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Abstract—Drug discovery is a high cost and high risk process,
thus finding new uses for approved drugs, i.e. drug repositioning,
via computational methods has become increasingly interesting.
In this study, we present a new network-based approach for
predicting potential new indications for existing drugs through
their connections with other biological entities. For this aim, we
first built a large network integrating drugs, proteins, biological
pathways and drugs’ categories as nodes of the network, and
connections between such nodes as links of the network. Our
method leverages the Non-Negative Matrix Tri-Factorization
reconstruction of adjacency matrices in order to predict novel
category-drug links, i.e. a new category (or use) associated with
a drug, taking the entire network information into account.
We tested our method on a set of 1,120 drugs labeled with
ten categories; when we hide to the method the 10% of the
drug-category associations, it was able to infer those missing
values with a recall of 60% and a precision of 70%. Precision
and recall remain higher than a Random Classifier in case of
larger percentage of hidden links, demonstrating the robustness
of the method. Also, we were able to predict novel drug-
label associations not yet reported in the repository. Finally, we
favorably compared our method with a state of the art method
for drug repositioning; the NMTF method achieved an average
precision score of 0.68 vs. the 0.55 score of the state of the art
method.

Index Terms—drug repositioning, protein-protein networks,
pathways, interaction networks, data integration, link prediction

I. INTRODUCTION

One of the most relevant steps in drug development consists
in inferring potential indications for novel molecules and in
the repositioning of approved drugs [1]. Especially drug repo-
sitioning has the benefit of starting from well-characterized
molecules, hence reducing the risks in clinical phases and the
cost of trials [1]. Drug repositioning’s success and application
derives from polypharmacology, i.e., the importance of the
multi-target approach vs. the single target one in drug discov-
ery [2]. Namely, drugs specifically designed for targeting one
molecules may have other effects on other targets.

This work was supported by the ERC Advanced Grant 693174 ”Data-Driven
Genomic Computing (GeCo)”.

Computational tools that scan databases of approved drugs
and predict novel indications drastically reduce the cost and
the time of drug development, driving the need for more new
approaches. The majority of computational methods for drug
repositioning are based on drug similarity, which assumes
that similar drugs are indicated for similar diseases [3]. For
instance, in [4] the authors used side effects to identify drug-
targets connections that further lead them to drug reposition-
ing. Conversely, in [5] another approach based on integrated
information from protein interaction and literature mining
is reported to infer drug connections in particular diseases.
More recently, [3] and [6] presented a ’Guilt by Association’
approach to predict novel drug uses based on the drugs-disease
relationships and drugs-protein relationships respectively.

Differently from similarity-based methods, we use a
network-based approach integrating both drug-protein and
protein-pathway connections, as well as previous knowledge
about drugs, i.e., drugs’ categories, to predict category-drug
links. In this study, we propose a novel method based on
Non-negative Matrix Tri-Factorization (NMTF) for data in-
tegration and the inference of indications about both new and
approved molecules. The NMTF has proven its effectiveness
in several fields for the integration and clustering of hetero-
geneous datasets. For examples, the NMTF has demonstrated
a great potential in addressing various biological problems,
such as disease association prediction [17] and protein-protein
interaction prediction [18]. In a recent study, NMTF was
applied to find patient-specific treatment for a particular can-
cer, analyzing a tripartite complex network [8]. For its wide
applicability and good results reported in the literature, we
used the NMTF graph regularized method in our application
and we innovatively propose its applicability as a multilabel
classifier, where categories (or labels) are part of the network
as nodes. In other words, we predict drugs connection to a
certain category and by doing that we classify those drugs
according to the category.

The rest of the paper is organized as follows. Section II
provides a detailed description of the NMTF method, section
III describes used datasets, drug similarity comparative method
and evaluation metrics, section IV reports the performance978-1-7281-1462-0/19/$31.00 ©2019 IEEE



curves and results for drug repositioning, finally section V
contains conclusions and future work.

II. METHODS

A. Non-negative Matrix Tri-Factorization

For the sake of simplicity, we describe the Non-negative
Matrix Tri-Factorization (NMTF) [7] in the context of decom-
position of incidence matrices. Consider two datasets D1 and
D2 connected by some kind of relation, an incidence matrix
is a two-dimensional matrix R ∈ R|D1|×|D2|

+ such that each
entry Ri,j is positive if the i-th element of D1 is connected
with the j-th element of D2, zero otherwise. Thus, the NMTF
is able to work on any bipartite graph, independently of the
type of elements of the two connected datasets. This property
contributed in the establishment of NMTF as a co-clustering
technique, with an important role in presence of heterogeneous
datasets [8] (e.g., the result of a data integration framework).

We introduce NMTF starting from the Non-negative Matrix
Factorization (NMF). In general, NMF decomposes R into two
non-negative matrices:

R ≈ G1G
T
2

where G1 ∈ R|D1|×k
+ and G2 ∈ R|D2|×k

+ and k <
min(|D1|, |D2|).

We can further constrain G1 and G2 to be orthogonal and
to minimize the Frobenius norm:

min
G1≥0,G2≥0

‖ R−G1G
T
2 ‖2, s.t. GT

1G1 = I,GT
2G2 = I

This has been proven to correspond to the simultaneous K-
means clustering of the rows and the columns of R [10], with
G1 being the cluster indicator matrix for clustering rows and
G2 the cluster indicator matrix for clustering columns.

However, the double orthogonality constraint showed to be
too restrictive for the low-rank approximation, thus Ding and
colleagues [7] proposed to factorize R in three components:

R ≈ G1S12G
T
2 ,

where G1 ∈ R|D1|×k1

+ , G2 ∈ R|D2|×k2

+ , S12 ∈ Rk1×k2
+ , both

G1 and G2 are orthogonal, and k1, k2 < min(|D1|, |D2|).
Finding optimal G1, S12 and G2 matrices such that their

product is equal to R is recognized to be a NP-hard problem
[13]. Thus, an approximate solution is computed by minimiz-
ing the Frobenius norm between the input relation matrix and
the product of low-dimensional matrix factors [7]:

min
G1≥0,G2≥0,S≥0

J = min
G1≥0,G2≥0,S≥0

‖ Rij −G1S12G
T
2 ‖2,

s.t. GT
1G1 = I,GT

2G2 = I

The minimisation of the objective function J for the com-
putation of G1, G2 and S12 is performed by means iterative
update rules [14]. Starting from a random initialization of

the three matrices, we progressively compute the solution by
iterating the following rules:

G1(i,j) ← G1(i,j)

√
(RG2ST

12)i,j
(G1GT

1 RG2ST
12)i,j

G2(i,j) ← G2(i,j)

√
(RTG1S12)i,j

(G2GT
2 R

TG1S12)i,j

S12(i,j) ← S12(i,j)

√
(GT

1 RG2)i,j
(GT

1G1S12GT
2G2)i,j

At each iteration the above rules decrease the value of J and
are applied until the convergence criterion |Jn+1−Jn|

|Jn| < 10−5

is reached [8].

B. Extension of NMTF to multiple datasets

Now we consider the case in which we have three datasets
D1, D2 and D3 and two association matrices R12 ∈
R|D1|×|D2|

+ , which connects elements of D1 to elements of
D2, and R23 ∈ R|D2|×|D3|

+ , which connects elements of D2

to elements of D3.
We can extend the NMTF to this context and compute a set

of positive matrices G1, G2, G3, S12 and S23 such all of the
Gi are orthogonal and they minimize the objective function:

min
G1≥0,G2≥0,S≥0

‖ R12 −G1S12G
T
2 ‖2 +

+ ‖ R23 −G2S23G
T
3 ‖2

(1)

Operatively, we can compute the matrices using the exact
same update rules, except for G2, that has to consider both
approximation errors in 1. In this case we have to rewrite the
update rule as follows:

G2(i,j) ← G2(i,j)

√
(RT

12G1S12 +R23G3ST
23)i,j

(G2GT
2 R

T
12G1S12 +G2GT

2 R23G3ST
23)i,j

Following the same intuition, it is possible to extend the
NMTF to any number N of datasets, by minimizing a coherent
cost function:

J =

N−1∑
i=1

‖ Ri,i+1 −GiSi,i+1G
T
i+1 ‖2

C. Integrating a priori information

Moreover, the NMTF can accept prior information embed-
ded in the objective function to guide the co-clustering, leading
to a semi-supervised method. The relation matrix Rij de-
scribes inter-type relationships among heterogeneous datasets;
yet, relationships within the same dataset (intra-type) can
also occur. Such intra-type connections can be represented as
Laplacian matrices L and embedded in the objective function
as constraints [12]. By including the constraint matrices Li

and Lj in the objective function, we force connected objects
of the same type to belong to the same cluster [15], [16]. These



additional terms (named graph regularization terms [15], [16])
can be used in the objective function as follows:

min
Gi≥0,Gj≥0

N∑
i,j

‖ Rij −GiSijG
T
j ‖2 +tr(GT

i LiGi)+

+tr(GT
j LjGj), s.t.G

T
i Gi = I,GT

j Gj = I

(2)

where tr(·) denotes the trace of the matrix.

D. NMTF reconstruction for link prediction

In addition to co-clustering, NMTF is also used for matrix
completion [12]. Namely, after obtaining the three matrix fac-
tors, Gi, Sij and GT

j , the reconstructed data matrix (obtained
from the product of the three matrix factors) is more complete
than the initial data matrix, Rij , featuring new links, not
present in the data, and emerged from the latent structure
captured by the matrix factors [12]. Therefore, NMTF has the
unique property of modelling heterogeneous network data and
predicting unobserved links.

III. DATA AND IMPLEMENTATION

We applied NMTF to a quadripartite network (Figure 1),
integrating three different relation matrices and two intra-type
relationship matrices. The network connects drug categories to
drugs, drugs to proteins and proteins to pathway. We then use
the computed G1, S12 and G2 to reconstruct the first relation
matrix R12 (i.e., the one associating drugs to categories) in
order to predict missing links and, therefore, novel potential
indications (drug repositioning). Since all of the three matrices
are positive, also the reconstructed matrix R̄12 has positive
values; we then set a threshold δ ∈ [0, 1] and we consider the
j-th drugs to be associated to the i-th category if R̄12(i,j) > δ.
In order to show the efficiency of our method, we performed a
10-fold cross validation, where, in each fold, a certain amount
of links between category and drugs was randomly deleted.
We measure how well the method performed in inferring
the hidden links in terms of precision and recall. Finally
we compared NMTF to the drug similarity method for drug
repositioning that was proposed in [3].

A. Datasets

We considered five datasets including category-drug, drug-
target, protein-pathway, protein-protein and pathway-pathway
connections, respectively extracted form different databases.
We used them to construct five different networks, which we
then merged in a single quadripartite network for its evaluation
with the NMTF method. Specifically:
• The category-drug network (CDN) is obtained by us-

ing information from the DrugBank database [19]. We
selected the drugs whose DrugBank’s category is an-
notated as at least one of the following: Anti-Infective
Agents, Nervous System Agents, Anti-Bacterial Agents,
Immunosuppressive Agents, Hormones, Analgesics, Anti-
Inflammatory Agents, Antibodies, Membrane Transport
Modulators, or Respiratory System Agents. Therefore,

CDN represents drugs’ annotation according to Drug-
Bank and Rn1×n2

12 is the adjacency matrix of CDN, where
n1 = 10 are the selected categories and n2 = 1,120 are
the drugs. If the drug d is labeled as the category c the
link in R12 is 1, or zero otherwise. The training set for
the NMTF classifier is built deleting 10 percent of the
category-drug links (dashed lines in Figure 1).

• The drug-target network (DTN) is obtained searching for
protein targets of the n2 = 1,120 drugs. This resulted
in a DTN of 5,191 interactions between n2 = 1,120
drugs and n3 = 1,012 target proteins. We represented
these interactions through a binary relationship matrix
Rn2×n3

23 , which encodes drug-target interactions such as
R23[d][t] = 1 if the drug d has a relation with the protein
target t or zero otherwise.

• The protein-pathway network (PPN) is built by consider-
ing 17,037 connections between the n3 = 1,012 proteins
and n4 = 1,563 pathways, selected from the Reactome
database [20]. Relationships between targets and path-
ways are represented as a zero-one matrix Rn3×n4

34 (with
R34[t][p] = 1 if the target t and pathway p are related,
or zero otherwise).

• The target-target interactions (TTIs, or protein-protein
interactions - PPIs) for the selected proteins are extracted
from the UniProt database [21]. This resulted in 901
target-target interactions among the n3 = 1,012 proteins.
PPIs were defined by a Laplacian matrix Ln3×n3

3 , com-
puted as: L3 = D3 − A3, where A3 is the adjacency
matrix of the PPIs and D3 is the diagonal degree matrix
of the PPIs (i.e., a diagonal matrix, whose elements on
the diagonal are the row sums of A3).

• The relationships within pathways are obtained from
the Reactome database [20]. Reactome pathways are
structured hierarchically, from the most general pathway
to the most specific one and according to the biological
events within the cell. The pathway-pathway hierarchy
defines the relationships between a parent pathway and a
child pathway. We built the pathway hierarchy network
among the extracted n4 = 1,563 pathways and defined
pathway-pathway interactions (PaHs) by a Laplacian ma-
trix Ln4×n4

4 , computed as: L4 = D4 − A4, where A4 is
the adjacency matrix of the PaHs and D4 is the diagonal
degree matrix of the PaHs.

The merged network has four different types of nodes, specifi-
cally: n1 category, n2 drug, n3 protein and n4 pathway nodes.
Category-drug, drug-protein, protein-pathway, protein-protein
and pathway-pathway relations are encoded in the R12, R23,
R34, L3 and L4 matrices, respectively (Figure 1).



Fig. 1. Schematic illustration of the datasets used and the constructed network. Four kinds of nodes are shown: categories (grey circles), drugs (blu diamonds),
target proteins (green squares) and pathways (red pentagons). Category-drug links (CDN) are represented by the R12 relation matrix (solid lines describe
the training set for the NMTF, whereas dashed lines are the test set), drug-target connections (DTN) are encoded in the relationship matrix R23, whereas
protein-pathway connections (PPN) are encoded in the relationship matrix R34. Links between proteins (PPIs) and between pathways (PaHs) are encoded in
the L3 and L4 matrices, respectively.

B. NMTF objective function and parameter choice

The objective function for the NMTF method applied to the
quadripartite network in Figure 1 is defined as:

min( ‖ R12 −G1S12G
T
2 ‖2 + ‖ R23 −G2S23G

T
3 ‖2 +

+ ‖ R34 −G3S34G
T
4 ‖2 +tr(GT

3 L3G3) + tr(GT
4 L4G4)),

s.t.G1 ≥ 0, G2 ≥ 0, G3 ≥ 0, G4 ≥ 0,

GT
1G1 = I,GT

2G2 = I,GT
3G3 = I,GT

4G4 = I
(3)

where matrices Gn1×k1
1 , Gn2×k2

2 , Gn3×k3
3 and Gn4×k4

4 indi-
cate cluster memberships for categories, drugs, proteins and
pathways, respectively; based on their entries, n2 drugs are
assigned to k2 drug clusters, n3 proteins are assigned to k3
protein clusters and n4 pathways are assigned to k4 pathway
clusters. The parameter k1 is set equal to n1 as the clustering
of drug’s categories is not needed for drug repositioning.

For the use of the NMTF graph regularized algorithm for
drug repositioning, we need to estimate the rank parameters,
i.e., the number of clusters k2, k3 and k4. They are chosen
to be k2 < n2, k3 < n3, k4 < n4, and can be estimated
by computing the cluster stability [23], [24]. A well-known
measure for cluster stability over the total number of NMTF
runs is the dispersion coefficient ρ [24]. Its values range in
0 ≤ ρ ≤ 1, where 1 denotes a stable cluster. We performed
multiple factorization runs for different triplets of rank param-
eters and computed the dispersion coefficient for each triplet.
Finally, we chose the values of k2, k3 and k4 corresponding
to the highest cluster stability. Namely, ρ2 = 0.9519 for
k2 = 200, ρ3 = 0.9750 for k3 = 300 and ρ4 = 0.9855
for k4 = 350.

C. Evaluation metrics

We evaluated the performances of RF and NMTF methods
using Precision-Recall curves, which are based on precision

rather than the false positive rate; thus, they better reflect
model performance when predicting from sparse datasets. To
assess the performance of our method, we trained the NMTF
model by removing randomly the x% of the category-drug
connections, i.e., deleting x% of links in the R12 matrix. We
performed several tests varying the percentage of removed
links from 10% up to 80% of the total. For each percentage, we
repeated the test 20 times and reported as precision and recall
their means over the 20 iterations. Given n as the number
of category-drug association deleted, TP indicates the true
positive category-drug predictions (i.e., the correctly predicted
drug’s annotations), FP the false positive predictions and FN
the false negative category-drug associations. Then, we used
the following well-known precision and recall metrics:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

Precision computes the portion of true predicted category-drug
associations out of all predicted ones. Recall instead measures
the fraction of all the actual category-drug annotations that
are predicted. Results of the Precision-Recall curves can be
summarized with the average precision score (APS) [25],
which is the sum of precisions achieved at each threshold
weighted for the difference between recalls at that threshold
and recalls at the previous threshold:

APS =
∑
n

(Rn −Rn−1)Pn (6)

where Pn and Rn are the precision and recall at threshold n.

D. Comparative study

To evaluate the relevance of the NMTF graph regularized
method for drug repositioning, we compared it with the state
of art method proposed in [3]. Thus, we implemented the



approach in [3], which is based on drug pairwise similarity,
and evaluated it on our data. The drug pairwise similarity,
S(di, dj), between two drugs, di and dj , is computed as linear
combination of the similarities of their molecular structures
and their target profiles (i.e., the bipartite graph featured by
di, dj and their target proteins). It is a score ranging from 0
to 1, which has been defined as follows:

S(di, dj) = (1 + λ) ∗ Sstr(di, dj) + λ ∗ Star(di, dj) (7)

where Sstr(di, dj) is the molecular structure similarity be-
tween di and dj , Star(di, dj) is the similarity between the
target proteins of di and dj , and λ (0 < λ < 1) is a constant
for weighting the target similarity [3].

We computed the structure similarity (Sstr(di, dj)) as the
Tanimoto coefficient [22] of the chemical structure data
present in DrugBank and stored as chemical fingerprint of each
drug, where available. To evaluate the target similarity, we
implemented a new network based on drugs-proteins bipartite
network. According to [3], nodes are all possible combina-
tions of drug pairs and protein pairs, and edges between
them exist only if the two drugs have at least one target
protein in common from the protein pair. The target similarity
(Star(di, dj)) between di and dj is the average similarity of
protein pairs connecting the (di,dj) pair. Finally, we inferred
the new indications of drug di by its similarity with dj , i.e., if
dj belongs to a certain category c, then di can be repositioned
to that category.

For the comparative study, we limited the analysis to the 784
drugs with chemical structure data available, and we computed
the APS scores for the drug similarity method and NMTF
method on this set of drugs (Figure 3).

IV. RESULTS AND DISCUSSION

We tested our method on several datasets, randomly built
by removing from the dataset respectively the 10%, the 30%,
the 60%, the 70% and 80% of the category to drug links. For
each dataset we then computed the average reconstructed R̄12

matrix of 20 runs (or randomization) of the NMTF method and
applied various thresholds δ, spanning from 0 to 1, in order
to draw the precision-recall curves in Figure 2. Results show
that our method performs well till when less than 30% of the
association were removed, while the performances decrease
dramatically when considering less true links, as expected.
However, as presented in Figure 2, precision-recall curves for
NMTF decreasing training set show higher APS scores than
the Random Classifier (the APS score of a Random Classifier
in this case is 0.1). For the 10% dataset in Figure 2, the
predictor scored high values of both precision and recall. For
example with a threshold δ = 0.1 Precision = 0.7 and
Recall = 0.6; incrementally greater thresholds (from 0.1 to 1)
have 0.7 < Precision < 1 and a decreasing recall, meaning
that the predicted category-drug links overlapping with the
true links are almost the same as the predicted links and they
significantly decrease over the total number of true links when
the threshold increases (Table I). Instead, thresholds smaller
than 0.1 lead to low values of precision and high values of

Fig. 2. Precision-Recall curves for NMTF different training sets. The curves
are evaluated from the R12 matrix reconstruction, when the 10%, 30%, 60%,
70% and 80% of the links are kept out.

Fig. 3. Comparison of APS scores for NMTF method and drug similarity
method [3]. The scores are computed considering 784 drugs, where chemical
data were available.

recall. To clarify NMTF results, we reported in Table I the
number of predicted links (third column of the table) compared
to the ones that have been removed from the training set (i.e.,
the test set and about the 10% of the total links) for one
run (or randomization) out of 20. True positive links are the
intersections between the test set links and the predicted links.
Thus, for thresholds from 0 to 0.4 the number of predicted
links overcomes the number of true positive links, and 160
true positive links are lost in the same range of thresholds.
Moreover, from the 0.5 to 0.7 threshold range, the number of
predicted links is equal to the intersection between true and
predicted links, i.e., Precision = 1.

We also compared NMTF with a predictor based on the
drug similarity method presented in [3], as described in the
previous Section. The APS scores for NMTF and the drug
similarity method are reported in Figure 3. They show a better
performance of the NMTF method compared to the [3] one.
From the NMTF reconstruction of the partial R12 matrix (i.e.,
obtained removing the 10% of the category-drug links over 20
randomizations), we can retrieve the deleted links with higher
precision and recall. Furthermore, our method can retrieve
results also for drugs without a known molecular structure.



Finally, we decided to manually validate some predicted
links that are not labeled as true links in the initial dataset.
We considered predicted links with threshold greater than 0.3
in Table I and we validated them on the literature (II).

Firocoxib is categorized by DrugBank as a non-steroidal
anti-inflammatory drug currently used in dogs and horses,
however [26] has investigated its analgesic efficacy in mouse
model with good results confirming our prediction. Mometa-
sone is a synthetic corticosteroid with anti-inflammatory prop-
erties, but it is not labeled as analgesic in DrugBank. How-
ever, the Japan Standard Commodity Classification present
in the KEGG Drug database [27] has annotated this drug
as analgesic, corroborating our finding. Adenosine is a nu-
cleoside that is composed of adenine and d-ribose; it has
been classified as analgesic by DrugBank, but it also has
anti-inflammatory properties found in [28]. Butorphanol, Lev-
acetylmethadol, Levorphanol, Meperidine and Pholcodine are
widely used opioid analgesics not having anti-inflammatory
properties according to DrugBank, nevertheless their use as
anti-inflammatory agents has been demonstrated especially in
peripheral inflammatory pain [29], [30]. Lumiliximab is a
chimeric monoclonal antibody that is used as an immunosup-
pressive drug; however, DrugBank database fails to annotate
Lumiliximab as a immunosuppressor, whereas our method
successfully labeled this drug. Ethanol is a liquid, rapidly ab-
sorbed from the gastrointestinal tract; it has bactericidal activ-
ity but DrugBank does not categorized its other implications.
It has been reported its widely effects on the nervous system
[31], confirming our categorization. Prasterone, also known
as dehydroepiandrosterone (DHEA) is a steroid produced by
the adrenal cortex. DrugBank omits its effects on the central
nervous system [32], but our method suceeds to find them.

All these manually curated annotation predictions confirm
the validity of NMTF approach for drug repositioning and
gives space to more specific applications.

Experiments have been run on a MS-Windows machine
equipped with an Intel i7-8750H processor and 16 GB of
RAM. Every run of the NMTF method takes between 5 and
10 minutes depending on the number of iterations needed to
reach the convergence, with a total use of 1.1 GB of RAM.

TABLE I
TOTAL NUMBER OF TRUE, PREDICTED AND TRUE PREDICTED
CATEGORY-DRUG LINKS FOR A RANDOMIZATION OUT OF 20.

Threshold True links to predict Predicted Links True Positive
0 188 1124 188

0.1 188 135 77
0.2 188 102 60
0.3 188 56 45
0.4 188 30 28
0.5 188 10 10
0.6 188 6 6
0.7 188 2 2
0.8 188 0 0
0.9 188 0 0
1 188 0 0

TABLE II
PREDICTED NEW LINKS FOR THRESHOLD GREATER THAN 0.3.

Drugs IDs Drugs Names Predicted Links References
DB09217 Firocoxib Analgesic [26]
DB00764 Mometasone Analgesic [27]
DB00640 Adenosine Anti-inflammatory [28]
DB00611 Butorphanol Anti-inflammatory [27]
DB01227 Levacetylmethadol Anti-inflammatory [27]
DB00854 Levorphanol Anti-inflammatory [27]
DB00454 Meperidine Anti-inflammatory [27]
DB09209 Pholcodine Anti-inflammatory [27]
DB06162 Lumiliximab Immunosuppressor [19]
DB00898 Ethanol Nervous System Agent [31]
DB01708 Prasterone Nervous System Agent [32]

V. CONCLUSIONS

The demand for computational drug repositioning is increas-
ing over the years, leading to low-priced methods for drug
discovery compared to traditional methods. Moreover, drugs
information is becoming more and more accessible through
different sources. Thus, methods that can both predict and
integrate heterogeneous information are the most likely to be
used for this purpose.

In this study, we developed a network-based method for
predicting potential new drug indications by exploring drug-
target and target-pathways associations. Data from DrugBank,
Reactome and Uniprot databases were obtained and merged
in a large network. The entire framework contains drugs’
categories, drugs, proteins and pathways as nodes. NMTF
method learns from the existing relationships among nodes and
reconstructs the category-drug network for predicting drug’s
annotations. The proposed NMTF quadripartite network model
successfully finds novel uses for already approved drugs and it
has better performance than the drug similarity approach. We
also manually validated some new drug annotations based on
the literature, demonstrating that our approach can complete
missing information from DrugBank and it can predict new
uses for approved drugs.

Future work will be focused on extending our approach
to the drug-disease applications, i.e. adding disease-specific
categories and drugs to the network. Drug discovering is
particularly relevant in therapeutic areas, such as potential
treatments for cancer, and our proposed method has showed
very good preliminary results. Its applicability in cancer or
other severe diseases may lead to interesting drug repurposing.
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