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1. INTRODUCTION
Whenever the issue of preservation has to be considered

in relation to monumental buildings, the history of the struc-
ture has to be deeply studied, starting from the analysis of the
original conceptual design and considering modifications and
interventions occurred in its lifetime. This kind of study should
cover as well rules and specific criteria employed for the design;
this holds in particular in the case of timber structures dating
back to the 18th and 19th centuries, at the time when design cri-
teria were progressively changing from the traditional heuristic
approach to a new scientifically based knowledge. Within this
renovation process, both experimental and theoretical research
were promoted, thus opening the way to new design criteria;
the process extended over a period of time that is well defined,
from Galileo’s formulation of the scientific method (1638) to
Navier’s expression of the theory of bending (1826).
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As it is well known, Galileo (1638) clearly understood the
need of assigning proper dimensions to the elements consti-
tuting the structural scheme; in other words, he introduced the
quantitative approach to design. Moreover, Galileo stated the
double role of the experimental research in both suggesting and
verifying physical laws. A classical application of his method
refers to the problem of beam bending; the solution he pro-
posed for the bearing capacity, referred to as Galileo’s rule,
established the reference point for the long debate that took
place among researchers for almost two centuries. In this rule,
the parameters governing the problem are correctly considered;
what is wrong is the multiplication factor, which depends on the
stress distribution over the transversal section.

The debate that followed involved theoretical and experi-
mental contributions as well; it had a major reference point
at the Ecole des Ponts et Chaussées in France and is widely
reflected in a large number of engineering and architecture trea-
tises of the time. All such studies had to face a double difficulty,
as the knowledge of the equilibrium conditions was still lim-
ited, both at the element level in terms of load typology, support
conditions and span length, and at the level of the transversal
section as well, in terms of stress distribution.

In parallel to the theoretical studies, a wide experimental
activity had started. Two distinct trends can be easily recognized
in this kind of works: in some cases experimental tests were per-
formed in order to support theoretical knowledge, according to
Galileo’s method; in other cases the aim simply consisted in the
compilation of load capacity tables for timber beams, differing
in length and transversal section, subject to specific load pat-
terns. These tables were intended to directly support the design
activity of builders.

All of these studies were carried on for more than 100 years
through the entire 18th century, and reached a conclusion with
Navier’s work (1826), when the correct solution to the prob-
lem of beam bending was formulated. This formulation was
expressed in simple terms, suitable for practical use in design.

The research here presented is an attempt to move through
the long search for the correct approach to the design of tim-
ber beams, highlighting a few meaningful contributions selected
from the numerous French treatises written in the 18th century;
they provide an overview of the variety of the design criteria in
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use at the time. Finally, Navier’s formulation is discussed and 
the first documented application to the verification of a bridge 
beam in France is presented.

2. LOAD-BEARING CAPACITY COMPARISON DESIGN 
RULE

One of the first documented computations of the bearing 
capacity of a timber beam may be found in the manuscript 
Calcul de la Résistance des Jambes de Force Doublées Pour 
Chaque Coté de la Longueur du Pont, now at the Fonds Ancien 
of the Ecole des Ponts et Chaussées in Paris (École Nationale 
des Ponts et Chaussées, Fonds Ancien 1793). In this applica-
tion, the design problem is relative to a beam spanning 15 feet 
(4.87 m) and with a cross-section 12 inches (0.33 m) wide and 
30 inches (0.81 m) deep. The beam is simply supported and 
loaded at the mid-span.

According to a procedure which was common at the time, 
the load-bearing capacity is determined by comparison with an 
experimental reference case, which, in this case, presents dif-
ferent support conditions: a cantilever beam, 7 feet 8 inches 
(2.49 m) long with square cross-section of 2 inches wide 
(0.054 m × 0.054 m), loaded at the free end. The collapse load 
for the cantilever had been found to be 185.5 lbs (0.91 kN); 
however, a lower load value was considered allowable in ser-
vice and utilized in fact for the computation of capacity: 22 lbs 
(0.11 kN). The ratio between the two loads, which is close to 
8, is in line with the values proposed some years later by Jean 
Baptiste Rondelet in his Traité Théorique et Pratique de l’Art 
de Bâtir (1802) and by Claude Louis Navier (1826).

In the manuscript, the procedure followed to link the bearing 
capacities of the two structural elements is not explained; a rea-
sonable interpretation, however, has been found and is 
presented in the following. In the spirit of Galileo’s rule, in 
order to evalu-ate the capacity of the simply supported beam, 
the author makes use of a proportion between the geometric 
dimensions of the reference beam and the one under study. 
Specifically, geometric data and loads are in the proportion:

B · H2 : P = b · h2 : p (1)

where b and h are the width and the depth of the specimen
cross-section, respectively, and p is the capacity; B and H are
the width and the depth of the cross-section of the element for
which the capacity P has to be computed.

From this proportion, a value of 29700 lbs (145.38 kN) is
found for the load capacity, P. In the calculation, however,
consideration is neither given to the different lengths of the
two elements nor to the different support conditions; the result,
therefore, is wrong. With respect to the cantilever, indeed, the
span of the simply supported beam is about the double, and the
bearing capacity, therefore, is also the double.

Another interesting manuscript, Pont de Bois: Question et
Majeure et Neuve (École Nationale des Ponts et Chaussées,

Fonds Ancien 1798) kept in the same archive of the Ecole des 
Ponts et Chaussées, also deals with the bending strength of a 
wood element. Contrary to the former manuscript author, the 
author of this manuscript demonstrates to know that in the 
com-putation it is necessary to consider the length of the 
elements. This author affirms that the strength is directly 
proportional to the product of the width times the square of the 
depth of the cross-section and inversely proportional to the 
length, thus recalling the concept expressed in Galileo’s rule 
(1638).

3. ANALYTICALLY INTERPRETING EXPERIMENTAL DATA
In the first decades of the 19th century, numerous trea-tises 

of architecture and engineering were published and widely 
diffused. They became the collection point for both mathemat-
ical studies and experimental results, equally fundamental for 
the development of new formulations. The works that com-
prehend both aspects, that is, the theoretical formulation and 
the experimentation, are particularly interesting. Those works 
by Jean-Baptiste Rondelet, Jean Henri Hassenfratz, and Claude 
Louis Navier are presented here in this perspective.

The Traité de l’Art de Bâtir by Jean-Baptiste Rondelet 
(1743–1829), published in 1802, constitutes a significant step 
forward in the painstaking path toward formalizing a science of 
building structures; it contains good intuitions, which are not 
yet translated into final rules. In order to evaluate the effect of 
the beam span on the load-bearing capacity, Rondelet con-
siders the experimental results obtained by George Leclerc 
Comte de Buffon (1741) from a series of specimens with a 
square cross-section of 5 inches wide (0.135 m × 0.135 m) and 
with length values varying between 7 and 28 feet (2.27 m and 
9.1 m). Such experimental results are represented with a solid 
line in Figure 1, while those corresponding to the analyti-cal 
formulation for bending strength (Rb) proposed by Rondelet 
(Equation 2) are drawn with a dashed line:

Rb = a − b
3 · e · e

b
(2)

where a indicates the tension strength, then called primitive
force, and b indicates the ratio between the element length, l,
the depth of the cross-section, e; with the solid line the results of
the experimental tests by Buffon are reported. The value of the
primitive or absolute force adopted by Rondelet is 57.32 MPa.

The two curves differ minimally: according to Rondelet, this
difference is due to not having a constant strength value for all
the test specimens and the analytical computations. In a first
attempt, Rondelet expressed the bending strength according to
the indications of Galileo:

Rb = 1

2
· σt · b · h2

l
(3)



FIG. 1. Bending resistance depending on specimen length.

FIG. 2. Experimental and theoretical data in bending.

where b is the width of the cross section, h is the depth l the 
length and σt is the tensile resistance, but he later dis-carded it, 
for not being, in his opinion, close enough to the real data.

Figure 2 shows the experimental data, the correct theoretical 
curve based on Navier’s theory, drawn on the mean value of 
experimental strengths, and the theoretical curve computed by 
Rondelet according to Equation (2), which in spite of its evident 
limits interpolates surprisingly well the test data.

The experimental results relative to elements with length 
within 2 and 10 feet (0.65 m and 3.25 m) were organized by 
Rondelet (1802) in five tables for use in design practice; one of 
them, referring to oak wood tests is reported in Figure 3. A 
suggestion, presented in the comments, is particularly worth 
noting: in order to act in favor of safety, only 1/10 of the value 
reported in the tables should be adopted for the design strength, 
by simply eliminating the last digit. This indication, later 
recon-sidered by Navier (1826), acknowledges the difference 
between the value of strength at collapse and what may be 
adopted in service, the two being assumed to differ by an order 
of magni-tude. This indication is in agreement with what put 
into practice by the author of the previous manuscript.

3.1. Capacity Tables: Jean Henri Hassenfratz
The contribution of the Traité de l’Art de la Charpenterie, 

by Jean Henry Hassenfratz (1804) is of fundamental 
importance for the design practice. Such treatise is organized in 
two parts: the first is further subdivided into five chapters. 
Paragraph VI of the first chapter deals with the mechanical 
strength of wood. The first two subparagraphs examine the 
aspect of the horizontal strength, that is, bending.

Hassenfratz (1804) indicates the strength of a wood element 
in bending as proportional to the width (b) and to the square of 
the depth (h) of the cross-section, and inversely proportional to 
the length (l) in line with Galileo’s formulation for the bending 
capacity (R):

R = k · b · h2

l
(4)

The purpose of the work by Hassenfratz (1804) is to find a 
mean value for the constant k depending on the constraints 
typology and on wood resistance, that may confirm the validity 
of the for-mula to express the bearing capacity of wood 
elements and for organizing the theoretical data into tables 
suitable for practical use.

According to Hassenfratz (1804), both theory and 
experience agree in demonstrating that different modalities of 
constraint on the specimens determine different values of 
capacity, even if the pertinent coefficients had not yet been 
correctly expressed in all cases. So, on the one side, 
Hassenfratz (1804) knows that the load carrying capacity of a 
simply supported specimen, as indi-cated in drawing 10 of 
Figure 4, can be doubled if rotations are restrained at the 
supports, as in drawings 13 and 14. On the other side, about 10 
years after the French manuscript and in spite of the many 
experimental data, Hassenfratz is still convinced that the load 
provoking failure on the simply supported specimen shown in 
drawing 10 is the same that causes failure of an ele-ment half 
its length, built-in at one extreme, loaded at the free end 
(drawing 18).

A series of 20 tables, one of which is shown in Figure 5, 
reports the strength values for oak wood elements of different



FIG. 3. Jean Baptiste Rondelet. Bending tests results. Ultimate load.

length, simply supported, and loaded at midspan. The width of 
the cross-section is indicated in the first column, while the depth 
in the first line; the length, ranging from 1 m to 15 m, is in the 
table heading. Dimensions are indicated in meters.

Analyzing the data in the table, it is evident that Hassenfratz 
(1804) used Equation (4) adopting the same coefficient, k, for 
computing the bearing capacity of all the elements. The value 
adopted for this coefficient is 500. Since the same load and 
constraint conditions apply to all the specimens, it is possi-ble to 
determine the value of the normal stress starting from k. Given 
that:

k = 2

3
· σ (5)

the reference value of σ is about 75 MPa, a rather high value,
but one in line with what indicated by the European Standard
(EN) 338 (2002) for oak of good quality.

3.2. An Easily Accessible Bending Theory
The long search for a solution to the problem of bending

found accomplishment with Claude Louis Navier (1785–1836),



FIG. 4. Bending resistance.

who was able to express it in terms correct and at the same time
suitable for current practice; in his teaching activity at the Ecole
des Ponts et Chaussées, indeed, he was able to perform a syn-
thesis of all the previous research, making the correct analytical

formulation of the problem accessible and easily applicable. 
His approach to bending is discussed in the Résumé des leçons 
(Navier 1826), the class notes of the course of applied mechan-
ics written for his students. The notes became available starting



FIG. 5. Resistance of 2-mt long oak beam of different cross sections.

from 1819 as a lithographed text among students and were 
subsequently printed in 1826.

In the Résumé the discussion of the problem of bending fol-
lows the study of the element in compression and in tension. 
Navier clearly expresses the concept that the section, when sub-
jected to bending, rotates around the neutral axis remaining 
plane. From this assumption, he expresses the deformation at 
the generic point of the cross-section as “the proportion accord-
ing to which the fiber elongated” (Navier 1826, Part 1, Article 
III, paragraph 77), namely:

v

r
(6)

where r is the radius of curvature and ν is the quote of the point
with respect of the neutral axis. From Equation (6) and by indi-
cating with E the elastic modulus of the material it is possible
to express the normal stress R as:

R = E · v

r
(7)

The radius of curvature is, thus, the unknown reference param-
eter through which all the others are defined.

Navier then deals with the equilibrium conditions. The equi-
librium to horizontal translation, expressed by the equality of
resultants from compression and tension stresses, leads to the
following relation:

b∫
0

du ·
f1,u∫
0

dv · v =
b∫

0

du ·
f2,u∫
0

dv · v (8)

where u and v indicate the abscissa and the ordinate, respec-
tively, of a particle of the cross-section, while functions f1,u and 
f2,u describe the profiles of the two portions of the cross-section, 
above and below the neutral axis, respectively as in Figure 6. 
The equation states the position of the neutral axis at the 
centroid.

Lastly, Navier (1826) applies rotational equilibrium, making 
reference to the specific case of a cantilever of length a with a 
concentrated load P at the free end; at distance x from the fixed 
end, equilibrium requires:

E

r
·
⎛
⎝

b∫
0

du ·
f1,u∫
0

dv · v2+
b∫

0

du ·
f2,u∫
0

dv · v2

⎞
⎠ = P · (a − x) (9)

while recognizing the moment of inertia I as:

I =
⎛
⎝

b∫
0

du ·
f1,u∫
0

dv · v2+
b∫

0

du ·
f2,u∫
0

dv · v2

⎞
⎠ (10)

The solution is thus expressed as a function of the external
moment ρ in the form:

1

r
= ρ

EI
(11)



FIG. 6. Cross-section of a cantilever beam.

Navier underlines the importance of the bending stiffness, 
called flexure moment ε = E I, a quantity that “has for each body 
a value depending from the nature of the body itself and from 
the shape of the cross-section” (Navier 1826, Part 1, Article 
III, paragraph 78). For the case where the solid has rectangular 
cross-section with width b and depth c:

ε = 2E

b∫
0

du ·
c
2∫

0

dv · v2 = E · b · c3

12
(12)

In the 1826 Résumé, after presenting the theoretical formulation 
of the problem of bending, Navier discusses some applications: 
starting from experimental results obtained by other researchers, 
he derives the values of both bending strength and modulus of 
elasticity for several materials, first of all for wood.

For the wood element in bending, Navier makes reference to 
results by Henri Louis Duhamel du Monceau (1768) Charles 
Aubry (1790), Charles Dupin (1815), Jean-Baptiste Rondelet 
(1802), Peter Barlow (1826), and Thomas Tredgold (1820). 
Figure 7 reports, as an example, some of the experimental data 
published by Tredgold. In this table a and c are two coefficients 
experimentally determined to be applied in practice in order to 
evaluate the load-bearing capacity; c depends on the constraints 
typology and on wood strength and beam deflection:

P = b · h2

l
· c (13)

and a is a coefficient experimentally determined in order to
evaluate beam deflection d that according to Tredglod is expr-
essed as:

d = a · P · l 3

40 · b · h2
(14)

Using, for instance, maximum deflection measures, f , of a sim-
ply supported beam of span 2a, loaded at midspan with a load
2P, Navier is in condition to compute the modulus of elasticity
of a section having width b and depth c as:

E = 2P · (2a)3

4 · b · c3 · f
(15)

after combining the expression of the flexure moment in
Equation (12) with that of the maximum deflection:

f = 2P

ε
· (2a)3

48
(16)

Analogously, Navier proceeds to evaluate the normal stress,
R, at ultimate, assuming linear behavior of the material up to
failure. In order to express the moment, ρ (Equation (11)), as
a function of the maximum normal stress, R (Equation (7)), he
obtains:

ρ = 2R

v′ ·
b∫

0

du ·
f ,u∫

0

dv · v2 (17)

which may be synthetically rewritten as:

ρ = R · b · c2

6
(18)

Assuming for v′ the value of c/2. Here, the resisting moment
appears as the product of the maximum stress times the section
modulus.

For the cantilever of length a, with end load P, Navier writes,

R · b · c2

6
= P · a (19)

from which the maximum stress becomes:

R = P · a · 6

b · c2
(20)

The value of R is then derived from the experimental results 
obtained by different authors: George Leclerc Comte de Buffon 
(1741), an example of which is reported in the table of Figure 8, 
Bernard Fôret de Bélidor (1729), Jean-Baptiste Rondelet (1802) 
and George Buchanan (1825). After obtaining the value of 
numerical results for the ultimate strength, Navier (1826) adopts 
a reduced value in formulas for checking the design resistance, 
similarly to what already proposed by Rondelet (1802). This 
sort of allowable stress is 1/10 of the limit strength and cor-
responds approximately to 6 MPa. By the same procedure,



FIG. 7. Load-bearing capacity and deflexion of oak beam.

Navier determines also the strength and modulus of elastic-
ity of other materials, such as wrought iron, steel, cast iron, 
after describing a small series of tests on stone specimens in 
bending.

An interesting use of the bending theory concerning wood 
bridges is discussed in the fourth section, Article X, paragraph 
579. The text is subdivided in three parts, starting from the sim-
plest case of bridges with limited span, usually composed of 
a deck supported by beams and struts. From equilibrium equa-
tions, Navier (1826) determines the maximum forces in the deck 
beam.

With reference to Figure 9, the segment D-D’ is considered; 
the span is 2a and the distributed load intensity is indicated 
as p, hinges are assumed at D and D’, resulting in a statically 
determined scheme.

After expressing the maximum moment as:

ρ = p · a2

2
(21)

the cross section is assumed rectangular, b × c. The resulting
maximum normal stress at mid-span is obtained combining the
contributions of the axial load and bending moment:

R′ = p

b · c
·
[(

a + 1

2
a′

)
· tan α + 3a2

c

]
(22a)

where a and a′ are the distances CD and BD, respectively;
a+a′/2 is the influence length of the element AD; α is the angle
BAD.

Equation (22a) may be rewritten as:

R′ = p · tan α · (a + a′/2)

b · c
+ p · a2/2

b · c2/6
= N

A
+ ρ

W
(22b)

so that the first term clearly points out the contribution of axial
load, N, which is divided by the cross section, A, and the sec-
ond the contribution of the moment, ρ, which is divided by the
section modulus, W.

4. CHECKING HEURISTIC DESIGN CRITERIA
With the application of the new building science to current

design practice, the modern approach to structural design was
started, which is based on the sizing of structural elements in
relation to both external loads and material strength as well. The
method grows by subsequent attempts, at the start still strongly
bound to the construction practice of the time, which remains
the main reference. Initially, only a strength check or a com-
parison of active and resisting moments is performed, to which
new contributions and steps are progressively added. The first
applications of the new tools offered by structural mechanics to
design are documented in the Annales of the Ecole des Ponts et
Chaussées. One of these cases, presented in the following sec-
tion, refers to the Vaudreuil Bridge that had collapsed because
of a flood. It was rebuilt in wood, adopting the structural scheme
patented by Ithiel Town (USPTO 1820). This is the case where
the new formulas were applied for checking the design, still
conceived, looking at the past, on the basis of heuristic criteria
and experience.



FIG. 8. Bending tests results.

FIG. 9. Wood bridge layout.

4.1. First French Application of Navier’s Bending Theory:
Vaudreuil Bridge

The first examples of application of the bending theory, as
documented in the previously mentioned Annales des Ponts et
Chaussées (1841), relate to the checking of provisional struc-
tures, often ordered to permit the construction of other works,
or aimed at a fast rehabilitation of masonry structures that were
damaged or demolished.

The extraordinary flood of 1841 in Vaudreuil had caused the 
collapse of the main pier and of the two adjacent decks. The part 
to be recovered had a total span of about 17 m. The simplest and 
cheapest solution appeared to be a wood deck, which permitted 
to reopen transit in a fast, albeit temporary way.

The structural scheme patented by Ithiel Town in 1820 (Town 
1821) in the United States and reported in Figure 10 was con-
sidered suitable for the purpose. The structure is composed of 
two main beams as in Figure 11, which are in turn formed by 
12 St. Andrew’s crosses each. The elements of this lattice are 
interconnected without notches, by means of oak pegs. The net 
width of the bridge is 3.6 m. The longitudinal chords, also in 
oak wood, are 23.50 m long, with cross-section of 25 cm by 
15 cm; the distance between upper and lower chords is 1.45 m.

The report published in the Annales des Ponts et Chaussées 
continues with a paragraph on the resistance of beams, which 
usually is not present in this type of report. The paragraph fol-
lows the description of the structure and of its construction. It 
appears to be a final checking of the sizes of structural ele-
ments rather than part of their design. The resisting moment of 
the two beams is correctly expressed considering the moment 
of inertia of a cross-section composed of the upper and lower 
chord with a rigid link between them coming from the 
diagonals. The adopted formula makes reference explicitly to 
Navier’s text (1826):

ρ = R · a · (b′3 − b′′3)

6 · b′ (23)

where a is the global width of the 4 chords (4 × 15 cm) =
0.60 m; b′ represents the total depth of the beam = 1.95 m; b′′
is the clear distance between upper and lower chord = 1.45 m;
R is the wood strength = 6 MPa; and ρ is the resisting moment
developed by the two beams = 1343.46 kNm.

The resisting moment must be greater than or equal to
the moment generated by external forces, which is correctly
expressed by:

M = 1

2
· p · c2 (24)

where p is the distributed load and c is the half span.
The self-weight of the structure is 230 kN, distributed

over 17 m of length, corresponding to a distributed load of
13.53 kN/m. The bridge width being 3.6 m and assuming a live
load of 2 kN/m2 resulting in 7.2 kN/m, the total load is p =
13.53 + 7.20 = 20.73 kN/m with a maximum moment of:

M = 1

2
· p · c2 = 20.73 · 8.52

2
= 748.87 kNm (25)

Comparing results, it is evident that the moment due to loads is
about 55% of the resisting moment.



FIG. 10. Ithiel Town’s 1820 Patent. United States Patent and Trademark Office. Patent n◦ 3169X.

FIG. 11. Vaudreuil bridge.

The check of bending is formally correct, yet neither a
shear check, that is a check of diagonal elements, nor a
check of deformability were performed. The bridge was opened
to traffic in about 3 weeks, but after being in service for
6 days, a mid-span deflection of approximately 8 cm, about
1/200 the deck length, was measured. Monitoring of the deck
displacements was continued for some time; 6 weeks later,
the deflection had doubled to a 1/100 of the span. In order
to increase stiffness and avoid further deflections the deci-
sion to add five St. Andrew’s crosses in the central area, was
taken.

5. CONCLUSIONS
The modern approach to structural design dates back to the

beginning of the 17th century, when Galileo (1638) formulated
the need for a quantitative approach to the problem, i.e., the
necessity to define the size of the cross-section of structural
elements in relation to both the applied loads and the material
resistance.

In the present work, this problem has been analyzed with ref-
erence to the theory of bending, discussing the two centuries
long search for a correct solution to the question originally
raised by Galileo. In that period of time, the advancement of



research went through some innovations and, at the same time,
through mistakes. Researchers, indeed, had to face the difficult
task of operating a distinction among several new interesting
concepts: material strength on the one side and global load car-
rying capacity on the other side; the role of the cross-section
dimensions and the possibility of setting proportions between
the capacities of different sections; collapse load rather than
design load. All these studies had a constant reference point: the
experimental activity which, starting with Galileo, always main-
tained a fundamental role. The long debate was mainly referred
to one specific material, i.e., timber, because of its capability to
resist both in tension and compression. In the 19th century, steel
will take the place of timber; also, structural schemes developed
with reference to timber will be extended to steel structures. The
study shows how, as the new approach to design started, the
major concern was for checking bending resistance; deforma-
bility verifications, although important, will come later. In the
same way, also the concern for shear verification belongs to a
subsequent phase.
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