur reacting with TBBS
and DPG respectively, 

[
A1

∗] 
and 

[
A2

∗] 
sulphurating agents follow two parallel and 

independent pathways.



k0 and k′
0 are kinetic constants representing the induction period, that can be

excluded from the computations assuming that the induction is evaluated by means of
a first order Arrhenius equation.

According to the reaction scheme (3), the following differential equations may be
written:

(a)
d

[
A∗

1

]

dt
= − (k1 + k2)

[
A∗

1

]

(b)
d

[
R∗

1

]

dt
= k1

[
A∗

1

]
(4)

(c)
d [R1]

dt
= k2

[
A∗

1

] − k3 [R1]

Equation (4)(a) may be trivially solved by separation of variables, as follows [23]:

(a)
[
A∗

1

] = [
A∗

1

]
0 e−(k1+k2)(t−ti )

(b)
d

[
R∗

1

]

dt
= k1

[
A∗

1

]
0 e−(k1+k2)(t−ti ) (5)

(c)
d [R1]

dt
= k2

[
A∗

1

]
0 e−(k1+k2)(t−ti ) − k3 [R1]

and, once known analytically
[
A∗

1

]
function, it can be substituted into equations (b)

and (c) to provide
[
R∗

1

]
and [R1]:

(a)
[
R∗

1

] = k1
[
A∗

1

]
0

k1 + k2

[
1 − e−(k1+k2)(t−ti )

]

(b)
d [R1]

dt
+ k3 [R1] = k2

[
A∗

1

]
0 e−(k1+k2)(t−ti ) (6)

(6)(b) is a non homogeneous first order linear differential equation, which admits the
following solution composed by a general and a particular root:

[R1] = k2

k1 + k2 − k3

[
A∗

1

]
0

[
e−k3(t−ti ) − e−(k1+k2)(t−ti )

]
(7)

The final concentration vulcanized polymer (related to TBBS) is thus
[
R∗

1

] + [R1]:

[R1] + [
R∗

1

] = k1
[
A∗

1

]
0

k1 + k2

[
1 − e−(k1+k2)(t−ti )

]

+ k2

k1 + k2 − k3

[
A∗

1

]
0

[
e−k3(t−ti ) − e−(k1+k2)(t−ti )

]
(8)



Which can be normalized with respect to
[
A∗

1

]
0 = β [S]0 as follows:

r1 = [R1] + [
R∗

1

]

[S]0
= β

{
k1

k1 + k2

[
1 − e−(k1+k2)(t−ti )

]

+ k2

k1 + k2 − k3

[
e−k3(t−ti ) − e−(k1+k2)(t−ti )

]}
(9)

Analogously, for DPG we can find that:

r2 = [R2] + [
R∗

2

]

[S]0
= (1 − β)

{
k′

1

k′
1 + k′

2

[
1 − e−(k′

1+k′
2)(t−ti )

]

+ k′
2

k′
1 + k′

2 − k′
3

[
e−k′

3(t−ti ) − e−(k′
1+k′

2)(t−ti )
]}

(10)

And finally the cross-linking degree simply as:

α = r1 + r2 = β

{
k1

k1 + k2

[
1 − e−(k1+k2)(t−ti )

]

+ k2

k1 + k2 − k3

[
e−k3(t−ti ) − e−(k1+k2)(t−ti )

]}

+ (1 − β)

{
k′

1

k′
1 + k′

2

[
1 − e−(k′

1+k′
2)(t−ti )

]

+ k′
2

k′
1 + k′

2 − k′
3

[
e−k′

3(t−ti ) − e−(k′
1+k′

2)(t−ti )
]}

(11)

Note that first derivative of (11) is:

dα

dt
= β

{
k1e−(k1+k2)(t−ti )

+ k2

k1 + k2 − k3

[
−k3e−k3(t−ti ) + (k1 + k2) e−(k1+k2)(t−ti )

]}

+ (1 − β)
{

k′
1e−(k1+k2)(t−ti )

+ k′
2

k′
1 + k′

2 − k′
3

[
−k′

3e−k′
3(t−ti ) + (

k′
1 + k′

2

)
e−(k′

1+k′
2)(t−ti )

]}
(12)

Normally constants k1,2,3 and k′
1,2,3 are evaluated by least-squares best fitting [23].

A direct evaluation that needs very trivial numerical routines is proposed herein for
the first time.

In Eq. (11), we make the hypothesis that:

lim
t→+∞ α = αR = β

k1

k1 + k2
+ (1 − β)

k′
1

k′
1 + k′

2
(13)



We also assume that at scorch the rate of vulcanization is α′
0, i.e. from Eq. (12):

dα

dt

∣∣∣∣
t=ti

= α′
0 = β (k1 + k2) + (1 − β)

(
k′

1 + k′
2

)
(14)

Note that (13) and (14) represent a system of two equations into two variables when
β = 1 and β = 0. It is therefore necessary to perform two experimental tests at the
same temperature with TBSS (β = 1) and DPG (β = 0) only, for the determination
of k1, k2 and k′

1, k′
2. In particular, when β = 1 we obtain:

{
αR = k1

k1+k2

α′
0 = k1 + k2

⇒
{

αR = k1
k1+k2

α′
0 = k1 + k2

⇒
{

α′
0 αR = α′

0 − k2
k1 = α′

0 − k2
⇒

{
k2 = α′

0 (1 − αR)

k1 = α′
0 αR

(15)
In case of β = 1 (β = 0), k3 (k′

3) constant is evaluated imposing the passage of
curve (11) at tP through αP .

Mathematically such condition, for β = 1, reads as follows:

αP = k1

k1 + k2

[
1 − e−(k1+k2)(tP−ti )

]
+ k2

k1 + k2 − k3

[
e−k3(tP−ti ) − e−(k1+k2)(tP−ti )

]

(16)
With the positions, C0 = k1

k1+k2

[
1 − e−(k1+k2)(tP−ti )

]
, C1 = e−(k1+k2)(tP−ti ), C2 =

k2, C3 = k1 + k2 and t̄P = tP − ti , Eq. (16) may be re-written as follows:

αP = C0 + C2

C3 − k3

(
e−k3 t̄P − C1

)

⇒ (αP − C0) (C3 − k3)

C2
=

(
e−k3 t̄P − C1

)
(17)

Assuming the following positions:

y1 = (αP − C0) (C3 − k3)

C2
= −αP − C0

C2
k3 + αP − C0

C2
C3

y2 =
(

e−k3 t̄P − C1

)
(18)

it has to be imposed that y1 = y2.
In the plane k3− y1, y1 is a straight line with negative slope and positive intersection

with y1-axis. Indeed, it can be easily proved that αP − C0 > 0 since:

αP = C0 + k2

k1 + k2 − k3

[
e−k3(tP−ti ) − e−(k1+k2)(tP−ti )

]
(19)

and with the assumption that k3 < k1 + k2, it turns out immediately that e−k3(tP−ti ) >

e−(k1+k2)(tP−ti )



0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k1+k2k3 [1/min]

y 1, y
2

y1

y2

k3

Fig. 5 Case with y1(0) < y2(0)

The second function y2 is an exponential one, with the following properties:

y2 (0) = 1 − e−(k1+k2)(tP−ti ) > 0

y2 (k1 + k2) = 0 (20)

lim
t→+∞ y2 = −C1 = −e−(k1+k2)(tP−ti )

Furthermore, it is interesting to notice that:

y1 (0) = αP − C0

C2
C3 = αP − k1

k1+k2

[
1 − e−(k1+k2)(tP−ti )

]

k2
(k1 + k2) (21)

y1 (k1 + k2) = αP − C0

C2
(C3 − k1 − k2) = 0

y1 = y2 always for k3 = k1 + k2, which is not physically admissible, since reversion
cannot be greater than the formation of the product undergoing reversion (k2). How-
ever, an admissible solution is possible if y1 (0) < y2 (0), as can be easily seen from
Fig. 5.

After trivial algebra, it can be observed that:

y1 (0) = αP − k1
k1+k2

[
1 − e−(k1+k2)(tP−ti )

]

k2
(k1 + k2)

= (k1 + k2)
αP

k2
− k1

k2
+ k1

k2
e−(k1+k2)(tP−ti )

= (k1 + k2)
αP

k2
− k1

k2
y2 (0) < y2 (0)

⇔ αP < y2 (0) = 1 − e−(k1+k2)t̄P (22)



Inequality (22), taking into account equation (15) provides a condition for the point
αP to select:

αP < 1 − e−α′
0 t̄P

⇒ e−α′
0 t̄P < 1 − αP (23)

When (as the cases here treated) it is not practically possible the evaluation of the
single kinetic constants assuming a zero concentration of one of the accelerators, i.e.
the experimental data for β = 1 and β = 0 are missing, it is worth noting that the
model is capable of furnishing in closed form only a sort of “weighted sum” of each
kinetic constant. In what follows, we will indicate with the symbols k1, k2 and k3 such
weighted sum coming from the numerical model, which does not refer directly to the
case β = 1.

Also, it is important to underline that, when experimental data without one accel-
erator are at disposal (i.e. either β = 1 or β = 0 rheometer curves are available),
the numerical determination of all the six constants is possible, firstly analyzing the
rheometer curves without one accelerator and then any other case with a mixture of
accelerators.

4 Numerical simulations

The reliability of the numerical procedure presented in the previous section, similarly
to the validation done in [24], is tested on the normalized experimental rheometer data
of Sect. 2, at two different concentrations of S–TBBS–DPG ingredients, respectively
equal to 1-1-1 and 3-3-4 phr, as already discussed.

It is interesting to notice from experimental curves reported in Figs. 2 and 3, that
in both cases the peak torque does not exhibit large variations at the different vulcan-
ization temperatures tested. For this reason, it has been made the choice to normalize
experimental data using Eq. (2), demonstrating in Fig. 4 that the obtained results are
very similar to those provided by the rigorous procedure of Eq. (1).

The closed form solution provided by the authors for the kinetic scheme (3) in (15)
excluding the induction period from the reactions (i.e. without an estimate of k0 and
k′

0), allows, after proper fitting of experimental data, the univocal determination of
each kinetic constant at each temperature by means of closed form expressions, with
the rather important advantage to allow circumventing the utilization of numerical
demanding least squares optimization routines.

A comparison between normalized experimental curves and numerical predictions
for NR+(S,TBBS,DPG)(3,3,4) system is depicted in Fig. 6 for vulcanization temper-
atures equal to 150 and 160 ◦C and in Fig. 7 for vulcanization temperatures equal to
170 and 180 ◦C.

A representation of functions y1 and y2 used to determine graphically kinetic con-
stant k3 is also provided for all vulcanization temperatures.

As can be noted, the experimental data fitting is almost perfect in the majority of the
cases. The determination of the kinetic constants and the numerical curve are almost
immediate, because only the solution of a two equations system (for k1 and k2) and
of a non-linear single variable function (for k3) is necessary.
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Fig. 6 NR+(S,TBBS,DPG)(3,3,4) system. Temperatures equal to 150 and 160 ◦C. Left Comparison 
between normalized cure-curves and numerical models. Right Graphical method to determine k3 constant

The same comparisons are replicated respectively in Fig. 8 at temperatures equal 
to 150 and 160 ◦C and in Fig. 9 for curing temperatures equal to 170 and 180 ◦C for  
NR+(S,TBBS,DPG)(1,1,1) system.

Similarly to the previous case, the agreement between normalized experimental 
rheometer curves and predicted numerical ones is rather promising, with predictions 
of the kinetic constants obtained at a fraction of the time needed by any standard least 
squares approach available in the market.

Being experimental data at disposal for four increasing curing temperatures (namely 
150, 160, 170 and 180 ◦C) for both the cases analyzed (S–TBBS–DPG equal to 3-3-4 
and 1-1-1 phr, respectively), it is interesting to check if the kinetic constants found by 
means of the proposed numerical approach follow—at least in an approximate way—a 
linear behavior in the Arrhenius space, i.e. where the horizontal axis is represented by 
the inverse of the absolute curing temperature and the vertical axis is the logarithm of 
the kinetic constant.

Results for NR+(S,TBBS,DPG)(3,3,4) system are depicted respectively in Fig. 10 
for k1, in Fig.  11 for k2 and Fig. 12 for k3. The line represented in each figure is 
obtained by linear regression of the four numerical values of the constants coming
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Fig. 7 NR+(S,TBBS,DPG)(3,3,4) system. Temperatures equal to 170 and 180 ◦C. Left Comparison
between normalized cure-curves and numerical models. Right Graphical method to determine k3 constant

from the proposed fitting, at different temperatures. It has the twofold advantage of:
(1) providing the activation energy of the kinetic constant and, directly from the figure,
(2) to show if the values found for ki with the numerical procedure at the different
temperatures follow the Arrhenius law, i.e. a first order temperature dependence of the
reaction rates exists.

As can be systematically noted, for all constants, it appears that the trend is almost
linear, confirming the robustness of the proposed model.

Similar considerations on kinetic constants hold also for the second case analyzed,
i.e. for NR+(S,TBBS,DPG)(1,1,1) system. In particular, k1 trend is depicted in Fig. 13,
k2 in Fig. 14 and k3 in Fig. 15. Again, the linearity of the obtained results is worth
noting and the same considerations done for the previous case studied hold.

From a detailed analysis of Fig. 16, where all the kinetic constants numerically
found for the systems NR+(S,TBBS,DPG)(1,1,1) and NR+(S,TBBS,DPG)(3,3,4) are
comparatively depicted, the following considerations may be done:

1. The activation energies for NR+(S,TBBS,DPG)(3,3,4) and NR+(S,TBBS,DPG)
(1,1,1) are for k1, k2 and k3, respectively equal to 45,330, 46,390, 24,943,
23,200, 19,200 and 25,600 cal/mol. Such numerical values indicate clearly that
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Fig. 8 NR+(S,TBBS,DPG)(1,1,1) system. Temperatures equal to 150 and 160 ◦C. Left Comparison
between normalized cure-curves and numerical models. Right Graphical method to determine k3 constant

reactions corresponding to higher activation energies exhibit faster rates at high
temperatures.

2. In agreement with intuition, the numerical model confirms that k2 values are sys-
tematically higher than k1 ones, meaning that the reaction corresponding to the
formation of the unmatured crosslinked polymer has a higher rate than that of the
formation of the activated complex.

3. Considering the lowest vulcanization temperature (150 ◦C), k1 and k2 are very
similar for both systems. However, k1 and k2 constants at the highest vulcanization
temperature (180 ◦C) are 10 times greater for NR+(S,TBBS,DPG)(3,3,4) system.

4. k1 and k2 values found numerically for NR+(S,TBBS,DPG)(1,1,1) system are
systematically lower and less sensitive to an increase of the vulcanization temper-
ature than those found for NR+(S,TBBS,DPG)(3,3,4). Such numerical behavior is
in agreement with the shape of the rheometer curves experimentally determined.
In particular, it is interesting to notice that at the beginning of the vulcanization
process, the first derivative of the experimental rheometer curves increases sen-
sibly with the temperature for NR+(S,TBBS,DPG)(3,3,4), see Fig. 2, whereas it
remain more constant for NR+(S,TBBS,DPG)(1,1,1), see Fig. 3. Such trend is
probably a consequence of the lower crosslinking density.
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Fig. 10 NR+(S,TBBS,DPG)(3,3,4) system, k1 constant behavior at different temperatures in the Arrhenius
space and estimated activation energy
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space and estimated activation energy
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Fig. 12 NR+(S,TBBS,DPG)(3,3,4) system, k3 constant behavior at different temperatures in the Arrhenius 
space and estimated activation energy

5. The reversion reaction results quite slow, especially when compared with reac-
tions related to k1 and k2 constants, and its variation with temperature seems not so 

much influenced by the variation of concentration among S–TBBS–DPG components. 
As expected, indeed, the activation energies for reversion for NR+(S,TBBS,DPG)
(3,3,4) and NR+(S,TBBS,DPG)(1,1,1) systems have almost the same values, because 
the reversion percentage in both systems, see Tables 2 and 3, are similar and mainly 
due to the break of the multiple S–S bonds. To sys-
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Fig. 14 NR+(S,TBBS,DPG)(1,1,1) system, k2 constant behavior at different temperatures in the Arrhenius
space and estimated activation energy

tematically confirm such conclusion, additional experimentation would however
be required.

6. Numerical values of k3 constants at a given vulcanization temperature for
NR+(S,TBBS,DPG)(3,3,4) system are roughly twice the values found for
NR+(S,TBBS,DPG)(1,1,1), being such property strictly connected to the absolute
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Fig. 15 NR+(S,TBBS,DPG)(1,1,1) system, k2 constant behavior at different temperatures in the Arrhenius
space and estimated activation energy
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Fig. 16 Overall comparison among ki constants for the cases analyzed in the Arrhenius space

amount of S–S multiple bonds present. As already pointed out, the activation
energies are however similar.

5 Conclusions

In this paper, we have studied from a numerical standpoint the crosslinking reactions 
occurring in NR added with only sulphur, TBBS and DPG accelerators in different 
concentrations. In this particular case, it has been made the simplified but technically 
meaningful assumption that there is no interaction between the additives used. This



assumption was derived in consideration of the quite similar molar ratio between the
all activators and the sulphur.

Starting from previously presented models by the authors in this field, a detailed
closed form approach with the straightforward analytical determination of kinetic
constants of the model has been presented and discussed. The kinetic scheme is char-
acterized by three main reactions per activator, occurring in series and parallel. The
major improvement of the present approach when compared to existing literature is the
derivation of a closed form expression for the crosslinking density and the determina-
tion of the kinetic constants without the need of utilizing least squares fitting routines.
The model has been benchmarked on two series of experimental data at different
concentrations of S, TBBS and DPG at four different temperatures. From simulations
results, it was found that the kinetic constants follow reasonably well an Arrhenius law,
which represents one of the most useful relationships in chemical kinetics, when an
extrapolation of the behavior is needed outside the experimentally tested temperature
range.
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