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REVIEW OF DIFFERENTIAL DYNAMIC 
PROGRAMMING (DDP)
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▪ Differential Dynamic Programming (DDP) is one of the most recent techniques
used for solving nonlinear optimal control problems.

▪ It is based on Bellman’s Principle of Optimality which states [1]:

▪ This principle can be mathematically expressed using the following formulations

where 𝑉 is the optimal value function defined as:
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Differential Dynamic Programming
Introduction

“An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.”

−
𝜕𝑉 𝑥, 𝑡

𝜕𝑡
= min

𝑢
[𝐿 𝑥, 𝑢, 𝑡 + 𝑉𝑥 𝑥, 𝑡 , 𝑓 𝑥, 𝑢, 𝑡 ],

𝑉 𝑥, 𝑡 = න
𝑡0

𝑡

𝐿 𝑥, 𝑢, 𝑡 𝑑𝑡 + 𝐹 𝑥 𝑡𝑓 , 𝑡𝑓
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▪ The previous partial differential equation is unsolvable analytically.

▪ The difficulty of the numerical solution lies in the high dimensionality of 

the equation.

▪ Differential Dynamic Programming tries to overcome the curse of 

dimensionality associated to Bellman’s Principle of Optimality [2].

▪ The main idea is to apply Bellman’s Principle of Optimality in the 

neighbourhood of a nominal, nonoptimal trajectory of the system.
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Differential Dynamic Programming
Main principle
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▪ The problem to be solved is the following: considering a trajectory defined by 

𝑥0, 𝑥1, … , 𝑥𝑁, which satisfies:

▪ Determine the control vectors 𝑢0, 𝑢1, … , 𝑢𝑁−1 minimising the cost function:

▪ Subject to the vector equality constraint:
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Differential Dynamic Programming
Problem statement

𝑥𝑖+1 = 𝑓 𝑥𝑖 , 𝑢𝑖 , 𝑡𝑖

𝑉 = 

𝑖=1

𝑁−1

𝐿 𝑥𝑖 , 𝑢𝑖 , 𝑡𝑖 + 𝐹 𝑥𝑁

𝜗 𝑥𝑁 = 0
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▪ The equality constraint is embedded in the value function using a set of Lagrange 

multipliers 𝑘

▪ The value function satisfies Bellman’s Principle of Optimality, which in the 

discrete case is:

▪ It is possible to rewrite the previous expression in terms of displacements 

𝛿𝑥𝑖 , 𝛿𝑥𝑖+1, 𝛿𝑘 in the following way:
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Differential Dynamic Programming
Constraint consideration

𝑉(𝑥𝑖 , 𝑘, 𝑡𝑖) = 

𝑖=1

𝑁−1

𝐿 𝑥𝑖 , 𝑢𝑖 , 𝑡𝑖 + 𝐹 𝑥𝑁 + 𝑘𝑇𝜗(𝑥𝑁)

𝑉 𝑥𝑖 , 𝑘, 𝑡𝑖 = min
𝑢𝑖

𝐿 𝑥𝑖 , 𝑢𝑖 , 𝑡𝑖 + 𝑉 𝑥𝑖+1, 𝑘, 𝑡𝑖+1

𝑉 ҧ𝑥𝑖 + 𝛿𝑥𝑖 , ത𝑘 + 𝛿𝑘, 𝑡𝑖 = min
𝑢𝑖

𝐿 ҧ𝑥𝑖 + 𝛿𝑥𝑖 , 𝑢𝑖 , 𝑡𝑖 + 𝑉 ҧ𝑥𝑖+1 + 𝛿𝑥𝑖+1, ത𝑘 + 𝛿𝑘, 𝑡𝑖+1
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▪ It is assumed that 𝛿𝑥𝑖 , 𝛿𝑥𝑖+1, 𝛿𝑘 are small enough so that each term can be rewritten 

using Taylor expansions around the nominal trajectory terminated at second-order 

terms.
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Differential Dynamic Programming
Taylor expansions

𝑉 ҧ𝑥𝑖 + 𝛿𝑥𝑖 , ത𝑘 + 𝛿𝑘, 𝑡𝑖 = 𝑎𝑖 + ത𝑉𝑖 + 𝑉𝑥
𝑖𝛿𝑥𝑖 + 𝑉𝑘

𝑖𝛿𝑘 +
1

2
𝛿𝑥𝑖

𝑇𝑉𝑥𝑥
𝑖 𝛿𝑥𝑖 + 𝛿𝑥𝑖

𝑇𝑉𝑥𝑘
𝑖 𝛿𝑘 +

1

2
𝛿𝑘𝑇𝑉𝑘𝑘

𝑖 𝛿𝑘

𝑉 ҧ𝑥𝑖+1 + 𝛿𝑥𝑖+1, ത𝑘 + 𝛿𝑘, 𝑡𝑖+1 = 𝑎𝑖+1 + ത𝑉𝑖+1 + 𝑉𝑥
𝑖+1𝛿𝑥𝑖+1 + 𝑉𝑘

𝑖+1𝛿𝑘 +
1

2
𝛿𝑥𝑖+1

𝑇 𝑉𝑥𝑥
𝑖+1𝛿𝑥𝑖+1 +

𝛿𝑥𝑖+1
𝑇 𝑉𝑥𝑘

𝑖+1𝛿𝑘 +
1

2
𝛿𝑘𝑇𝑉𝑘𝑘

𝑖+1𝛿𝑘

𝐿 ҧ𝑥𝑖 + 𝛿𝑥𝑖 , 𝑡𝑖 = 𝐿𝑖 + 𝐿𝑥
𝑖 𝛿𝑥𝑖 +

1

2
𝛿𝑥𝑖

𝑇𝐿𝑥𝑥
𝑖 𝛿𝑥𝑖

𝛿𝑥𝑖+1 = 𝑓𝑖( ҧ𝑥𝑖 , 𝑢𝑖,𝑡𝑖) − ҧ𝑓𝑖( ҧ𝑥𝑖 , ത𝑢𝑖,𝑡𝑖) + 𝑓𝑥
𝑖𝛿𝑥𝑖 +

1

2
𝛿𝑥𝑖

𝑇𝑓𝑥𝑥
𝑖 𝛿𝑥𝑖
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▪ Where 𝑎 = 𝑉 − ഥ𝑉 represents the difference between the optimal and nominal 

value function respectively.



▪ Replacing everything in Bellman’s Principle of Optimality, an expression to be minimised 

with respect to the control 𝑢𝑖 is get.

▪ The minimisation is performed in two stages:

• First, set 𝛿𝑥𝑖 = 0 and 𝛿𝑘 = 0 to compute the value of a pseudo-optimal control 𝑢∗

• Perform a Taylor expansion of the previous terms about the pseudo-optimal control 

with 𝑢𝑖 = 𝑢∗ + 𝛿𝑢𝑖

• The second stage is accomplished when the new expansion is minimised with 

respect to 𝛿𝑢𝑖 leading to the following feedback control law:

25/04/2019 9

Differential Dynamic Programming
Minimisation process

𝛿𝑢𝑖 = 𝛽1𝛿𝑥𝑖 + 𝛽2𝛿𝑘

𝛽1 = −∆−1 𝐻𝑢𝑥
𝑖 + 𝑓𝑢

𝑖𝑇𝑉𝑥𝑥
𝑖+1𝑓𝑥

𝑖 + 𝑓𝑖 − ҧ𝑓𝑖
𝑇
𝑉𝑥𝑥
𝑖+1𝑓𝑢𝑥

𝑖 𝛽2 = −∆−1𝑓𝑢
𝑖𝑇𝑉𝑥𝑘

𝑖+1

∆ = 𝐻𝑢𝑢
𝑖 + 𝑓𝑢

𝑖𝑇𝑉𝑥𝑥
𝑖+1𝑓𝑢

𝑖 + 𝑓𝑖 − ҧ𝑓𝑖
𝑇
𝑉𝑥𝑥
𝑖+1𝑓𝑢𝑢

𝑖 𝐻𝑖 = 𝐿𝑖 + 𝑉𝑥
𝑖+1𝑓𝑖
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▪ Substituting all the expressions in Bellman’s Principle of Optimality and equating 
the coefficients of like powers of 𝛿𝑥𝑖 and 𝛿𝑘, the following difference equations 
are obtained [3]:

▪ These difference equations should be integrated backward starting from the set
of final conditions.
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Differential Dynamic Programming
Difference equations

𝑎𝑖 = 𝑎𝑖+1 + 𝐻𝑖 − ഥ𝐻𝑖 + 1

2
𝑓𝑖 − ҧ𝑓𝑖

𝑇
𝑉𝑥𝑥
𝑖+1 𝑓𝑖 − ҧ𝑓𝑖 𝑎𝑁 = 0

𝑉𝑥
𝑖 = 𝐻𝑥

𝑖 + 𝑓𝑖 − ҧ𝑓𝑖
𝑇
𝑉𝑥𝑥
𝑖+1𝑓𝑥

𝑖 𝑉𝑥
𝑁= 𝐹 ҧ𝑥𝑁 + ത𝑘𝜗𝑥( ҧ𝑥𝑁)

𝑉𝑘
𝑖 = 𝑉𝑘

𝑖+1 + 𝑓𝑖 − ҧ𝑓𝑖
𝑇
𝑉𝑥𝑘
𝑖+1 𝑉𝑘

𝑁 = 𝜗𝑇( ҧ𝑥𝑁)

𝑉𝑥𝑘
𝑖 = 𝑓𝑥

𝑖𝑇𝑉𝑥𝑘
𝑖+1 − 𝛽1

𝑇∆𝛽2 𝑉𝑥𝑘
𝑁 = 𝜗𝑥

𝑇( ҧ𝑥𝑁)

𝑉𝑘𝑘
𝑖 = 𝑉𝑘𝑘

𝑖+1 − 𝛽2
𝑇∆𝛽2 𝑉𝑘𝑘

𝑁 = 0

𝑉𝑥𝑥
𝑖 = 𝐻𝑥𝑥

𝑖 + 𝑓𝑥
𝑖𝑇𝑉𝑥𝑥

𝑖+1𝑓𝑥
𝑖 + 𝑓𝑖 − ҧ𝑓𝑖

𝑇
𝑉𝑥𝑥
𝑖+1𝑓𝑥𝑥

𝑖 − 𝛽1
𝑇∆𝛽1 𝑉𝑥𝑥

𝑁 = 𝐹𝑥𝑥 ҧ𝑥𝑁 + ത𝑘𝑇𝜗𝑥𝑥( ҧ𝑥𝑁)
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▪ After the minimisation of the cost function in the unconstrained case, it is

necessary to check if the equality constraint is satisfied.

▪ If this does not occur a new value for the Lagrange multipliers is computed by

using the maximisation of the value function which leads to this formulation:

▪ The parameter 0 < 휀 ≤ 1 is introduced to modulate the size of the 𝛿𝑘 produced

by the previous equation.

▪ The Lagrange multipliers are updated and a new stage of the algorithm can start

until the equality constraint is respected and the cost is minimised.
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Differential Dynamic Programming
Equality constraint check

𝛿𝑘𝑇 = −휀𝑉𝑘𝑘
0−1𝜗(𝑥𝑁)
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ORBITAL-ELEMENT-BASED DDP
MODELLING
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▪ The main idea is to apply the Differential Dynamic Programming algorithm to 

problems where the state is defined in terms of orbital elements (for example 

classical Keplerian elements).

▪ In this way it is possible to get a more physical interpretation of the problem 

since it is easy to understand how the orbit is changing and what its shape is.

▪ Moreover, it is interesting to compare how the DDP works for different state 

representations and check which are the positive and negative aspects 

associated to the two formulations.
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Orbital-Element-Based DDP
Introduction
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▪ The first requirement for the DDP algorithm is a formulation of the Dynamics in 
terms of Keplerian orbital elements.

▪ For this purpose, Gauss’ variational equations have been considered, in such a 
way that they can be applied also for non-conservative effects [4].
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Orbital-Element-Based DDP
Dynamics definition

𝑑𝑎

𝑑𝑡
=

2𝑎2𝑣

𝜇
𝑎𝑡

𝑑𝑒

𝑑𝑡
=

1

𝑣
2 𝑒 + cos 𝑓 𝑎𝑡 −

𝑟

𝑎
sin 𝑓 𝑎𝑛

𝑑𝑖

𝑑𝑡
=
𝑟 cos(𝜔 + 𝑓)

ℎ
𝑎ℎ

𝑑Ω

𝑑𝑡
=
𝑟 sin(𝜔 + 𝑓)

ℎ sin 𝑖
𝑎ℎ

𝑑𝜔

𝑑𝑡
=

1

𝑒𝑣
2 sin 𝑓 𝑎𝑡 + 2𝑒 +

𝑟

𝑎
cos 𝑓 𝑎𝑛 −

𝑟 sin(𝜔 + 𝑓) cos 𝑖

ℎ sin 𝑖
𝑎ℎ

𝑑𝑓

𝑑𝑡
=

ℎ

𝑟2
−

1

𝑒ℎ
2 sin 𝑓 𝑎𝑡 + 2𝑒 +

𝑟

𝑎
cos 𝑓 𝑎𝑛
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▪ It is better to express each term explicitly as a function of the six orbital
elements and replace the perturbing accelerations with the control components.
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Orbital-Element-Based DDP
Updated dynamics

𝑑𝑎

𝑑𝑡
= 2

𝑎3(1 + 2𝑒 cos 𝑓 + 𝑒2)

𝜇(1 − 𝑒2)
𝑢𝑡

𝑑𝑒

𝑑𝑡
=

𝑎(1 − 𝑒2)

𝜇(1 + 2𝑒 cos 𝑓 + 𝑒2)
2 𝑒 + cos 𝑓 𝑢𝑡 −

(1 − 𝑒2)sin 𝑓

1 + 𝑒 cos 𝑓
𝑢𝑛

𝑑𝑖

𝑑𝑡
=

𝑎(1 − 𝑒2)

𝜇

cos(𝜔 + 𝑓)

1 + 𝑒 cos 𝑓
𝑢ℎ

𝑑Ω

𝑑𝑡
=

𝑎(1 − 𝑒2)

𝜇

sin(𝜔 + 𝑓)

(1 + 𝑒 cos 𝑓) sin 𝑖
𝑢ℎ

𝑑𝜔

𝑑𝑡
=
1

𝑒

𝑎(1 − 𝑒2)

𝜇(1 + 2𝑒 cos 𝑓 + 𝑒2)
2 sin 𝑓 𝑢𝑡 + 2𝑒 +

1 − 𝑒2

1 + 𝑒 cos 𝑓
cos 𝑓 𝑢𝑛 −

𝑎(1 − 𝑒2)

𝜇

sin(𝜔 + 𝑓) sin 𝑖

(1 + 𝑒 cos 𝑓) cos 𝑖
𝑢ℎ

𝑑𝑓

𝑑𝑡
=

𝜇

𝑎3 1 − 𝑒2 3
1 + 𝑒 cos 𝑓 2 −

1

𝑒

𝑎(1 − 𝑒2)

𝜇(1 + 2𝑒 cos 𝑓 + 𝑒2)
2 sin 𝑓 𝑢𝑡 + 2𝑒 +

1 − 𝑒2

1 + 𝑒 cos 𝑓
cos 𝑓 𝑢𝑛
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▪ After the assessment of the dynamics, it is necessary to express also the equality 
constraint in terms of orbital elements.

▪ The easiest way is to define a final condition given in terms of orbital elements 
and consider the following implicit equations:

▪ However, these equations imply that there is a rendez-vous, since it is imposed 
an equality constraint both on the position and the velocity vectors.
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Orbital-Element-Based DDP
Constraint definition

𝜗1 = 𝑎 − 𝑎𝑓 = 0

𝜗2 = 𝑒 − 𝑒𝑓 = 0

𝜗3 = 𝑖 − 𝑖𝑓 = 0

𝜗4 = Ω − Ω𝑓 = 0

𝜗5 = 𝜔 − 𝜔𝑓 = 0

𝜗6 = 𝑓 − 𝑓𝑓 = 0
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RESULTS



▪ An interplanetary transfer to Mars has been considered to test the algorithm.

▪ The problem is defined both in Cartesian formulation and Keplerian elements 

version in order to compare the results.

▪ Moreover, the problem will be first solved in the unconstrained case and then 

the constraint will be added (for which optimal results are still not available).
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Results
Test case definition
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▪ Dynamics 
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Results
Cartesian formulation
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ሶ𝑟𝑥 = 𝑣𝑥
ሶ𝑟𝑦 = 𝑣𝑦
ሶ𝑟𝑧 = 𝑣𝑧

ሶ𝑣𝑥 = −
𝜇

𝑟𝑥
2 + 𝑟𝑦

2 + 𝑟𝑧
2 ൗ3 2

𝑟𝑥 + 𝑢𝑥

ሶ𝑣𝑦 = −
𝜇

𝑟𝑥
2 + 𝑟𝑦

2 + 𝑟𝑧
2 ൗ3 2

𝑟𝑦 + 𝑢𝑦

ሶ𝑣𝑧 = −
𝜇

𝑟𝑥
2 + 𝑟𝑦

2 + 𝑟𝑧
2 ൗ3 2

𝑟𝑧 + 𝑢𝑧

▪ Final condition: Mars orbit

▪ Constraint definition

▪ Cost function

ቐ

𝑥𝑓 = 𝑥𝑀𝑎𝑟𝑠

𝑦𝑓 = 𝑦𝑀𝑎𝑟𝑠

𝑧𝑓 = 𝑧𝑀𝑎𝑟𝑠

𝜃 = ൞

𝑟𝑥𝑁 − 𝑥𝑓 = 0

𝑟𝑦𝑁 − 𝑦𝑓 = 0

𝑟𝑧𝑁 − 𝑧𝑓 = 0

𝑉 = 

𝑗=0

𝑁−1

𝑢𝑗
2
+ 𝑘𝑇𝜗



▪ The first step of the minimisation procedure of the algorithm consists in finding 
the pseudo-optimal control 𝑢∗. It is given by the minimum of this expression:

▪ Since the previous quantity is at a minimum when evaluated at 𝑢∗, its first 
derivative with respect to 𝑢𝑖 should be zero.

▪ The derivative of the Hamiltonian is further explored:

▪ Only the last three equations in the equations of motion have the derivative with 
respect to the control different from 0.
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Results
Theoretical considerations
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min
𝑢𝑖

𝐿𝑖 + 𝑎𝑖+1 + ത𝑉𝑖+1 + 𝑉𝑥
𝑖+1 𝑓𝑖 − ҧ𝑓𝑖 + 1

2 𝑓𝑖 − ҧ𝑓𝑖
𝑇
𝑉𝑥𝑥
𝑖+1 𝑓𝑖 − ҧ𝑓𝑖

𝐻𝑢
𝑖 + 𝑓𝑖 − ҧ𝑓𝑖

𝑇
𝑉𝑥𝑥
𝑖+1 𝑓𝑖 − ҧ𝑓𝑖 = 0

𝐻𝑢
𝑖 = 𝐿𝑢

𝑖 + 𝑉𝑥
𝑖+1𝑓𝑢

𝑖



▪ The term 𝑉𝑥
𝑖+1 is simply equal to the vector of Lagrangian multiplier.

▪ Analysing the difference equations for the 𝑉𝑥𝑥
𝑖+1 and the coefficient 𝛽1

▪ 𝐻𝑢𝑥
𝑖 is identically equal to 0 and also 𝐻𝑥𝑥

𝑖 is identically equal to 0 for the position 
constraint problem, since its formulation is given by:

▪ The 𝑓𝑥𝑥
𝑖 matrix has non-zero elements corresponding to the derivatives of the 

last three equations of the dynamics but these derivatives multiply null terms.

▪ The result is that 𝑉𝑥𝑥
𝑖 = 0 and since the final condition is equal to 0, this term is 

also identically equal to 0.
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Results
Theoretical considerations
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𝐻𝑥𝑥
𝑖 = 𝐿𝑥𝑥

𝑖 + 𝑉𝑥
𝑖+1𝑓𝑥𝑥

𝑖

𝑉𝑥
𝑖+1 = 𝑘𝑇

𝑉𝑥𝑥
𝑖 = 𝐻𝑥𝑥

𝑖 + 𝑓𝑥
𝑖𝑇𝑉𝑥𝑥

𝑖+1𝑓𝑥
𝑖 + 𝑓𝑖 − ҧ𝑓𝑖

𝑇
𝑉𝑥𝑥
𝑖+1𝑓𝑥𝑥

𝑖 − 𝛽1
𝑇∆𝛽1

𝛽1 = −∆−1 𝐻𝑢𝑥
𝑖 + 𝑓𝑢

𝑖𝑇𝑉𝑥𝑥
𝑖+1𝑓𝑥

𝑖 + 𝑓𝑖 − ҧ𝑓𝑖
𝑇
𝑉𝑥𝑥
𝑖+1𝑓𝑢𝑥

𝑖



▪ This result has effects also on the evaluation of the coefficient 𝛽1 which becomes 

always equal to 0.

▪ This means that the first part of the optimisation process considering 𝛿𝑘 = 0

occurs in a single iteration. 

▪ This property is lost if a constraint on the velocity is introduced or if the 

constraint is expressed into a different form (for example with a quadratic form).
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▪ Dynamics: Gauss’ variational equations

▪ Initial condition: satellite Keplerian elements

▪ Final condition: Mars orbital elements

▪ Constraint definition
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𝜗 =

𝑎𝑁 − 𝑎𝑀𝑎𝑟𝑠 = 0
𝑒𝑁 − 𝑒𝑀𝑎𝑟𝑠 = 0
𝑖𝑁 − 𝑖𝑀𝑎𝑟𝑠 = 0
Ω𝑁 − Ω𝑀𝑎𝑟𝑠 = 0
𝜔𝑁 − 𝜔𝑀𝑎𝑟𝑠 = 0
𝑓𝑁 − 𝑓𝑀𝑎𝑟𝑠 = 0

𝑉 = 

𝑗=0

𝑁−1

𝑢𝑗
2
+ 𝑘𝑇𝜗

𝑘𝑒𝑝0 = [𝑎0, 𝑒0, 𝑖0, Ω0, 𝜔0, 𝑓0]

𝑘𝑒𝑝𝑓 = [𝑎𝑀𝑎𝑟𝑠, 𝑒𝑀𝑎𝑟𝑠, 𝑖𝑀𝑎𝑟𝑠 , Ω𝑀𝑎𝑟𝑠, 𝜔𝑀𝑎𝑟𝑠, 𝑓𝑀𝑎𝑟𝑠]

▪ Cost function



▪ The only constraint that can be neglected is the last one on the true anomaly, in 

order to achieve the requirement to be on the final orbit (even if the position 

may be different from the one desired).

▪ This means that the minimum number of constraints to be considered is 5 and 

all the properties defined for the Cartesian representation are lost.

▪ Moreover, one of the main difficulties in using the Keplerian representation is to 

establish a proper tolerance for the constraint achievement since the semi-major 

axis has a different order of magnitude with respect to the other elements.
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▪ Both for the Cartesian representation

and the Keplerian version, the

unconstrained problem gives as

optimal solution 𝑢 = 0.

▪ This solution is correct since the

system of equations defined by the

partial derivatives of the Hamiltonian

with respect to the control becomes a

homogeneous system.
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▪ An introduction to a Keplerian-Orbital-Element-based optimisation approach via 
Differential Dynamic Programming has been investigated.

▪ The algorithm procedure has been kept the same, considering only a new 
formulation for the dynamics (Gauss’ variational equations) and for the equality 
constraints.

▪ Cartesian representation shows numerical advantages in the unconstrained part 
of the optimisation.

▪ New formulations of the constraints will be considered to get better 
convergence.

▪ This kind of procedure suits particularly for low-thrust applications since it 
considers a continuous control thrust.

▪ A further improvement of the technique will be the introduction of state 
transition matrix in terms of Keplerian elements to map the partial derivatives.
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