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closed-loop configuration and then to design and validate a
custom control which guarantees the best performance in term
of bandwidth, noise-equivalent displacement (NED), and
stability.

2. CLOSED-LOOP TECHNIQUE

The closed-loop technique has born to overcome the resolution
limit, which is intrinsically bounded to the fringes counting
elaboration performed in open-loop configuration [5,6].

In Fig. 1, an example of signals obtained from a target sinus-
oidal vibration monitored by an open-loop vibrometer exhibits
the typical interferometric shape, which depends on the feed-
back coefficient C [3,4]. According to the theory, the signal is
distorted, while each fringe matches with a target movement
equal to λ∕2, where λ is the LD wavelength. The information
about displacement is retrieved by means of counting the
fringes number even if with a limited resolution of λ∕2.

The measurement is quite robust and guarantees the same
resolution regardless of the C factor [7–11] of the interferomet-
ric signal. The closed-loop has been proposed for broadening
the sensitivity by evaluating the signal inside a single fringe.
In that way, the measurement error due to the distortion is neg-
ligible, and the measurement is limited only by noise [6]. In
order to understand the operating principle, it is useful to con-
sider Fig. 2, where few fringes are depicted: β, the slope of the
fringe in [W/rad], is supposed to be linear. The more back-
injection increases, the more this assumption is justified; in fact,
as is shown in Fig. 1, for middle-high back-injection (C ≥ 1)
the interferometric signal gets closer to a sawtooth wave.

1. INTRODUCTION

Classic interferometry is based on two coherent beams, gener-
ated by the same laser and combined by two different length 
optical paths, one of reference and one of measurement, to pro-
duce a phase-dependent signal used typically to reconstruct 
velocity or displacement. Different from the classical one, 
self-mixing interferometry needs only one optical path to gen-
erate the interferometric signal [1–3] to be read. This interfero-
metric technique uses the laser cavity itself as a receiver and 
path of reference; the light beam scattered by the target is par-
tially collected and injected again in the cavity where it inter-
feres with the lasing beam. The result is an electromagnetic 
signal that is related with the laser power reinjected and so with 
movement of the target. At this point, it is possible to read this 
signal by monitoring the optical power everywhere along the 
path and retrieve information about the target or directly inside 
the laser cavity through the monitor photodiode placed on the 
chip [1].

This configuration is naturally self-aligning and it has a huge 
potential for user-friendly and low-cost applications. However, 
amplitude, shape and time-variant characteristics of the inter-
ferometric signal are the function of many variables [4], so in-
creasing the system complexity and the capability of reading 
correctly the measurement. A deep system analysis is required 
especially when the self-mixing technique is carried out by per-
forming a closed-loop laser control aiming to go further than 
the sensitivity limit reached by the open-loop configuration [5].
   The aim of this work is the development of modeling 
tools able to describe a self-mixing vibrometer working in



According to classical self-mixing optical setup [1], the optical
phase shift between emitted and back-injected light is equal to:

φopt � 2 ·
�
2π

λ

�
d 0; (1)

where λ is the wavelength of the light and d 0 the absolute dis-
tance between laser and target. The φopt term is a function of
both the distance and the laser wavelength; by differentiating
Eq. (1), it is possible to express the phase variation as follows:

δφopt �
�
4π

λ

�
δd 0 −

�
4πd 0

λ2

�
δλ � Ls · δd 0 − Lλ · δλ: (2)

If we consider small variations around a middle fringe working
point under middle-high back-injection condition, Eq. (2)
states that both target movement and a wavelength shift
cause interferometric signal variations, due to the direct linear
relationship:

ΔPS:M: � βΔφ: (3)

A feedback system sets the working point, by modulating the
LD wavelength to compensate for the distance variation.
According to the control system theory, the loop erases the
phase variations as much as the loop gain is high. Ideally,
the feedback keeps constant the number of wavelengths along
the optical path:

δφopt � 0 → Δλ �
�
λ

d 0

�
Δd 0: (4)

Actually, the real loop has finite bandwidth and gain; as a result,
target movement is not perfectly compensated by the wave-
length modulation. The working point drifts following d 0 until
it reaches the fringe boundaries, and a fringe jump occurs.
However, thanks to the loop effect, the error signal assumes
the classical self-mixing waveform enlarged by a factor propor-
tional to the loop gain:

Δd closed-loop-fringe �
�
λ

2

�
· G loop: (5)

In other words, the linear interval of the transfer function is
G loop times wider than the open-loop one; β distortions are
attenuated by a factor equal to G loop according to Bode’s
Theory. Thus, assuming the nonlinearity negligible, the sensi-
tivity is limited only by the noise when d 0 variation is less
than Δd closed-loop-fringe.

3. BLOCK DIAGRAM

This paragraph describes in detail the system block diagram,
the starting point to accomplish the simulation. The block
combines the ideal scenario, summarized in Section 2, and
the peculiarities identified by testing the realized prototypes.
The results explanation starts from a simple core, and then
grows in complexity by following the same cognitive process
adopted during the research.

The LD wavelength is modulated in order to compensate
the effect of target vibration. The feedback guarantees the bal-
ance by modifying the laser current in the function of the
interferometric signal read from the monitor photodiode.
Figure 3 shows the block diagram; in block A, ΔV represents
the voltage output due to the phase variation Δφ; ΔP, optical
power variation, is obtain as explained by Eq. (3) and converted
into current Iph by the photodiode with responsivity σ [A/W].
Finally, the current is amplified by a transimpedance stage, Z .
The resulting transfer function is:

ΔV � βσZ
�
4π

λ

�
Δd 0: (6)

In addition, the sub-blocks describe the phase contributions
ΔφnΔλ and ΔφnΔd explained above. In particular, ΔφnΔλ,
is controlled by the feedback through the laser current
modulation.

The branch designed in block B closes the loop by injecting
the transimpedence outputΔV into the laser diode through the
admittance Y � 1∕Zin. The loop sets the operating point by
establishing the DC laser current which is regulated by ΔV 0.
The comparison between ΔV 0 and ΔV returns the error signal
that, after the elaboration of the regulator R�s� (described in the
next paragraphs), is used to modulate the LD current. It is in-
teresting to notice that the operating point is fixed when d 0 and
ΔV 0 are determined. Uncertainty of target position results in
uncertainty of operating point, which is potentially dangerous
for stability. In the worst case, when the loop works where the
interferometric signal shows a positive β, the loop gain is no
longer negative; thus, the system is unstable. At least, if the
point where the system is supposed to work drifts away from

Fig. 1. Signal obtained over a target with sinusoidal displacement
for different C values.

Fig. 2. A generic variation of the optical phase causes the linear
modulation of the interferometric signal, whether C ≥ 1.



the half-fringe, the dynamic is reduced, and a fringe jump
occurs for a target movement smaller than Δd closed-loop-fringe.

Another nonideality concerning the dynamic is given by the
limited laser current range. Clearly, when the laser polarization
current reaches its maximum value, 130 mA (or the threshold,
about 50 mA), it is not possible to increase the modulation.

The loop gain equation deduced from the blocks A and B
system is:

L�s� � −
Zβσχ�s�R�s�

Z in

�
4πd 0

λ2

�
; (7)

where χ�s� � ∂λ∕∂I is the wavelength modulation coefficient
and describes how the temperature variation due to current
modulation affects the laser cavity dimensions and, as a conse-
quence, the LD wavelength.

Also, the evaluation of the instrument sensitivity, S, is very
important:

S � ΔV
Δd 0

≅
�

λZ in

R�s�χ�s�d 0

�
: (8)

The characterization allows understanding which singularities
are introduced and if these significantly affect the system. In the
literature, this topic has been discussed [12]; however, the laser
characterization is always required to identify its specific role in
the custom system design. For this work, χ�s� has been ob-
tained and taken into account in the simulation, even if details
have been omitted.

We have to take into account another effect of laser behav-
ior; a direct power modulation occurs when the bias current is
modulated. The output light power variation ΔPjΔI is detected
by the photodiode, and this second signal is superimposed to
ΔPjΔφ concurring to create ΔP. Compensation, summed up in
block C, Fig. 3, has been designed to erase this contribution
due to the laser diode slope efficiency η [W/A]. The second
branch, dedicated to cancel the power modulation and defined
by Eq. (9), avoids two problems: first, the transimpedance stage
saturation and, second, the system instability.

Compensation_gain � −
Zση
Z in

: (9)

Under the hypothesis of low error subtraction, the vibrometer
sensitivity remains equal to Eq. (8) and all the parameters are
known except the target distance d 0, which can vary from one

measurement to another. However, an instrument calibration
can easily solve the problem by monitoring the target distance.
Well-known interferometric technique for absolute distance
measurement [13,14] can be applied with the same laser source.

The block diagram in Fig. 3 is the first step to build a reliable
simulation tool, suitable for designing and testing the digital
regulator R�s�. The next paragraph describes the Matlab/
Simulink models of the analog and digital signals.

4. OPEN LOOP SIMULATION WITH
M PARAMETER CORRECTION

A model for describing the nonlinear phenomena involved in
self-mixing interferometry has been the starting point for closed
loop study development [5]. It is based on schematic block dia-
grams and allows using of powerful and standard simulation
tools such as Spice, VHDL-AMS or MATLAB/Simulink. In or-
der to study the closed-loop system, a very precise model was
developed in MATLAB/Simulink, for describing the interfero-
metric signal as function of target vibration, back-injection fac-
tor C and α [15]. The open-loop vibrometer is completely
described by combining the model and the block diagram
in Fig. 3.

Figure 4 shows a comparison between the simulated signal
and a real measurement. The experimental signal has been mea-
sured through the built-in package photodiode when the target
at distance d 0 � 82 cm vibrates at 150 Hz with a vibration
amplitude of 3.5 μm The same data have been used for the

Fig. 3. Closed loop vibrometer block diagram.

Fig. 4. Comparison of simulation output (blue line) and acquired
fringes (red line). The simulation matches the experimental signal.



simulation; in addition we considered α � 4.5 and C � 6.
The signals show a good agreement; in particular, the model
calculates amplitude and shape variations taking into account
the amount of retroinjected power. Small phase differences
are derived from errors of fractions or fractions of λ in d 0

evaluation. A particular model, already proposed in the litera-
ture [16], works by estimating m, percentage of the emitted
light power back-reflected into the cavity, always equal to
1 × 10−3. Experimental acquisitions have shown that the system
is sensitive to m variation, and theory states that C can be
expressed as follows:

C � m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α2

p

ηair · Lcav
d 0: (10)

Therefore, the coefficient m is given by

m � ηair · Lcavffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α2

p d 0C: (11)

Equation (11) is used to express m as a function of C . Figure 5
shows, for three different C values, the self-mixing signal as-
suming Lcav � 400 μm, target distance d 0 � 80 cm, ηair � 1.
If we consider the old model, the fringes are shaped due to the
C parameter, but the minimum and the maximum values are
fixed by m.

5. REGULATOR DESIGN AND ANALOG CLOSED
LOOP SIMULATION

In this paragraph, a few examples of regulator R�s� for closed-
loop are proposed and tested on a real prototype. As explained
before, the instrument performance is determined by the feed-
back, in particular, stability and bandwidth play a main role
by defining the operating range in which the vibration can
be successfully hooked and measured. The loop function is ex-
pressed as

L�s� � G�s� · R�s�; (12)

where G�s� is the known transfer function between the output
transimpedance voltage ΔV and the current modulation volt-
age ΔV mod. Figure 6 shows G�s�, assuming these values for
the parameters: Z � 3.3 MΩ; σ � 0.010454 �mA∕mW�;

Z in � 119 Ω; β � 6.610 − 6 �W∕rad�; and d 0 � 0.82 m. It
follows a low-pass behavior, where magnitude is constant and
phase is null until approximately 10 kHz.

The loop regulator R�s� performance has been analyzed by
using the system control theory sensitivity functions S�s� and
Q�s�. In this particular system, they can be summarized as
shown below:

S�s� � ΔV �s�
Δd�s� � Ls ·

σβZ �s�
1� R�s� · Z in�s� · χ�s� · Lλ · σβZ �s�

;

(13)

Q�s� � ΔI�s�
Δd �s� � Ls ·

σβZ �s� · Z in�s� · R�s�
1� R�s� · Z in�s� · χ�s� · Lλ · σβZ �s�

:

(14)

Four regulators were designed and compared: proportional
controller (R2), integral controller (R3), proportional-integral
controller (R4), and a controller built ad-hoc (R1). The model
was identified to approximate the experimental ratio of output
to input, rather than derived from a rigorous analytic model.
According to this, the singularities might differ from the real
ones even if they well describe the measured signals. Under this
assumption, particular attention is focused to system robust-
ness, quantified by phase (ϕm) and gain margin (km). The ob-
tained performance is listed in Table 1 where robustness and
bandwidth comparison highlights R1 and R4 as preferable
solutions.

In detail, the regulators structures are:

R1�s� �
s

�s � pPB�
·
�s � zAL�
�s � pPB�

; (15)

R4�s� � μ4 ·
�s � zAF �

s
: (16)

Fig. 5. Signal generated with the enhanced model: the signal in-
creases when C factor rises according to the real interferometric signal
behavior.

Fig. 6. Comparison of simulation output (blue line) and acquired
fringes (red line). The simulation matches the experimental signal.

Table 1.

Regulator Phase Margin Gain Margin Critical Freq.

Ri�s� ϕm − �°� km − �dB� f c − �Hz�
R1�s� 51.9 32.1 9.13 · 105
R2�s� 50 30 1.76 · 105
R3�s� 49.2 26 5.31 · 105
R4�s� 52.6 32 8.86 · 105



Results obtained can be appreciated, also, in Fig. 7 where
graphs show the loop transfer and the sensitivity functions
as well.

The regulators introduced in the model allow us to simulate,
for the first time, the closed-loop configuration. Noise has been
added in the simulation in order to better model the real sys-
tem. The limiting factor in the realized prototype is represented
by the photodiode shot-noise, given by Eqs. (17) and (18):

I 2n � 2qFP0

�
A2

Hz

�
; (17)

V shot �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I 2n · Z 2

p
� 5.90

�
μVffiffiffiffiffiffi
Hz

p
�
: (18)

The voltage equivalent noise is calculated for power
Po � 50 mW, F � 2, σ � 0.01 �A∕W�, q � −1.6 · 10−19 C
and R � 330 kΩ. Figure 8 shows the Simulink block diagram
completed with R1. Closed-loop behavior has been simulated
for different scenarios, with frequency sweep and different
amplitude variation as well.

As an instance, Fig. 9 shows on the left the open-loop signal,
and, on the right, the closed-loop one, with vibration frequency

equal to f � 600 Hz, C � 4.5, α � 3.5, and vibration am-
plitudes Δd 1 � 3.5 μm and Δd 2 � 7 μm. The simulation
demonstrates, at first, that the model is able to describe the
closed loop vibrometer behavior and, as a consequence, that
it is a powerful instrument for control design.

6. DIGITAL MODEL

Digital feedback development has several advantages; its flex-
ibility allows managing the system complexity, testing different
regulators, and processing the signal as required. An additional
advantage is offered by a secondary digital output, which po-
tentially allows retrieving the information and, at the same
time, to compensate for errors and nonlinearity. At first, when
the feedback is not able to suppress all fringes, due to the finite
G loop, a jump occurs, and it is directly injected into the laser.
Current pulse causes laser instability and, as a consequence, the
loop instability. The laser device itself can be affected by sudden
current variations too.

An unwrap algorithm [7,10] can be used as a solution; it
corrects the fringe jumps digitally and avoids abrupt variation
due to nonlinear behavior of the system, when the feedback
gain and bandwidth limits are reached. However, the user
has to be aware of the fact that a correction occurs, and the
measurement reliability decreases. According to this, both a
modulation and a nonlinearized digital output need to be
implemented. It can be easily done with the help of digital
elaboration. Another reason why a second output could be
useful is represented by the necessity to overcome the dynamic

Fig. 7. Regulator: (a) R1 and (b) R4: L�s� transfer function
(blue), S�s� sensitivity function (green), Q�s� sensitivity control func-
tion (red).

Fig. 8. Closed loop Simulink model.

Fig. 9. Simulations comparison between Open-loop and Closed-
loop configuration at different vibration amplitude: 3.5 and 7 μm.



boundaries. It is possible that the system is driven out of the
linearity operating range because the target movement exceeds
tracking dynamic, which has been fixed by the maximum
modulation current Imod ≈ 15 mA. In that case, the loop is not
able to catch the vibration again, and the system working point
is not well defined. On the other hand, if it is possible to rec-
ognize this situation and consequently adapt the laser DC cur-
rent, the operating point can be shifted as much as possible by
the laser source. In that way, Δλ required to compensate the
vibration is achieved mainly by the DC current drift and, in
a second time, by the loop controlled modulation.

A digital elaboration can analyze the system working point
and broaden the dynamic by executing this shift. The new op-
erating point needs to be registered and the controller modified
according to λ and d 0 corrections. The output has to take into
account this DC contribution. As before, the measurement is
meaningless during the transient, so the instrument output
should be blinded. Digital elaboration is also suitable for cor-
recting the instrument sensitivity, which is frequency depen-
dent because of χ�s�. The output voltage is supposed to be a
function exclusively of the vibration amplitude, but it is not
because of the (∂λ∕∂I ) behavior with frequency [12]. A digital
signal processing can easily compensate for this contribution
and free the output signal from the undesired dependency.

Another potential advantage regards the compensation loop.
The laser diode slope efficiency is not exactly known, and it is
not linear as well. Experimental acquisitions of transimpedance
output signal illustrate that even if the subtraction occurs at low
frequency, the signal due to current modulation remains con-
siderable. The main harmonics composition has been retrieved,
and a pre-emphasis technique can be adopted to minimize the
error, by the means of a look-up table and a dedicated digital
output.

For that reason, a digital closed-loop model has been imple-
mented, and it is here described. Instrument prototypes based
upon DPS (digital signal processor) have been developed; there-
fore, it is interesting to consider which differences have been
introduced due to signal quantization and discretization.

At first, in the literature, the interferometric signal is
sampled with f s � 800 kHz. It is sufficient if we consider
the closed-loop bandwidth ≤100 kHz. However, the open-
loop signal spectrum has high-frequency harmonics, so aliasing
occurs as shown in the Fig. 10 simulation.

Therefore, a FPGA (field programable gate array) based
prototype has been developed, and f s ≥ 12.5 MHz overcomes
this problem.

In addition, it has been demonstrated that increasing the
elaboration speed brings another positive effect. The digital
regulator implementation introduces latency in the loop. It is
a function of the elaboration time which has been expressed as
a multiple of the sample rate in Eq. (19):

H delay�s� � e
�
N
f s

�
: (19)

In Eq. (20), the loop transfer function revision applied to the
FPGA based system takes into account the phase contribution,
which is calculated in Eq. (16) with N , the number of clock
periods required by the R1�s� regulator, equal to 5, and
ωc � 147.5 kHz:

L1�s� � G�s� · R1�s� ·H delay�s�; (20)

ϕdelay_FPGA � ωc · N ·
�
T s-FPGA

2

�
·
180

π
� 10.6°: (21)

The phase margin earlier obtained, ϕR1�s� � 51°, is adjusted
and loses around 10°; ϕR1�s� � 40.4°, as shown in Fig. 11.
It is clear that the stability can be significantly damaged, espe-
cially when the elaboration delay increases. According to this,
the design solution based on FPGA rather than DSP guarantees
better performance.

All these points have been evaluated by means of a digital
closed-loop model; a SAR ADC 12 bit model has been intro-
duced to simulate the FPGA data acquisition. R1�s� has been
converted into discrete domain through the Tustin method:

R1�z� �
47z2 − 94z � 46

z2 − 2z � 1
: (22)

7. RESULTS

Tests have been conducted to validate the simulation tool com-
paring the prototype measurement and the model output. One
of them is shown in Fig. 12, where the target movement is no

Fig. 10. Aliasing phenomenon occurs in the model with 
 f s � 400 kHz. 

Fig. 11. Phase margin correction derived from elaboration delay  
evaluation. 



more a pure sinusoidal wave; instead, a square wave has been
used. In accordance with the physical limits of the loudspeaker
used as the target and the closed-loop bandwidth, the two sig-
nals show the same harmonics.

The FPGA based prototype shows stability improvement,
but almost the same resolution of previous vibrometers. The
main issue is the noise and disturbances due to high-frequency
digital signal. Thus, NED (noise equivalent displacement)
measured is approximately 60 nm, which is comparable with
other digital realization. It has been calculated by assuming the
instrument noise as the resolution limit and evaluating its root
mean square value. However, regulator, high sample frequency,
and digital linearization guarantee stability on a 20 kHz band-
width. The instrument, in particular, shows robustness to C
factor variation, in particular when speckle pattern reduces it
[17,18]. Vibration tracking also occurs even in the presence
of abrupt target displacement validating the control system en-
hancement. In Figure 12, comparison between the experimen-
tal and simulated signal is proposed when the target speaker is
driven by a square wave signal. The limited bandwidth allows
one to perfectly reconstruct a few harmonics of the original
displacement.

8. CONCLUSIONS

Self-mixing closed-loop configuration technique allows us to
measure, at a distance of 1 m, with bandwidth between 5 Hz
and 20 kHz and a NED of about 60 nm. Stability and dynamic
have been improved and can be further enhanced by the means
of tools proposed; a simulation model has been built in order to
simplify the problem-solving process and the control design.
The model developed shows enhancement with respect to
previous open-loop versions, and, in particular, describes, for
the first time (to the best of the authors’ knowledge), the
closed loop configuration implemented on a digital device.

The simulation toll proposed has been validated by comparing
the outputs with the experimental signal acquired. Thus, con-
straints, weakness, and improvements have been analyzed by
double-checking the results obtained both from an FPGA
based prototype and computer-based simulation.

Solutions have been created to improve the stability; two
kinds of regulator have been proposed and analyzed evaluating
the effect of the elaboration delay. Digital technique has been
individuated to potentially broaden the instrument dynamic as
much as the laser source allows it.
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