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Abstract

We continue to develop the regularity theory of general two-phase free boundary problems for parabolic operators. In a 2010 
paper, we establish the optimal (Lipschitz) regularity of a viscosity solution under the assumptions that the free boundary is 
locally a flat Lipschitz graph and a nondegeneracy condition holds.
Here, on one side we improve this result by removing the nondegeneracy as-sumption; on the other side we prove the 
smoothness of the front. The proof relies in a crucial way on a local stability result stating that, for a certain class
of operators, under small perturbations of the coefficients flat free boundaries remain close and flat.

1 Introduction and Main Results
In this paper we continue to develop the regularity theory of general two-phase

free boundary problems for parabolic operators started in [11]. Specifically, let
CR;T D B 0R � .�T; T /, where B 0R is the ball in Rn of radius R centered at the

origin, and

(1.1) L D Tr.A.x; t/D2/C b.x; t/ � r D
nX

i;jD1

aij .x; t/Dij C

nX
jD1

bj .x; t/Dj :

We assume that aij 2 C 0;˛.CR;T /, 0 < ˛ � 1, for every 1 � i; j � n, with
respect to the parabolic distance, and that there exist �;ƒ > 0 such that for every
� 2 Rn and for every .x; t/ 2 CR;T

�j�j2 �

nX
i;jD1

aij .x; t/�i�j � ƒj�j
2:

Moreover, we can assume that A.0; 0/ D I . For the modulus of continuity of 
the coefficients aij ,  w e u se t he s ymbol ! .r/ D  supıp�r jA.p/ �  I j , w here ıp
denotes the parabolic distance of p D .x; t / 2 RnC1 from .0; 0/. We also assume
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for simplicity bj 2 C 0;˛. xCR;T /; see, however, Remark 1.3. Let A be the set of
operators satisfying the above hypotheses.

The class of free boundary problems (f.b.p.) we shall deal with can be formally
stated in the following way: to find a function u 2 C.CR;T / such that

(i)

(
L u �Dtu D 0 in �C.u/ D CR;T \ fu > 0g;

L u �Dtu D 0 in ��.u/ D CR;T \ fu � 0g
o;

and
(ii) V� D �G.jruCj; jru�j/

on F.u/ D @�C.u/ \ CR;T , the so-called free boundary condition, where V� D
V�. � ; �/ is the speed of the surface F� .u/ D F.u/ \ ft D �g in the direction
� D ruC=jruCj.

The basic requirements on the function G express that V� is controlled in an
“elliptic” way, i.e., monotonically in the flux discontinuity:

(a) G D G.a; b/ is a Lipschitz function in Œ0;C1/ � Œ0;C1/.
(b) There exists a constant cG such that

DaG;�DbG � cG > 0;

uniformly in 2 Œ0;C1/ � Œ0;C1/I
(c) G !C1 when a � b !C1.

By a classical subsolution (supersolution, solution) of the above problem, we
mean a function u 2 C.CR;T / such that

(i-cl) u 2 C 1.�
C
.u// \ C 2.�C.u// and u 2 C 1.�

�
.u// \ C 2.��.u//,

(1.2)
L u �Dtu � 0 .� 0; D 0/ in �C.u/ D CR;T \ fu > 0g;

L u �Dtu � 0 .� 0; D 0/ in ��.u/ D CR;T \ fu � 0g
o;

(ii-cl) the free boundary F.u/ is a C 1 surface, jruCj > 0 on F.u/, and for
every .x; t/ 2 F.u/,

(1.3) � V� D
Dtu

C

jruCj
� G.jruCj; jru�j/ .�;D/:

Viscosity solutions are defined in the following way (see [6]):

DEFINITION 1.1. Let u be a continuous function in CR;T . We say that u is a
viscosity subsolution (supersolution) of our f.b.p. if, for any subcylinder C of CR;T
and for every classical C 2-supersolution (subsolution) v in C , u � v (u � v) on
the parabolic boundary @pC implies that then u � v (u � v) in C . The function
u is called a viscosity solution if it is both a viscosity supersolution and a viscosity
subsolution.

Existence results for viscosity solutions can be found in [14]; actually, in that
very nice paper, the authors give a slightly different notion of viscosity solution
and also prove a comparison theorem for subsolutions and supersolutions with
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strictly separated boundary data. All the above results are still valid in our case
and, in particular, we will use their comparison theorem 3.1, in Section 4.1. In
the case L D � and G.a; b/ D a � b, that is, in the classical two-phase Stefan
problem, they also prove the equivalence of the notions of viscosity solution and
weak solution defined via the so-called enthalpy formulation (see, e.g., [12,17]). A
remarkable consequence is the uniqueness of viscosity solutions with continuous
boundary data.

Some related results concerning questions of uniqueness in two-phase problems
are shown in [18]. In particular, via a very interesting comparison theorem, unique-
ness of a viscosity solution is established in singular perturbation problems for a
class of fully nonlinear operators of the form F.Dw;D2w/, including, for in-
stance, the p-Laplace operator.

As far as the regularity of the solution and the free boundary are concerned,
another recent important paper is [19]. In that paper the authors prove that the
classical two-phase Stefan problem admits a unique local (in time) solution that is
analytic in space and time, under mild assumptions on the regularity and nonde-
generacy of the initial data.

For viscosity solutions, the papers [3–5] deal with the optimal regularity of a
solution and the analysis of the free boundary for nonlinear generalG and L D �.
These results are of a local nature and are therefore independent of boundary or
initial data. In particular, in [3] it is shown that if the free boundary is locally a
Lipschitz graph in space and time, then the solution is Lipschitz across the free
boundary. Note that the Lipschitz continuity in time corresponds to finite speed of
the free boundary.

On the other hand, Lipschitz continuity alone cannot give any further regular-
ization of the free boundary as the counterexample in [4] shows. Actually, an
analogous counterexample holds even for a one-phase Stefan problem (see [2,20]).

To achieve further regularization of the free boundary it is enough to add a non-
degeneracy condition preventing the two fluxes from vanishing simultaneously on
both sides of the free boundary. It is remarkable that the same effect can be ob-
tained by asking that the time sections of the free boundary be flat, that is, that the
Lipschitz constant in space be sufficiently small or that the solution be �-monotone
(see the definition below) along the directions of a space-time cone whose time
section is sufficiently open. This situation occurs, for instance, in the limiting be-
havior of blowup sequences of the type ��1u.�x; �t/ as �! 0. This fact will play
a crucial role in Section 4.

Under the above conditions, the free boundary is locally a C 1 graph, the nonde-
generacy condition jruCj > 0 holds on F.u/, and therefore a viscosity solution is
indeed a C 1-classical solution. In [15] it is shown that if G is smooth, nondegen-
erate C 1-free boundaries are indeed C1.

When L has the general form (1.1) the only known result is in [11], where we
prove the Lipschitz continuity of the solution under the hypotheses that the free
boundary is flat in space and that a nondegeneracy condition holds. Here we get
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rid of this nondegeneracy condition and prove directly that the free boundary is C 1

and that viscosity solutions are indeed classical solutions.
We can now state our main result for a true two-phase problem, which is the

significant case. The extension to the one-phase case is straightforward. We denote
by p D .x; t/ D .x0; xn; t / points in Rn�1 �R �R.

THEOREM 1.2. Let u be a viscosity solution to our f.b.p. in C2;2 and set M D

supC2;2 juj, ju.˙en;�3=2/j � m > 0. Let the free boundary F.u/ be given by the
graph of a function xn D f .x0; t / with .0; 0/ 2 F.u/. Assume that there exist L,
L0 � 0, such that for every .x; t/; .y; s/ 2 C2;2 \ F.u/,

jf .x0; t / � f .y0; s/j � Ljx0 � y0j C L0jt � sj:

If L is small enough, depending only on n, kAkC0;˛ ; kbk1, L0, �, ƒ, m=M , cG ,
then C1;1 \ F.u/ is a C 1-graph in space and time. Moreover, there exist positive
constants c1; c2 depending only on n, kAkC0;˛ , kbk1, L0, �, ƒ, m=M , and cG
such that, for every .x0; xn; t /; .y0; yn; s/ 2 F.u/:

(i) jrx0f .x0; t / � rx0f .y0; s/j � c1.log jx0 � y0j/�4=3;
(ii) jDtf .x0; t / �Dtf .x0; s/j � c1.log jt � s0j/�1=3:

As a consequence, u 2 C 1.�
C
.u// \ C 1.�

�
.u// on F.u/ and

jruCj � c2 > 0:

As a byproduct of the proof of Theorem 1.2 we obtain an interior stability result
for the free boundary that could be of independent interest (see Theorem 4.2).

The overall strategy of the proof of Theorem 1.2 follows the papers [4,5] and is
based on perturbation from the constant-coefficient case with two main elements
of novelty that we are going to describe along with the general lines of the proofs
commenting on the relevance and the role of the various hypotheses.

First, we make a few remarks on rescalings. As is common in regularity theories,
the above results are obtained through an iteration process involving a sequence
of rescalings of the problem. In principle, there are three types of rescaling that
we could use: a parabolic rescaling, u�.x; t/ D u.�x; �2t /; a parabolic blowup,
u�.x; t/ D ��1u.�x; �2t /; and a hyperbolic blowup, u�.x; t/ D ��1u.�x; �t/.
Here we assume that �! 0.

The parabolic rescaling leaves the equation and, if G is linear, the free bound-
ary condition unchanged. However, it progressively deteriorates the underlying
nondegeneracy condition hidden inside the flatness condition, namely a Hopf-type
principle at regular points of the free boundary (see Lemma 6.1 below or lemma
5.1 in [5]). A point .x0; t0/ 2 F.u/ is regular from the right (respectively, left) if
there exists an .n C 1/-dimensional ball B � �C.u/ (respectively, ��.u/) such
that f.x0; t0/g D @B \ F.u/.

We use this rescaling only once at the beginning of the proof, to get the �0-
monotonicity of u along a space-time cone � t .en; � t /, where �0 is a small positive
number and � t � �

4
.
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After a parabolic blowup, the equation and the nondegeneracy condition remain
unaltered, but the free boundary condition progressively degenerates, preventing
any gain in regularity (see the counterexample in [4]) and any error control in the
perturbation arguments.

The hyperbolic blowup leaves nondegeneracy and the free boundary condition
unchanged. Also the perturbation error can easily be kept under control. However,
there are two drawbacks. A minor one is that the coefficient of Dtu� is vanishing,
disconnecting more and more the various time levels. This inconvenience is kept
under control during the iterations by the space-time monotonicity properties of u.
A more serious problem is that every estimate has to be done in hyperbolic geom-
etry. As in [4, 5] this forces us to use a intermediate, almost-hyperbolic blowup
tailored to overcome the above difficulty.

The plan of the paper is the following.
In Section 2 we recall some results from [11] about the full monotonicity of u

along the direction of a spacial cone �x.en; �/ of axis en and opening � , its �0-
monotonicity and its full monotonicity �0-away from the free boundary, along the
direction of a space-time cone � t .en; � t /, with � D �

2
� � t � ı D �

2
� � . Notice

that this gives a control of Dtu in terms of Dnu, �0-away from the free boundary.
Clearly, the defect angles ı and � measure the flatness of the level surfaces

of u. The next goal is to decrease these defects away from the free boundary. This
must be done in the above almost-hyperbolic homogeneity and, as in the constant-
coefficient case, the free boundary condition has to play a role. Since directional
derivatives do not satisfy any kind of reasonable equation, one has to resort to a
quite delicate perturbation argument based on two key facts.

The first one is that the parabolic version of the sup-inf convolution family of
deformations constructed in [10] gives subsolutions for a single operator and also
for a class of slightly perturbed operators belonging to A (Section 3).

The second one is a local stability result: the free boundary of a solution ´ of
the f.b.p. for the heat operator sharing with u the boundary data is contained in an
�0-neighborhood of F.u/ (see Theorem 4.1). Thus, thanks to [5], the function ´
becomes a classical solution. Here the Hopf principle at right and left (unless
u� � 0) regular points plays a crucial role. We can then use ´ as a perturbation
of u to get the proper gain in monotonicity through the corresponding properties
of ´ itself (Section 4).

At this point one has all the ingredients to apply the results in [4] in order
to propagate the gains in the opening of the space and space-time cones of �0-
monotonicity to the free boundary in a smaller cylinder with the proper homogene-
ity.

Still we have �0-monotonicity only, so that we need to decrease �0. This can be
done exactly as in [11] (Section 3) through the construction of another family of
deformations; this is possible thanks to the progressive improvement of the cones
opening.
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In both the gains of the cones opening and of �0-monotonicity, the Hopf princi-
ple is once more crucial (although this time only for right-regular points).

Thus, the initial step in the iteration is proved. At this point, a double itera-
tion procedure as in [5] can be performed to achieve the results in Theorem 1.2:
at each step we obtain a cone enlargement (from ık to ıkC1 < ık , from �k to
�kC1 < �k) and an �0-monotonicity improvement (from �k to �kC1 < �k) in a
sequence of contracting cylinders, whose homogeneity turns out to be intermedi-
ate between parabolic and hyperbolic. This produces a speed of the cones opening
corresponding to a logarithmic modulus of continuity for rf;Dtf . Particular care
is required in keeping under control the balance between �k and the smallness of
kA � Ik1 and kbk1 at each step.

Remark 1.3. The above result holds for operators with a drift term b.x; t/ � ru as
well when b is merely bounded measurable. Indeed, we work with bj 2 C. xCR;T /
only to avoid the technicalities of Lp-viscosity solutions. Thus, our results hold
in particular for operators in divergence form with Lipschitz coefficients, where
jru˙j are replaced by the conormal derivatives in the free boundary condition.
To handle this case, the only difference lies in the construction of the families of
appropriate sup-inf convolutions, where we have to use a viscosity approach as
in [10]. Semilinear operators of the form

L D Tr.A.u; x; t/D2/C b.u; x; t/ � r
where A is Hölder-continuous with respect to all its arguments and b is bounded
are also included.

Remark 1.4. The extension to a more general free boundary condition

V� D �G.jru
C
j; jru�j; �; x/

is possible if G is Lipschitz with respect to �; x, with small Lipschitz constant
depending on L;L0. This smallness condition actually enters only in the first step
of the iteration process.

The various constants c; C that will appear in the following may vary from
formula to formula. If for a constant c; �; �; etc., we don’t give any explicit de-
pendence, we mean that it depends only on some of the relevant parameters n,
kAkC0;˛ , kbk1, L, L0, �, ƒ, m=M , and cG .

2 LLL -Caloric Functions in Lipschitz Domains: Known Results
In this section we collect for the reader’s convenience some well-known Harnack

principles and some of the results in [11] more or less continuously quoted in this
paper.

Following [6], by a L -caloric function we mean a nonnegative solution u of
the equation L u �Dtu D 0 in some Lipschitz domain ‰ � RnC1 that vanishes
locally on some distinguished part of @‰. Specifically, let

‰2r D f.x
0; xn; t / W jx

0
j < 2L�1r; jt j < 4L�20 r2; f .x0; t / < xn < 4rg
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and u be L -caloric in ‰2 vanishing on

F.u/ D f.x0; xn; t / W jx
0
j < 2L�1; jt j < 4L�20 ; xn D f .x

0; t /g:

We always assume that f .0; 0/ D 0. Let Pr D .0; r; 0/, xPr D .0; r; 2L�20 r2/, and
P r D .0; r;�2L

�2
0 r2/. Moreover, letm D u.P 3=2/ > 0 andM D sup‰2 u finite.

Harnack Principles
We will repeatedly use the interior Harnack inequality and some boundary Har-

nack principles. We recall these results in a form adapted to our situation.
Let ı..x; t/; .y; s// D jx � yj C jt � sj1=2 be the parabolic distance and set

ıx;t D ı..x; t/; .0; 0//:

Then we have:
INTERIOR HARNACK INEQUALITY (SEE [16]): There exists a positive con-

stant c D c.n; �;ƒ/ such that for any r 2 .0; 1/:

u.P r/ � cu.
xPr/:

CARLESON ESTIMATE (SEE [13]): There exist c D c.n; �;ƒ;L;L0/ > 0

and ˇ D ˇ.n; �;ƒ;L;L0/, 0 < ˇ � 1, such that for every .x; t/ 2 ‰r=2

(2.1) u.x; t/ � c

�
ıx;t

r

�ˇ
u. xPr/:

BOUNDARY HARNACK PRINCIPLE (SEE [8]): There exist c D c.n; �;ƒ;L;
L0/ > 0 and ˇ D ˇ.n; �;ƒ;L;L0/, 0 < ˇ � 1, such that for every
.x; t/ 2 ‰r=2

(2.2)
u.x; t/

v.x; t/
� c

u.P r/

v. xPr/
:

BACKWARD HARNACK INEQUALITY (SEE [3]): There exists a positive con-
stant c D c.n; �;ƒ;L;L0; m=M/ such that if r < 1

2

(2.3) u. xPr/ � cu.P r/:

The proof of (2.3) follows the same line in [3], using the results in [1, 8, 9] on the
L -caloric measure .

Monotonicity in Space
If u is L -caloric, then it is monotone increasing along a spatial cone of direc-

tions. We shall denote by �x.e; �/ a spatial cone with opening � and axis e; in
particular, if � 2 �x.e; �/, then h�; et i D 0 where et is the time direction. More-
over, � t .�; �/ will denote a space-time cone of width � and axis � 2 spanfe; etg.
In such case a vector � 2 � t .�; �/ can have both space and time components.
Finally, set

Fs.u/ D F.u/ \ ft D sg:

Then we have the following (see lemma 2.1 in [11]):
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LEMMA 2.1. There exists � D �.n;L;L0; kAkC0;˛ ; kbk1; m=M; �;ƒ/ > 0 such
that in ‰1 \ fdx;t � �g, u is increasing along the space directions � belonging
to the cone �x.en; �/, with opening � D 1

2
cot�1L. Moreover, there exist positive

constants c1; c2, depending only on n, L, L0, kAkC0;˛ , kbk1, m=M , �, and ƒ
such that, in ‰1 \ fdx;t � �g,

(2.4) c1
u.x; t/

dx;t
� Dnu.x; t/ � c2

u.x; t/

dx;t
;

where dx;t D dist..x; t/; Ft .u//.

Space-Time �-Monotonicity and Full Monotonicity
We say that u � 0 is �-monotone along a direction � 2 RnC1 in ‰1 if

u..x; t/C �0�/ � u.x; t/ � 0

for every �0 � � as long as .x; t/ and .x; t/C �0� both belong to ‰1.
We can express the �-monotonicity along all the directions � 2 �.e�; ��/ by

saying, in an essentially equivalent way, that for every �0 � � and every � 2
�.e�; ��=2/

u�0.p/ � sup
q2B�0 sin��=2.p/

u.q � �0�/ � u.p/

for all p D .x; t/ at distance greater than �0 from @‰1.
Let �0 be a small number to be chosen later depending only on n, L, L0,

kAkC0;˛ ; kbk1, m=M , �, and ƒ. After a suitable parabolic rescaling, we can
rewrite lemma 2.3 in [11] in the following way:

LEMMA 2.2. Let � be as in Lemma 2.1 and �0 < �=100. There exist positive
constants C0, � t , and �

4
� � t < �

2
, depending only on n, L, L0, kAkC0;˛ , kbk1,

m=M , �, and ƒ such that
(a) in ‰1 \ fdx;t � �g

jDtu.x; t/j � C0d
a�1
x;t Dnu.x; t/;

where a D a.n; ˛;L; kAkC0;˛;kbk1/I
(b) u is �0-monotone in ‰1 \ fdx;t � �g and fully monotone in ‰1 \ f�0 �

dx;t � �g along the directions of a space-time cone � t .en; � t /.

Remark 2.3. After the above-mentioned rescaling, we can actually assume � D 1

in Lemmas 2.1 and 2.2, and moreover !.r/ � cr˛0 r
˛ with r0 � �

.1�˛/=˛
0 . Also,

we can assume kbk1 � !.1/. This will be used later on.

3 Families of Continuous Deformations
In this section we construct two families of continuous deformations that play

a key role in our regularization procedure. The main point is that these families
turn out to be families of sub/supersolutions for a single operator and also for a
set of operators with close coefficients. We need this to get the improvement of
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the smoothness of the level sets far from the free boundary in properly scaling
regions. In the variable-coefficient case this step constitutes a major difficulty,
since derivatives do not satisfy any reasonable parabolic equation.

In the following we shall denote by P� the extremal Pucci’s operator defined
as

P�.�/ D inf
A2S�;ƒ

Tr.AD2�/;

where S�;ƒ is the class of symmetric matrices with eigenvalues between � andƒ,
0 < � � ƒ.

3.1 Subsolutions and Supersolutions for Parabolic Operators
For a diffusion matrix A and drift b we denote by LA;b the corresponding para-

bolic operator in A . Let u be a solution of our f.b.p. in a cylinder CR;T , and � be
a smooth function such that

v�.p/ D sup
B�.p/.p/

u D sup
j�jD1

u.p C �.p/�/

is well-defined in some region D � CR;T � RnC1. Assume that P D p C

�.p/��, where �� 2 RnC1 and j��j D 1, is the point where the maximum is
achieved so that v�.p/ D u.P /. Observe that if �� D ��s C �

�
t , where ��s D

.��1 ; : : : ; �
�
n ; 0/ and ��t D .0; : : : ; 0; �

�
nC1/, then j��s j D

p
1 � .��t /

2 and

v�.p/ D supfu.q/ W q 2 B 0
j��s j�.p/

.p C ��t �.p//g

D sup
�2B 0

j��s j�.p/
.0/

u.p C � C �.p/��t /:

For a small vector � define

v�;� .p/ D sup
B�.p/.p/

u.q � �/ D sup
j�jD1

u.p � � C �.p/�/ D u.P� /;

where P� D p � � C �.p/� for some suitable vector �. Similarly, we set

w�;� .p/ D inf
B�.p/.p/

u.q � �/ D inf
j�jD1

u.p � � C �.p/�/ D u. zP� /;

where zP� D p � � C �.p/z�� for some z��, jz��j D 1.

THEOREM 3.1. Let u be a solution of our f.b.p. in a cylinder CR;T for the operator
LB;b � Dt . Assume that LA;b0 � Dt is another operator in the same class. Let
�0 be as in Lemma 2.2 and � 2 C 2.CR;T / be a strictly positive function. Let
! � !.�max/, where �max D max xCR;T �. Assume that

(3.1) kA � Bk1 � C0

�
ƒ

�
� 1

�
� !; kb � b0k1 � !;

and that in a smaller cylinder C 0 � CR;T , with dist.C 0;CR;T / � �� �0,

Dt� � 0
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and

(3.2) P�.�/ � c1Dt� � C
jr�j2 C !2

�
C c2.jr�j C !/

for some positive constants C0, C , c1, and c2 depending only on n, �, ƒ, and �.
Then

(i) in both �˙.v�;� / \ C 0, v�;� is a viscosity subsolution for the operator
LA;b0 �Dt I

(ii) in both �˙.w�;� / \ C 0, w�;� is a viscosity supersolution for the operator
LA;b0 �Dt .

Remark 3.2. After Remark 2.3, if � satisfies (3.2), then also �0� satisfies the same
inequality, with a slightly different constant independent of �0.

Since the proof of Theorem 3.1 is very technical, we have postponed it to the
Appendix.

3.2 Construction of the Variable Radius
We now proceed to construct a family of radii �� with Dt�� � 0 and satisfying

in particular (3.2).

LEMMA 3.3. Let 0 < T and C > 1. There exist positive constants xC D xC.T; C /,
k D .T; C /, and h0 D h0.T; C / such that for any 0 < h < h0, there is a family of
C 2-continuous functions ��, 0 � � � 1, defined in the closure of

D D

�
B 01

� �
xB 01=8

�
3

4
en

�
[ xB 01=8

�
�
3

4
en

���
� .�T; T /

such that
(i) 1 � ! � �� � 1C �h in xD,

(ii) P�.��/ � c1Dt�� � C
jr��j

2C!2

��
� c2.jr��j C !/ � 0 in D,

(iii) �� � 1C k�h in B 0
1=2
� .�T

2
; T
2
/,

(iv) �� � 1 in D n .B 0
7=8
� .�7T

8
; 7T
8
//,

(v) Dt�� � xC�h and jr��j � xC.�hC !/ in xD, and
(vi) Dt�� � 0 in D,

for c1, c2, and ! small positive constants depending on n, �, ƒ, and C .

PROOF. We split the proof into two parts. In the first part we construct a func-
tion '� that satisfies our theorem when ! D 0, while in the second one we modify
'� in order to satisfy our theorem.

Step 1. We construct '� D .1 C  �/
1=.1�C/, where C > 1 has to be chosen

in order to satisfy the following conditions (see lemma 9.15 in [6]) for every A 2
S�;ƒ W

(i0) 1 � '� � 1C �h in xD;
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(ii0) Tr.AD2'�/ � c1Dt'� � C jr'�j2='� � c2jr'�j � 0 in D,
(iii0) '� � 1C k�h in B 0

1=2
� .�T

2
; T
2
/,

(iv0) '� D 1 in D n .B 0
7=8
� .�7T

8
; 7T
8
//,

(v0) Dt'�, jr'�j � xC�h in xD,
(vi0) Dt'� � 0 in D.

We compute

r'� D
1

1 � C
.1C  �/

C
1�C r �; Dt'� D

1

1 � C
.1C  �/

C
1�CDt �;

Tr.AD2'�/ D
1

1 � C

�
C

1 � C

�
.1C  �/

2C�1
1�C Tr.Ar � ˝r �/

C
1

1 � C
.1C  �/

C
1�C Tr.AD2 �/:

Thus, we first look for � such that  � � 0 and

Tr.AD2'�/ � C
jr'�j

2

'�
� c2jr'�j � c1Dt �

D
1

1 � C
.1C  �/

C
1�C

�
Tr.AD2 �/

C

�
C

1 � C

�
.1C  �/

2C�1
1�C Tr.Ar � ˝r �/

�

�
1

1 � C
.1C  �/

C
1�C

� C
.1�C/

.1C  �/
C
1�C jr �j

2

.1C  �/
1

1�C

C c1Dt �

�
�

c2

1 � C
.1C  �/

1
1�C
�1
jr �j � 0:

Since C > 1, it is enough that  � satisfies the inequality

Tr.AD2 �/ � c1Dt � � c2jr �j � 0;

where c2 and c1 are positive constants.
Set x0 D 3

4
en, and consider the function

0.p/ D �Ejx � x0j
�N
� t;

where E and N are positive constants to be chosen. We have

r 0 D NEjx � x0j
�N�1 x � x0

jx � x0j
D NEjx � x0j

�N�2.x � x0/

and

Dij 0 D �N.N C 2/Ejx � x0j
�N�4.xi � xi0/.xj � xj0/

CNEjx � x0j
�N�2ıij :
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Hence

D2 0 D �N.N C 2/Ejx � x0j
�N�2� ˝ � CNEjx � x0j

�N�2I:

Thus

Tr.AD2 0/ D �N.N C 2/Ejx � x0j�N�2
nX

i;jD1

aij �i�j

C Tr.A/NEjx � x0j�N�2

� NEjx � x0j
�N�2.�.N C 2/�C nƒ/:

On the other hand, Dt 0 D �1 < 0: Set z � D �h 0: If E > T , then z � � 0
in D. Moreover,

Tr.AD2 z �/ � c1Dt z � � �h.NEjx � x0j�N�2.�.N C 2/�C nƒ/C c1/

� �h.NE2�N�2.�.N C 2/�C nƒ/C c1/ � 0;

whenever N � nƒ
�
� 2 and

0 < c1 < NE2
�N�2..N C 2/� � nƒ/:

Clearly j z �j and jr z j are small with h.
Let nowm0 be a small positive constant such that z � Cm0 � 0 in D n .B 0

7=8
�

.�6T
7
; 6T
7
/ and set

y � D minfm0 C z �; 0g:

After a mollification we get a function  � that satisfies the following properties for
small c1 and c2 and a, b, zc, and h as in lemma 11 in [4]:
� �a� �  � � 0 in xD,
� Tr.AD2 �/ � c1Dt � C C jr �j2= � � c2jr �j � 0 in D,
� � D 0 in D n B 0

8=9
� .�7T

8
; 7T
8
//,

� � � �k�bh in B 0
1=2
� Œ�T

2
; T
2
�,

� jDt �j, jr �j � zc�h, in D,
� Dt � � 0 in D.
Then the function

'� D .1C  �/
1

1�C

satisfies all the requirements (i0)–(v0).
Step 2. Define

�� D '� C !.jxj
2
� 1/:

Then
jr��j � jr'�j C 2! � xC�hC 2!:
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Now, for every matrix A we can write, using the properties of '�,

Tr.AD2��/ � c1Dt�� � C
jr��j

2 C !2

��
� c2.jr��j C !/

D Tr.AD2'�/ � c2Dt'� C 2! Tr.A/ � C
jr'�j

2 C 4!hr'�; xi C 4!
2jxj2

��

� c1.jr'� C 2!xj C !/

� Tr.AD2'�/ � c2Dt'� � C
jr'�j

2

'�
� c1jr'�j C 2! Tr.A/ � 3c1!

� c00!.jr'�j C 4!/

� 2! Tr.A/ � 3c1! � c00!.jr'�j C 4!/ � !.2n� � 3c1 � c00.zc1�hC 4!//:

Thus, if c1 and ! are small enough, �� fulfills all the properties (i)–(vi). �

3.3 Asymptotic Developments
We now examine the asymptotic behavior at regular points on the free boundary.

The following two lemmas can be proved using the arguments in lemma 13.19 and
theorem 7.1 in [6].

We recall that a point .x0; t0/ 2 F.u/ is a regular point from the right (respec-
tively, left) if it has a touching ball B � �C.u/ (respectively, � ��.u/) with
tangent plane at .x0; t0/, say ˛Ch.x � x0; �/i C ˇC.t � t0/ D 0.

LEMMA 3.4. Let u be a viscosity solution in C1;1 of our f.b.p. satisfying the hy-
potheses of the main Theorem 1.2 . Suppose .0; 0/ 2 F.u/. Then, near .0; 0/, the
following asymptotic inequalities hold:

(i) If .0; 0/ is regular from the right,

u.x; t/ � .ˇCt C ˛Chx; �i/C � .ˇ�t C ˛�hx; �i/� C o.dx;t /

with ˛C > 0, ˛� � 0, ˇC; ˇ� 2 R, and

(3.3) ˇC � ˛CG.˛C; ˛�/:

(ii) If .0; 0/ is regular from the left,

u.x; t/ � .ˇCt C ˛Chx; �i/C � .ˇ�t C ˛�hx; �i/� C o.dx;t /

with ˛C � 0, ˛� > 0, ˇC; ˇ� 2 R, and

(3.4) ˇC � ˛CG.˛C; ˛�/:

Moreover, equality holds in the above asymptotic expansions along parab-
oloids of the form t D �hx; �i2,  > 0.

For the next lemma, recall that the solution of our f.b.p. enjoys the monotonicity
properties expressed in Lemmas 2.1 and 2.2 along the spatial cone �x.en; �/ and
the space-time cone � t .en; � t /.
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LEMMA 3.5. Let u be a viscosity solution of a free boundary problem satisfying
the hypotheses of Theorem 1.2. Let

(3.5) xv�.p/ D sup
B�� .p/

u;

where �� is as in Lemma 3.3.
Suppose the supremum in (3.5) occurs uniformly away from the top and the

bottom points of the ball, at a distance not smaller than some fixed constant �.
Then the following hold:

(i) @�C.v�/ is uniformly Lipschitz in space-time with Lipschitz constant in
space bounded above by tan.�

2
� �/C cjr��j.

(ii) If .x0; t0/ 2 F.v�/ and .y0; s0/ 2 F.u/ with

.y0; t0/ 2 @B��.x0;t0/.x0; t0/;

then .x0; t0/ is a regular point from the right. Moreover, if near .y0; s0/
along the paraboloid s D s0�hy�y0; �i2 . > 0/, u has the asymptotic
expansion

u.q/ D ˛Chy � y0; �i
C
� ˛�hy � y0; �i

�
C o.jy � y0j/

where � D .y0 � x0/=jy0 � x0j, then near .x0; t0/ along the paraboloid
t D t0 � hx � x0; �i

2,

xv�.p/ � ˛
C

�
x � x0; � C

��.x0; t0/

jy0 � x0j
r.��/

�C
� ˛�

�
x � x0; � C

��.x0; t0/

jy0 � x0j
r.��/

��
C o.jx � x0j/;

with s0�t0
jy0�x0j

� G.˛C; ˛�/.

Remark 3.6. A similar lemma holds with reverse inequalities for

(3.6) v�.p/ D inf
B�� .p/

u;

4 Local Stability Results for the Free Boundary
In this section we prove that under a small perturbation of the coefficients of

our operator, the free boundary undergoes a small perturbation too. For technical
reasons it is more convenient to work in a different kind of space-time cylinder.
Thus let

ˆR;r D f.x
0; xn/ W jx

0
j < R; jxnj < rg;

C �R;r;s; D ˆR;r � .�s; s/; C �s D C �s;s;s:

Note that C �1 � B
0p
2
.

Let u be a solution of our f.b.p. in C �2 . Observe that on fjx0j < 1; xn D ˙1g �

.�3
2
; 3
2
/ we have u � u.pC0 / � 1 and u � u.p�0 / � m, respectively, where

p˙0 D .˙
1
2
en; 0/.
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Recall that u is monotone along the directions � 2 �x.en; �/ and �0-monotone
along � t .en; �t /, with �

4
� � t < �

2
. Moreover, u is fully monotone along

� t .en; �t / outside a �0-neighborhood of F.u/. Let �0.x; t/ D 1C!.jxj2�2/with
! D !.1/� ı D �

2
� � and also ! � �.1�˛/=˛0 . We assume that kA�Bk1 � !

and kb � b0k1 � ! (see (3.1) and Remark 3.2).
Note that �0 is one of the functions constructed in Lemma 3.3, corresponding to

the parameter � D 0. Clearly max
B
0p
2�R

�0 D 1:

THEOREM 4.1. Let ´ be the solution of our f.b.p. for the heat operator in C �1 with
´ D u on the parabolic boundary @pC �1 . Then:

(a) F.´/ \ C �1 is contained in a �0-neighborhood N�0.F.u// of F.u/.
(b) ´ is �0-monotone along the directions � 2 �x.en; � 0/[� t .en; � 0t /, with � 0

and � 0t slightly smaller than � and �t , respectively (to be specified later).
(c) If �0 and ı0 D �

2
� � 0 are small enough, depending only on n and � 0t ,

in C �
1=2

, then F.´/ is the graph of a C 1-function f � D f �.x0; t /. In
particular, ´ is a classical solution and

´.p/ � Cdp in C �1=2;

jr´.p/j � C0 in C �1=2 \ F.´/;

where p D .x; t/.

PROOF. We split the proof into several steps.
Step 1. We first show that F.´/ stays at most �0 away to the left of F.u/.
Choose � 0 and � 0t slightly smaller than � and �t , respectively, such that, if � is a

vector belonging to �x.en; � 0 � ı/[� t .en; � 0t � ı/ with �0 D j� j sin.ı=2/ in C �
3=2

we can write
v0.p/ � sup

q2B�0�0 .p/

u.q � �/ � u.p/;

with the free boundary of v0 �0-away from F.u/. We know that v0 is an L -
subsolution in the complement of its zero set. Since D�=j� ju � cıDnu, uniformly
in �C.v0/ \ C �

3=2
, we get

(4.1) v0.p/ < .1 � c�0/u.p/

in the same set. Indeed, if
v0.p/ D u.xq � �/;

we have, using (2.4),

u.p/ � v0.p/ D u.p/ � u.xq � �/ � c1ıjp � xq C � jDnu.p/

� c2ıjj� j � �0ju.p/ > c�0u.p/:

Let wC be the caloric measure in �C.xv0/ \ C �1Cx�;1;1Cx� of

†C D fjx0j < 1C x�; xn D 1g � .�1 � x�; 1C x�/;
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extended by zero outside �C.xv0/. From (4.1), if x� is properly chosen, depending
only on the Harnack constant for u and the flatness of F.u/, we get

xV .p/ � xv0.p/C c
0�0u.p

C
0 /w

C.p/ < ´.p/

on @pC �1 , since ´ D u there.
We want to show that xV is a viscosity subsolution of the two-phase problem

in C �1 . We know from Theorem 3.1 that xV is subcaloric in both �˙. xV /. We have
only to check the free boundary condition.

Thus, let Q � C �1 be a cylinder and ' be a classical supersolution of the two-
phase problem such that ' � xV on @pQ.

It is actually enough to consider those ' such that ' > xV on @pQ. Indeed, if
this is true, let ' � xV on @pQ. Since both xv0.p/ and wC are strictly increasing
along en (forwC compare with translations), then xV is strictly increasing along en.
Hence, for a small positive � > 0, we can write '.p/ > xV .p � �en/ on @pQ, that
is, z'.p/ D '.p C �en/ > xV .p/ on @pQ � �en, and we deduce z'.p/ > xV .p/ on
Q � �en. Letting � ! 0 we get ' � xV on Q.

We now argue by contradiction. Suppose that t0 is the first time at which the
two free boundaries touch each other. If .x0; t0/ 2 F. xV / \ F.'/, then .x0; t0/ is
regular from both sides. If .y0; s0/ is the point where u1.q/ � u.q � �/ achieves
its maximum in the ball B�0�0.p/, then the interior normal is

� D
��

j��j
; �� D

y0 � x0 C �
2
0�0.x0; t0/rx�0.x0; t0/

jx0 � y0j
:

Set ˇC D Dt'C.x0; t0/ and ˛˙ D jr'˙.x0; t0/j. We have

(4.2)
ˇC

˛C
� G.˛C; ˛�/:

From (i) of Lemma 3.5 and (v) of Lemma 3.3, we get that F. xV / is a Lipschitz
surface with Lipschitz constant controlled by .1 C x�/ı, where x� is a small num-
ber. Thus, since by construction .x0; t0/ is x�-away from @pC1;1;x�, we can use the
contact point Lemma 5.1 in [5] and deduce

D�w
C.x0; t0/ � c

�.x�/ > 0:

Now, near .y0; s0/ along the paraboloid s D s0 � hy � y0; �1i
2, where �1 D

.y0 � x0/=jy0 � x0j, u1 has the asymptotic development

u1.y; s/ D ˛
C
1 hy � y0; �1i

C
� ˛�1 hy � y0; �1i

�
C o.jy � y0j/

with

(4.3)
s0 � t0

jy0 � x0j
� G.˛C1 ; ˛

�
1 /:

By the boundary Harnack principle we have, near .x0; t0/,

wC � zc.x�/ xV :
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Thus near .x0; t0/, by Lemma 3.5, we can write

xV .x; t/ � y̨Chx � x0; �i
C
� ˛�1 hx � x0; �i

�
C o.jx � x0j/

where
y̨
C
� ˛C1 C Cc

��0;

if jr�0j � ! is kept small.
Then, we have (see [5, lemma 8.3]), by (4.2) and the Lipschitz continuity of G,

G.˛C; ˛�/ �
ˇC

˛C
D

s0 � t0

jy0 � x0j
j��j�1

�
s0 � t0

jy0 � x0j
.1C c1�0!/

� G.˛C1 ; ˛
�
1 /C c2�0!

� G.y̨C1 ; ˛
�
1 / � �0.Cc

�
� C2!/

< G.y̨C1 ; ˛
�
1 /

as long as ! < Cc�=C2.
By the strict monotonicity of G and the Hopf maximum principle, we reach a

contradiction, since ˛C > y̨C1 and ˛� < ˛�1 . We conclude that xV is a viscosity
subsolution of the f.b.p.

Theorem 3.1 in [14] now gives

xV < ´ in C�1 :

This inequality says that F.´/ stays at most �0-away to the left of F.u/.
To show that F.´/ stays at most �0-away to the right of F.u/, the argument is

the same. We know that

v0.p/ � inf
q2B�0�0 .p/

u.q C �/ � u.p/

in C �
3=2

and

v0.p/ > .1 � c�0ı/u.p/

in ��.v0/ \ C �
3=2

. Moreover, v0.p/ is an L -supersolution in the complement of
its zero set; see Remark 3.6.

Now let w� be the caloric measure in ��.v0/ \ C �1Cx�;1;1Cx� of

†� D fjx0j < 1C x�; xn D �1g � .�1 � x�; 1C x�/;

extended by zero outside ��.v0/. Then we can write

V .p/ � v0.p/ � c
0�0u.p

�
0 /w

� > ´.p/

on @pC �1 , since ´ D u there.
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As before we can show that V is a viscosity supersolution of the two-phase
problem in C �1 . This time, theorem 3.1 in [14] gives

V > ´ in C �1 :

This inequality says that F.´/ stays at most �0-away to the right of F.u/ and (a)
follows.

Step 2. The results in part (a) are valid for any �0 such that �0 � �0 � 2�0.
Thus we have, for every vector � 2 �x.en; y� � ı/ [ �

t .en; y�
t � ı/ such that

�0 D j� j sin. ı
2
/,

´.p/ � inf
q2B�0�0

.p/
u.q C �/ � u.p C �/ � sup

q2B�0�0
.pC�/

u.q/ � ´.p C �/:

It is now easy to deduce that ´ is �0-monotone along the selected directions.
Step 3. From (b), ´ falls under the hypotheses of theorem 1.4 in [5] and the

conclusion follows. �

Conclusion (a) of Theorem 4.1 can be extended to solutions of our f.b.p. gov-
erned by more general operators

zL D Tr. zAD2/C zb � r

belonging to the class A . Specifically, we have the following, taking for simplicity
zb D 0:

THEOREM 4.2. Assume the hypotheses of Theorem 1.2 hold. Let zL be another
operator in the class A , and let zu be a solution of our f.b.p. in C �1 for the oper-
ator zL , with zu D u on @pC �1 . Then, if kA � zAk1 � ! and �0 and ! are as in
Theorem 4.1, F.zu/ \ C �1 is contained in a �0-neighborhood of F.u/.

PROOF. We follow the proof of Theorem 4.1, keeping also the same notation,
until we get inequality (4.1):

xv0.p/ < .1 � c�0/u.p/;

valid in �C.xv0/ \ C �
3=2

.

Set �C
x� .xv0/ D �

C.xv0/ \ C �1Cx�;1;1Cx� and, as before,

†C D fjx0j < 1C x�; xn D 1g � .�1 � x�; 1C x�/:

Denote by P� the extremal Pucci operator

P�.v/ D inf
M2S�;ƒ

Tr.MD2v/:

Let 1†C be the characteristic function of †C and W C be the solution of the prob-
lem (

P�.W C/ �DtW C D 0 in �C
x� .xv0/;

W C D 1†C on @p�Cx� .xv0/;
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extended by zero outside �C.vC0 /. Note that, comparing with translations, we get
that W C is increasing along the en-direction. Define

xZ.p/ � xv0.p/C c
0�0u.p

C
0 /W

C.p/:

As in the proof of Theorem 4.1, we know that

xZ.p/ < zu.p/

on @pC �1 since zu D u there.
We want to show that xZ is a viscosity subsolution in C �1 for each operator
zL 2 A , satisfying the hypotheses of Theorem 4.2. Notice that xZ is zL -subcaloric

in both �˙. xZ/.
Again we have only to check the free boundary condition. Thus, letQ � C �1 be

a cylinder and ' be a classical supersolution such that ' � xZ on @pQ. It is enough
to consider those ' such that ' > xZ on @pQ and to show that ' > xZ inQ. Indeed,
let ' � xZ on @pQ.

Choose a small positive � , � � !. We have xZ.p � �en/ < xZ.p/ on @pQ,
since xZ is strictly increasing along en. Thus z'.p/ D '.p C �en/ > xZ.p/ on the
shifted parabolic boundary @pQ � �en. Since

zL� D

nX
i;jD1

zaij .p C �en/Dij

satisfies the hypotheses of Theorem 4.2, we deduce that z'.p/ > xZ.p/ inQ��en.
Letting � ! 0, we deduce '.p/ � xZ.p/ in Q.

From now on we can proceed as in the proof of Theorem 4.1, using the Pucci
operator

PC.v/ D sup
M2S�;ƒ

Tr.MD2v/

and modifying accordingly the arguments for

Z.p/ D v0.p/ � c
0�0u.p

�
0 /W

�

where W � is the solution of(
PC.W �/ �DtW � D 0 in ��� .v0/;
W � D 1†� on @p��� .v0/:

In conclusion, it turns out that

xZ.p/ < zu.p/ < Z.p/

in C �1 , which implies, in particular, that F.zu/ is contained in an �0-neighborhood
of F.u/. �

We now want to give estimates for u, ru, and Dtu in terms of ´, r´, and Dt´.
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LEMMA 4.3. Let z� D C�1 \ �C.u/ \ �C.´/. Under the stated hypotheses, on
@p z� we have

(4.4) ju � ´j � c0�
a
0u.p

C
0 /

where a is the Hölder exponent of u across the free boundary.

PROOF. For any pointp 2 F.u/\�C.´/ with distance of order �0 from @pC�1 ,
by the monotonicity properties of ´, the Carleson estimate, and the maximum prin-
ciple, we have the following:

(4.5) ´.p/ � c�0´.p
C
0 / � c�0u.p

C
0 /:

For the remaining points p on F.u/ \ �C.´/ at distance less than �0, we have,
using the monotonicity of ´ and by a Carleson estimate, if p C �0� 2 @pC�1 ,

´.p/ � ´.p C �0�/ D u.p C �0�/ � c�
a
0u.p

C
0 /:

Analogously, for any point p 2 F.´/ \ �C.u/ we have again by a Carleson
estimate

u.p/ � c�a0u.p
C
0 /:

Since u D ´ on the rest of @p z�, the proof is complete. �

LEMMA 4.4. Let Q be a cylinder contained in z� such that, say, dist.Q; @z�/ �
1=100. Then there exists a constant C such that, in Q:

ju.p/ � ´.p/j � c0�
xa
0u.p/;(4.6)

jru.p/ � r´.p/j � C�xa0Dnu.p/;(4.7)

jDtu.p/ �Dt´.p/j � C�
xa
0Dnu.p/;(4.8)

where xa D minf˛; a˛=.˛ C 2/g.

PROOF. The proof of estimate (4.6) is contained in [11, lemma 2.1]. For the
reader’s convenience we reproduce here the basic steps. Let p D .y; s/ 2 Q and

ˆ�0 D ˆ�0.p/ D B�0.y/ �
�
s � �20 ; s C �

2
0

�
:

Let w D u � ´. In ˆ�0.p/ we have

Dtw ��w D

nX
i;jD1

.ai;j � ıij /Diju �

nX
jD1

bjDju:

From Aleksandrov-Bakelman-Pucci estimates, we get

kwkL1.ˆ�0 /
� kwkL1.@pˆ�0 /

C C0�
n
nC1

0

 nX
i;jD1

.ai;j � ıij /Diju �

nX
jD1

bjDju

LnC1.ˆ�0 /

:
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We now take into account estimate (4.4) and use the techniques in [7, lemma 1],
the interior Harnack inequality, and the space-time monotonicity of u-away from
F.u/. We deduce that

kwkL1.@pˆ�0 /
� c0�

a˛
˛C2

0 u.p/:

Under our hypotheses,

kai;j � ıij kL1.ˆ�0 /
� c�˛0 and kbj kL1.ˆ�0 /

� !.1/ � �
.1�˛/=˛
0 :

Then, from interior Schauder estimates, the Harnack inequality, and the space-time
monotonicity of u, away from F.u/, we get nX

i;jD1

.ai;j � ıij /Diju �

nX
jD1

bjDju

LnC1.ˆ�0 /

� �˛0

 nX
i;jD1

Diju

LnC1.ˆ�0 /

C �
.1�˛/=˛
0

 nX
jD1

Dju

LnC1.ˆ�0 /

� c
�
�
˛�2CnC2

nC1

0 C �
1
˛
�1�1CnC2

nC1

0

�
u.p/ � c1�

˛�2CnC2
nC1

0 u.p/:

Thus we have

kwkL1.@pˆ�0 /
�

�
c0�

a˛
˛C2

0 C c1C0�
˛�2CnC2

nC1
C n
nC1

0

�
u.p/ � C�xa0u.p/:

The other estimates follow from interior Schauder estimates, the Harnack and
boundary Harnack inequalities, plus estimate (2.3). �

5 Interior Gains
As mentioned in the introduction, we need to enlarge the cone of monotonicity

away from the free boundary in hyperbolic homogeneity. To do that, we use the
perturbation Theorem 4.1. Indeed, for the solution ´ defined in Theorem 4.1, we
can use the results in [4, 5]. In particular, letting ı0 D �

2
� y� and �0 D �

2
�

y� t , where y� and y� t are defined in Theorem 4.1(b), from the proof of the Main
Theorem in [4], we infer that there exist a sequence of spacial cones �x.��

k
; ��
k
/

and sequences fA�
k
g, fB�

k
g, fı�

k
g, f��

k
g with the following properties: in

B 0
2�k
�

�
�C

ı�
k

��
k

; C
ı�
k

��
k

�
; k � 0;

(i) ´ is monotone increasing along every � 2 ��x .�
�
k
; ��
k
/;

(ii) ´ is monotone along the directions et C B�k �
�
k

and �et � B�k �
�
k

where

(5.1) 0 � B�k � A
�
k � c

�
0�
�
kI
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(iii) the sequences fı�
k
g and f��

k
g satisfy the recurrence relations

ı�kC1 � ı
�
k � c

�
1

ı�
k

��
k

;(5.2)

��kC1 � �
�
k � c

�
2 ı
�
k ;(5.3)

and ı�
k
� .��

k
/3.

The constants C , c�1 , and c�2 depend only on n and the Lipschitz constants of the
free boundary. We now choose y� and y� t such that ı0 and �0 are the predecessors
of ı and � in the recurrence relations (5.2) and (5.3):

ı D ı0 � c
�
1

ı0

�0
;(5.4)

� D �0 � c
�
2 ı0:(5.5)

LEMMA 5.1 (Interior Gain in Space). Let u be our solution of the f.b.p. and �xa0 �
ı. There exists a constant b0, 0 < b0 < 1, such that in

B 01=16

�
1

8
en

�
�

�
�C

ı

�
;C

ı

�

�
;

u is monotone increasing along the directions � belonging to a cone �x.x�; x�/ such
that

(5.6)
�

2
� x� � b0

��
2
� �

�
; jx� � enj � b0ı:

PROOF. Consider the recurrence relation for ´. After two iteration steps, we
deduce (see lemma 5 in [4]) that, in B 0

1=8
.1
4
en/ � .�C

ı
�
; C ı

�
/, ´ is monotone

increasing along the directions � belonging to a cone �x.��; ��/ with
�

2
� �� � b0

��
2
� �

�
:

Also, by deleting a fixed small neighborhood of a suitable generatrix of �x.��; ��/;
we can write, for the remaining directions � ,

D�´ � cıDn´:

Using (4.7) we infer that if �xa0 � ı;

D�u D D�u �D�´CD�´ � .cı � C�
xa
0 /Dn´ � zcıDn´;

and the conclusion follows easily. �

The enlargement of the cone in time is more delicate. To say that in some
region u is monotone along the directions of a cone � t .en; �t / means (see (ii)
above) that there exist real numbers A and B such that

0 � B � A � c�
�
� D

�

2
� �

�
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and

A � �
Dtu

C

DnuC
� B or A � �

Dtu
�

Dnu�
� B:

We have the following result:

LEMMA 5.2 (Interior Gain in Time). Let u be our solution of the f.b.p. and �xa0 �
ı � �3. There exists a constant z� such that in

B 01=16

�
1

8
en

�
�

�
�C

ı

�
;C

ı

�

�
either

�
Dtu

C

DnuC
� B � z�� or �

Dtu
�

Dnu�
� AC z��:

PROOF. Since ´ is monotone along the directions of the cone � t .en; y� t /, ac-
cording to the choice of y� t , there is a constant c�0 such that

0 � B � A � c�0�0

�
�0 D

�

2
� y� t0

�
and

A � �
Dt´

C

Dn´C
� B or A � �

Dt´
�

Dn´�
� B

all over inside C�1 .
After two iterations of lemma 8 in [4] we have, in B 0

1=16
.1
8
en/ � .�C

ı
�
; C ı

�
/:

either

�
Dt´

C

Dn´C
� B � z��� or �

Dt´
�

Dn´�
� AC z���;

respectively, when

G.˛�C; ˛
�
�/ � �

AC B

2
or G.˛�C; ˛

�
�/ � �

AC B

2
;

where ˛�
˙
D jr´.˙1

8
en; 0/j.

Assume the first one of the two above inequalities holds (if the other one holds,
the argument is the same). Then

Dt´
C
C BDn´

C
� z���Dn´

C
� 0:

Thus, from (4.7) and (4.8) we obtain

DtuC C�
xa
0Dnu.p/C .B � z�

��/.1C C�xa0 /Dnu � 0I

that is,

�
Dtu

C

DnuC
� .B � z���/

�
1C C�xa0

�
C C�xa0

� B � z���C C�xa0 .1C B � z�
��/

� B � z��;
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since �xa0 � �3 and jBj � tan�. �

6 Basic Iteration Steps and Proof of Theorem 1.2
We want now to propagate the gain in the opening of the space and space-time

cones of monotonocity to the free boundary in a smaller cylinder. To apply lemma
12 in [4], we need a refinement of the Hopf principle in lemma 5.1 of [5] due to
the lack of control of Dtu by uxn up to the free boundary. We are dealing with the
following situation, which occurs along the double-iteration process mentioned in
the introduction.

Let

Q WD f.x0; xn; t / W jx
0
j < 2; f .x0; t / < xn < 2, � 2 < t < 2g;

and define �0 WD Q \ ft D 0g,

F WD f.x0; xn; t / W jx
0
j < 2, xn D f .x0; t /, � 2 < t < 2g \ ft D 0g

and F0 WD F \ ft D 0g.
Let w be a solution of wt � Lw D 0 in Q, positive and continuous in xQ,

vanishing on F .
Assume that there exists a sequence of spatial cones �k D �x.�k; ek/, real

numbers C0, xc, and �, integers k0 and xk, xk � 1, and a decreasing sequence fıkg
with the following properties:

(a) ık � C0=.k C xk/1C�, jek � ekC1j � cık;
(b) for k � k0,

�k \ .B
0

4�k.0/
nB 0

4�k�1
.0// � �0 \ .B

0

4�k.0/
nB 0

4�k�1
.0//I

(c) there exists a ball B 0
4�k0

� �0 tangent to F0 at 0, with inward normal ek0 .

Then we can prove the following Hopf principle:

LEMMA 6.1. Under the above conditions, there exists a positive constant C � D
C �.n; C0; xc; �/ such that, near .0; 0/,

(6.1) w.x; 0/ � C �wmhx; ek0i

where wm D minfw.x; t/ W xn D 2g.

PROOF. The proof follows closely the proof of lemma 5.1 in [5], by first con-
structing a Lyapunov-Dini domain

�0 D f.x0; xn/ W jx
0
j < 2; g.x0/ < xn < 2g

such that
(i) g.x0/ > f .x0; 0/ for every x0, jx0j < 2 and g.0/ � 4�k0 , and

(ii) g 2 C 1 and !rg.s/ � C1jlog.2=s/j1��=2 for s small, where !rg denotes
the modulus of continuity of rg.
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Moreover, due to the flatness in space of F.u/; we can easily construct a func-
tion G D G.x0; t /, Lipschitz in space and time, flat in space, such that G.x0; t / >
f .x0; 0/ for every x0, jx0j < 2, jt j < 2, and G.x0; 0/ D g.x0/. Define

Q0 D f.x0; xn; t / W jx
0
j < 2; G.x0; t / < xn < 2; �2 < t < 2g;

and let v be the solution of Dtv �L v D 0 in Q0, with v D wm on xn D 2 and v
vanishing everywhere else on @pQ0. By the maximum principle, w > v in Q0. On
the other hand, by Lemma 2.2(a), we infer that, near the origin,

jDtv.x; 0/j � cd
a�1
x;0 Dnv.x; 0/:

Thus, at the level t D 0, v is a supersolution of an elliptic equation satisfying the
hypotheses of [21, theorem 3.1]. Thus we can write

4k0w.ek0/ � 4
k0v.ek0/ � C

�wm;

and therefore, by condition (c), (6.1) is true for w. �

Now we have all the ingredients to reproduce the proof of lemma 12 in [4]. Due
again to the lack of the a priori nondegeneracy assumed in that paper and moreover
to the restriction

(6.2) ! � !.1/ � �
.1�˛/=˛
0 ;

it is possible to carry the interior gains only for �0-monotonicity. The enlargement
of the cones allows us to obtain an improvement in the �0-monotonicity, passing
from �0 to �1 < �0, still keeping the validity of (6.2) thanks to the improvement of
the modulus of continuity of the coefficients from ! to !1 < !. These are the first
and basic steps of the combined iteration procedure mentioned in the introduction.
Specifically, the following lemma holds:

LEMMA 6.2. Let u be a solution of our f.b.p. in C2;2. Assume that ı D ı.n; L0;

�;ƒ/ is small enough and �0 � ı � �3. Let (6.2) hold, kA � Ik1 � !, and
kbk1 � !. There exist positive constants c1, c2, c, and C and unit vectors e
(spatial), �1 2 spanfe; etg such that, in

B 0
4�2
�

�
�C

ı

4�
;C

ı

4�

�
;

u is �0-monotone in �x.e; �1/ [ � t .�1; � t1/ with

�

2
� �1 � ı1 � ı � c1

ı2

�
;(6.3)

�

2
� � t1 � �1 � � � c2ı;(6.4)

and ı1 � �1
3, je � enj � cı, and j�1 � �j � c�.
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PROOF. Let �� be the family constructed in Lemma 3.3, and in

DC D

�
B 01 n B

0
1=8

�
5

8
en

��
� .�1; 1/;

set
xV�.p/ � sup

q2B�0�� .p/

u.q � �/C c�ıu.pC0 /w
C
L .p/;

where � is a small vector belonging to �x.en; � � ı/ [ � t .en; �t � �/, with �0 D
j� j sin ı, and let wCL be the L -caloric measure in�C.xv0/ of†C D @B 0

1=8
.5
8
en/�

.�1; 1/. xV�.p/ is a L -subsolution in the complement of its zero set. At this
point it is possible to reproduce exactly the proof of lemma 14 in [4] to reach the
conclusions, using the crucial Lemma 6.1. �

For the improvement of the �0-monotonicity we use the results in [11, secs. 2–4]
that actually apply to a more general case. In particular, the first part of the proof
of theorem 4.1 in [11] gives the following lemma:

LEMMA 6.3. Assume the hypotheses of Lemma 6.2 hold. Then there exist positive
constants � < 1, close to 1, ˛0 < ˇ0 < 1

2
, and zc such that u is ��0-monotone along

the directions of

�x
�
e; �1 � zc�

ˇ 0

0

�
[ � t

�
�1; �

t
1 � zc�

ˇ 0

0

�
in

B 0
4�2.1�zc�˛

0

0 /
�

�
�C

ı

4�
C zc�˛

0

0 ; C
ı

4�
� zc�˛

0

0

�
:

We are now ready to end the proof of our main theorem.

PROOF OF THEOREM 1.2. We shall apply inductively Lemmas 6.2 and 6.3 as
in section 9.9 of [5] using the rescaling

uk.x; t/ D 5
ku

�
1

5k
x;

ık

5k�k
t

�
where ık and �k verify the recurrence relations

ıkC1 � ık � c1
ık

�k
;(6.5)

�kC1 � �k � c2ık;(6.6)

and ık � �k
3. The only difference is that we have to take care of the iteration of

the restriction condition (6.2) that reads

(6.7) !k � x�
.1�˛/=˛

k
;

where !k and x�k come from the rescaling of the modulus of continuity of the
coefficients of the operator L and of the �k-monotonicity at each step. More
precisely, if ˛ D 1, that is, if the coefficients are Lipschitz-continuous, we may



SMOOTHNESS OF THE FRONT

repeat verbatim the same arguments in [5] and use the same sequences ık , �k , and
�k given by, for example,

ık �
1

.k C xk/4=3
; xk � 1;

�k �
1

k1=3
; �k D

1

30kC
xk

.k � 1; xk large/:

We obtain that in the sequence of cylinders

B 0
5�k
�

�
�C

ık

5k�k
; C

ık

5k�k

�
u is �kC1-monotone along the directions � belonging to

�x.�k; ek/ [ �
x.� tk; �k/

where �k 2 spanfek; etg. Notice that in this case (6.7) is automatically satisfied
since !k is of order !05�kık=�k .

We conclude that at each time level t0, �1 < t0 < 1, �˙.u/ \ ft D t0g is a
Lyapunov-Dini domain and the conclusion follows as in [5].

If 0 < ˛ < 1, !k is of order !05�˛k.ık=�k/˛ and x�k of order 5k.�k=ık/�k so
that, to repeat the arguments in [5, sec. 9], we choose, e.g., �k D �05�2k=.1�˛/.

This completes the proof of the theorem. �

Appendix: Proof of Theorem 3.1
We show that v�;� is a viscosity subsolution for the operator LA;b0 � Dt in

�C.v�;� /; the other cases are analogous. To prove it, we show that for every
p 2 �C.v�;� /«

jyjD1

v�;� .x C rA
1=2.p/�; t/dH n�1.�/

� v�;� .p/C cn

�
� lim inf
s!0C

v�;� .p C sb0.p// � v�;� .p/
s

C lim sup
s!0C

v�;� .x; t C s/ � v�;� .p/

s

�
r2 C o.r2/;

as r ! 0.
Let u be a solution of

Dtu.p/ D Tr.B.p/D2u.p//C b.p/ � ru.p/

in � � RnC1, where as usual p D .x; t/ 2 RnC1 and B.p/ 2 S�;ƒ.�/ �

Sn�n. For every t , the function u. � ; t / satisfies in �t D fx 2 Rn W p 2 �g the
nonhomogeneous elliptic equation

Tr.B. � ; t /D2u. � ; t //C b. � ; t / � ru. � ; t / D Dtu. � ; t /:
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For simplicity we write h�;0.p/ instead of .A.p/1=2�; 0/.
Let now b be such that jbj � �.p/. Then

v�.p/ � u.Vr.p/; t C b/;(A.1)

where (& 2 Rn)

Vr.p/ D x C

q
�.p/2 � b2

��s C r&

j��s C r& j
;

since
.Vr.p/; t C b/ 2 @B�.p/.p/:

Similarly, if b is such that jbj � �.p C rh�;0.p//, where A 2 S�;ƒ, we get

v�.p C rh�;0.p// D sup
j�jD1

u.p C rh�;0.p/C �.p C rh�;0.p//�/

� u.Vr.p C rh�;0.p//; t C b/:
(A.2)

If � 2 Rn is a unit vector, & 2 Rn, we have as r ! 0:

1

j� C r& j
D 1 � rh�; &i �

r2

2
j& j2 C

3

2
r2h�; &i2 C o.r2/:

Thus
� C r&

j� C r& j
D � C r.�h�; &i� C &/

C r2
�
�h�; &i& �

j�j2

2
� C

3

2
h�; &i2�

�
C o.r2/;

and

�.p C rh�;0.p// D �.p/C hr�.p/; A
1=2.p/�ir

C
1

2
hD2�.p/A1=2.p/�; A1=2.p/�ir2 C o.r2/:

(A.3)

Hence if P� D p � � C �.p/�, where � D ��s C �et , then
v�;� .p C rh�;0.p// � u..V .p C rh�;0.p//; t C b/ � �/

D u

��
x C rA1=2.p/� C

q
�.p C rh�;0.p//2 � b2

��s C r&

j��s C r& j
; t C b

�
� �

�
D u.P� /C rhru.P� /;A i C r

2.hru.P� /;Bi C
1

2
hD2u.P� /A ;A i/C o.r2/;

where

A D hr�.p/; A1=2.p/�i� C �.p/.& � h�; &i� C A1=2.p/�/

and

B D
1

2
hD2�.p/A1=2.p/�; A1=2.p/�i� C hr�.p/; A1=2.p/�i.�h�; &i� C &/

� �.p/

�
h�; &i& C

j& j2

2
� �

3

2
h�; &i2�

�
:



SMOOTHNESS OF THE FRONT

Integrating over j� j D 1 we get«
j� jD1

hru.P� /; A idH n�1.�/ D 0

and

(A.4)
«
j� jD1

hru.P� /;BidH n�1.�/ D

1

2n
fTr.A.p/D2�.p// � �.p/Œj& j2 � h�; &i2�gjru.P� /j C o.r2/:

Similarly,

hD2u.P� /A ;A i

D hD2u.P� /�; �ihr�.p/; A
1=2.p/�i2

C �2.p/
˝
D2u.P� /.& � h�; &i�/; .& � h�; &i�/

˛
C hD2u.P� /A

1=2.p/�; A1=2.p/�i

C 2�.p/hD2u.P� /�; .& � h�; &i�/ihr�.p/; A
1=2.p/�i

C 2hD2u.P� /�; A
1=2.p/�i C 2hD2u.P� /.& � h�; &i�/; A

1=2.p/�i:

Thus «
j� jD1

hD2u.P� /A ; A idH n�1.�/

D
hD2u.P� /�; �ijA

1=2.p/r�.p/j2

n

C
�2.p/

n
hD2u.P� /.& � h�; &i�/; .& � h�; &i�/i

C
1

n
Tr.A.p/D2u.P� //C o.r2/ D

1

n
Tr.F.p/D2u.P� //C o.r2/;

where

F.p/ D � ˝ �jA.p/1=2r�.p/j2

C �2.p/.& � h�; &i�/˝ .& � h�; &i�/C A.p/:
(A.5)

Set �n D hF.p/vn; vni=nˇn and Tp.�/ D Tr.A.p/D2�.p//. Choosing & as
in Lemma A.3 below, we may reproduce the matrix B and write

Tr.F.p/D2u.P� // �
hF.p/vn; vni

ˇn
Tr.B.P� /D2u.P� //:
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As a consequence,«
j� jD1

v�;� .p C rh�;0.p//dH n�1.�/

� v�;� .p/C

�
1

n
Tr.FD2u.P� //

C
1

2n

˚
Tp.u/ � �.p/Œj& j

2
� h�; &i2�

	
jru.P� /j

�
r2 C o.r2/

� v�;� .p/C �n Tr.B.P� /D2u.P� //

C
1

2n

˚
Tp.u/ � �.p/Œj& j

2
� h�; &i2�

	
jru.P� /jr

2
C o.r2/

D v�;� .p/C �n.Dtu.P� / � b.P� / � ru.P� //

C
1

2n

˚
Tp.u/ � �.p/Œj& j

2
� h�; &i2�

	
jru.P� /jr

2
C o.r2/:

(A.6)

Since D�t > 0, we get

v�;� .p C het / � v�.p/

D u..p C het /C � C �.p C het /�.pChet //

� u.p C � C �.p/�.p//

D
˝
ru.P� /; .�.p C het / � �.p//�

s
.pChet /

C �.p/
�
�s.pChet / � �

s
.p/

�˛
CDtu.P� /

�
.�.p C het / � �.p//�

t
.pChet /

C �.p/
�
�t.pChet / � �

t
.p/

�
C h

�
C o.h/:

Hence

� lim sup
h!0C

v�;� .p C het / � v�;� .p/

h

� �hru.P� /;Dt�.p/�
s
.p/i �Dtu.P� /.Dt�.p/j�

t
.p/j C 1/

D �jru.P� /jDt�.p/ �Dtu.P� /.Dt�.p/j�
t
.p/j C 1/:

Observe now that

v�.pCsb0.p//;� .p C sb0.p// � v�.p/;� .p/

� u
�
p C sb0.p/C � C ���.p C sb0.p//

�
� u.p C � C ���.p//

D u
�
p C sb0.p/C � C ���.p/C s���.p/hb0.p/;r�.p/i C o.s/

�
� u

�
p C sb0.P� /C � C ��.�.p/C shb0.P� /;r�.p/i C o.s//

�
C u

�
p C sb0.P� /C � C ��.�.p/C shb0.P� //;r�.p/i C o.s/

�
� u.p C � C ���.p//:
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(recalling that P� D p C � C ���.p/)

D u
�
P� C s

�
b0.p/C ���.p/hb0.p/;r�.p/i C o.1/

��
� u

�
P� C s

�
b0.P� /C ���.p/hb0.p/;r�.P� /i C o.1/

��
C u

�
P� C s

�
b0.P� /C ���.p/hb0.p/;r�.P� /i C o.1/

��
� u.P� /;

(by Taylor’s formula)

D s
˝
ru.P� /; �

��.p/h.b0.p/ � b0.P� //;r�.p/i
˛

C s
˝
ru.P� /; hr�.p/;b0.P� /i�� C b0.P� /

˛
C o.s/;

as s ! 0. As a consequence,

� lim inf
s!0C

v�.pCsb0.p//;� .p C sb0.p// � v�.p/;� .p/
s

� �
˝
ru.P� /; hr�.p/;b0.P� /i�� C b0.P� /

˛
�
˝
ru.P� /; �

��.p/h.b0.p/ � b0.P� //;r�.p/i
˛
:

(A.7)

Thus, since Dt� � 0, we get

r�2
«
j� jD1

�
v�;� .p C rh�;0.p// � v�;� .p/

�
dH n�1.�/

� cn lim sup
h!0C

v�.p C het / � v�.p/

h

� �n.Dtu.P� / � b.P� / � ru.P� //

C
1

2n
fTp.�/ � �.p/Œj& j

2
� h�; &i2�gjru.P� /j

� jru.P� /jDt�.p/ �Dtu.P� /.Dt�.p/j�
t
pj C 1/

� �nb.P� / � ru.P� //C o.1/

D .�n � 1/Dtu.P� /C
1

2n

˚
Tp.�/ � �.p/Œj& j

2
� h�; &i2�

	
jru.P� /j

� jru.P� /jDt�.p/ �Dtu.P� /Dt�.p/
ˇ̌
�t.p/

ˇ̌
� �nb.P� / � ru.P� /C o.1/:

Since � t � �
4

, we have jDtu.P� /j � cjru.P� /j, so that we can continue the
above sequence of inequalities as follows:

� �cj�n � 1jjru.P� /j C
1

2n

˚
Tp.�/ � �.p/Œj& j

2
� h�; &i2�

	
jru.P� /j

� jru.P� /jDt�.p/ � jru.P� /jDt�.p/
ˇ̌
�t.p/

ˇ̌
� �nb.P� / � ru.P� /C o.1/:
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We now use (A.6) and the estimates for & , given in (A.15), Lemma A.3, to obtain

� jru.P� /j

�
�cjr�.p/j C

1

2n

�
Tp.�/ � C

2 .jr�.p/j C !/
2

�.p/

�
� .1C j�tpj/Dt�.p/

�
C .��n C cn/b.P� / � ru.P� / � cnb.P� / � ru.P� /C o.1/

D jru.P� /j

�
�cjr�.p/j C

1

2n

�
Tp.�/ � C

2 .jr�.p/j C !/
2

�.p/

�
� .1C j�tpj/Dt�.p/

�
C .��n C cn/hb.P� /; ru.P� /i C cnhb0.P� /; r�.p/ihru.P� /; ��i

C cnh.�b.P� /C b0.P� //;ru.P� /i

C cn
˝
ru.P� /; �

��.p/h.b0.p/ � b0.P� //; r�.p/i
˛

� cn
�
hb0.P� /; ru.P� /i C hb0.P� /; r�.p/ihru.P� /; ��i

�
� cn

˝
ru.P� /; �

��.p/h.b0.p/ � b0.P� //;r�.p/i
˛
C o.1/:

Taking into account (A.7) and the boundedness of b, b0, and �, we get

� jru.P� /j

�
�zcjr�.p/j C

1

2n

�
Tp.�/ � C

2 .jr�.p/j C !/
2

�.p/

�
� .1C j�tpj/Dt�.p/

�
� cn lim inf

s!0C

v�.pCsb0.p//;� .p C sb0.p// � v�.p/;� .p/
s

C o.1/

� jru.P� /jH
�
D2�.p/; r�.p/; Dt�.p/

�
� lim inf
s!0C

v�.pCsb0.p//;� .p C sb0.p// � v�.p/;� .p/
s

C o.1/;

where

H.D2�;r�;Dt�/ D Tp.�/ � C
2 .jr�.p/j C !/

2

�.p/

� c2.jr�.p/j C !/ � .1C j�
t
pj/Dt�.p/:

In particular,

H.D2�;r�;Dt�/ �P�.�/ � C 2
.jr�.p/j C !/2

�.p/

� c2.jr�.p/j C !/ � .1C j�
t
pj/Dt�.p/ � 0;

so that (i) is proved.
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To prove (ii), we observe that

w�;� .p/ D inf
B�.p/.p/

u.q C �/ D � sup
B�.p/.p/

.�u.q C �//

satisfies, in a viscosity sense, the inequality

Tr.A.p/D2w�;� .p// � �b0.p/ � rw�;� .p/CDtw�;� .p/:

Then �w�;� is still a subsolution of the same operator, and in particular, by linear-
ity, w�;� satisfies (in a viscosity sense)

Tr.A.p/D2w�;� / � �b0.p/ � rw�;� CDtw�;� :

Thus w�;� is a supersolution of the operator LA;b0 �Dt .

A.1 Choice of the Vector &
In this subsection we complete the proof of Lemma 3.1 by choosing the vec-

tor & (see Lemma A.3 below). For the reader’s convenience, we first state two
elementary lemmas from linear algebra, which we apply in the proof of Lemma
A.3.

LEMMA A.1. Let B and G be symmetric matrices. Assume that B is positive
definite. Let fv1; v2; : : : ; vng be an orthonormal basis in Rn of G-eigenvectors
corresponding to the eigenvalues f�1 � �2 � � � � � �ng of G. Similarly, let
fw1; w2; : : : ; wng be an orthonormal basis of B eigenvectors, corresponding to
the eigenvalues f0 < ˇ1 � ˇ2 � � � � � ˇng of B . Then for every symmetric
matrix F :

(i) Tr.FG/ D
nX
iD1

�i hFvi ; vi i, and

(ii) Tr.BG/ �
nX
iD1

�iˇi .

LEMMA A.2. Let fv1; v2; : : : ; vng be an orthogonal basis of Rn. Then for every
k 6D j and k 6D i

Œvi ˝ vi � vj ˝ vj �vk D 0;

Œvi ˝ vi � vj ˝ vj �vi D vi ;

Œvi ˝ vi � vj ˝ vj �vj D �vj :

Moreover,264v
T
1
:::

vTn

375 Œvi ˝ vi � vj ˝ vj �Œv1; v2; : : : ; vn� D ei ˝ ei � ej ˝ ej :
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Let now �i .A/ be the i th eigenvalue of the symmetric matrix A. We denote
�max.A/ D maxiD1;:::;nf�i .A/g and �min.A/ D miniD1;:::;nf�i .A/g: Let A;B 2
S�;ƒ be symmetric positive definite matrices and 0 < � � ƒ. Then

maxfj�max.A � B/j; j�min.A � B/jg � ƒ � �

and
maxfj�max.A � B/j; j�min.A � B/jg � kA � Bk1:

Finally we have the following result:

LEMMA A.3. Assume the hypotheses of Theorem 3.1 are fulfilled. There exists
a positive constant C D C.�;ƒ; n/ such that if kA � Bk � C.ƒ=� � 1/ �

!; kb � b0k1 � !, there exists a choice of & 2 Rn such that if F is the matrix
defined in (A.5), then

hF.p/vn; vni

ˇn
Tr.B.P� /D2u.P� // � Tr.F.p/D2u.P� //;(A.8)

j& j2 � C
.jr�.p/j C !/2

�.p/
;(A.9)

and

(A.10) Tr.A.p/D2�.p// � �.p/Œj& j2 � h�; &i2� �

Tr.A.p/D2�.p// � C 2
.jr�.p/j C !/2

�.p/
:

PROOF. Let fv1; v2; : : : ; vng be an orthonormal basis in Rn of eigenvectors of
D2u.P� /, with eigenvalues f�1 � �2 � � � � � �ng. By Lemma A.1 with G D
D2u.P� /) we get

Tr.B.P� /D2.P� // � ˇn

�n�1X
iD1

�i
ˇi

ˇn
C �n

�

D
ˇn

hF.p/vn; vni

�n�1X
iD1

�i
ˇi hF.p/vn; vni

ˇn
C �nhFvn; vni

�
:

Thus we ask that for i D 1; 2; : : : ; n � 1

(A.11) hF.p/vi ; vi i D
ˇi hFvn; vni

ˇn
;

i.e.,
hF.p/vi ; vi i

hF.p/vn; vni
D
ˇi

ˇn
:

If h�; &i D 0, then

F.p/ D jA1=2.p/r�.p/j2� ˝ � C �2.p/& ˝ & C A.p/
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and

hF.p/vi ; vi i D

nX
k;lD1

�
�k�l jA

1=2.p/r�.p/j2 C �2.p/&k&l C akl
�
vikvil :

We can assume that � D .0; : : : ; 0; 1/ and & D .&1; &2; : : : ; &n�1; 0/. Thus for
i D 1; : : : ; n;

hF.p/vi ; vi i D

nX
k;lD1

ıkl jA
1=2.p/r�.p/j2vikvil C

n�1X
k;lD1

�2.p/&k&l

C

nX
k;lD1

aklvikvil

D jA1=2.p/r�.p/j2v2in C �
2.p/

n�1X
k;lD1

&k&lvikvil

C

nX
k;lD1

aklvikvil

D jA1=2.p/r�.p/j2v2in C �
2.p/

n�1X
k;lD1

&k&lvikvil C hA.p/vi ; vi i:

From (A.11) we get the following system, for i D 1; 2; : : : n � 1,

�2.p/

n�1X
k;lD1

�
vikvil � vnkvnl

ˇi

ˇn

�
&k&l D

jA1=2.p/r�.p/j2
�
ˇi

ˇn
v2nn � v

2
in

�
C

�
hA.p/vn; vni

ˇi

ˇn
� hA.p/vi ; vi i

�
;

that is,

�2.p/

n�1X
k;lD1

�
vikvil � vnkvnl

ˇi

ˇn

�
&k&l D

jA1=2.p/r�.p/j2
�
ˇi

ˇn
v2nn � v

2
in

�
C hA.p/vn; vni

�
ˇi

ˇn
�
hA.p/vi ; vi i

hA.p/vn; vni

�
:

In particular, recalling that & D .&1; &2; : : : ; &n�1; 0/, we obtain

(A.12) �2.p/

��
vi ˝ vi �

ˇi

ˇn
vn ˝ vn

�
&; &

�
D

jA1=2.p/r�.p/j2
�
ˇi

ˇn
v2nn � v

2
in

�
C hA.p/vn; vni

�
ˇi

ˇn
�
hA.p/vi ; vi i

hA.p/vn; vni

�
:



F. FERRARI AND S. SALSA

From Lemma A.2 we get

264v
T
1
:::

vTn

375�vi ˝ vi � ˇi
ˇn
vn ˝ vn

�
Œv1; : : : ; vn� D ei ˝ ei �

ˇi

ˇn
en ˝ en:

As a consequence,

�
vi ˝ vi �

ˇi

ˇn
vn ˝ vn

�
D Œv1; : : : ; vn�

�
ei ˝ ei �

ˇi

ˇn
en ˝ en

�264v
T
1
:::

vTn

375 :
Set

w D

264v
T
1
:::

vTn

375 &:
From (A.12), we deduce that for i D 1; 2; : : : ; n � 1,

(A.13) �2.p/

��
ei ˝ ei �

ˇi

ˇn
en ˝ en

�
w;w

�
D

jA1=2.p/r�.p/j2
�
ˇi

ˇn
v2nn � v

2
in

�
C hA.p/vn; vni

�
ˇi

ˇn
�
hA.p/vi ; vi i

hA.p/vn; vni

�
:

Thus for i D 1; 2; : : : ; n � 1

�2.p/

�
w2i �

ˇi

ˇn
w2n

�
D jA1=2.p/r�.p/j2

�
ˇi

ˇn
v2nn � v

2
in

�
C hA.p/vn; vni

�
ˇi

ˇn
�
hA.p/vi ; vi i

hA.p/vn; vni

�
:

In particular, for i D 1; 2; : : : ; n � 1, we get

w2i D
ˇi

ˇn
w2n C

1

�.p/2

�
jA1=2.p/r�.p/j2

�
ˇi

ˇn
v2nn � v

2
in

�
C hA.p/vn; vni

�
ˇi

ˇn
�
hA.p/vi ; vi i

hA.p/vn; vni

��
:

Notice that selecting any & D .&1; &2; : : : ; : : : ; &n�1; 0/ such that hvn; &i D 0,
then wn D 0. In this case we get

w2i D
1

�.p/2

�
jA1=2.p/r�.p/j2

�
ˇi

ˇn
v2nn � v

2
in

�
C hA.p/vn; vni

�
ˇi

ˇn
�
hA.p/vi ; vi i

hA.p/vn; vni

��
:
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As a consequence, we take, for i D 1; 2; : : : ; n � 1,

wi D
1

�.p/

qˇ̌̌̌
ˇ̌jA1=2.p/r�.p/j2

�
ˇi
ˇn
v2nn � v

2
in

�
ChA.p/vn; vni

�
ˇi
ˇn
�
hA.p/vi ;vi i
hA.p/vn;vni

�
ˇ̌̌̌
ˇ̌

and wn D 0. Choosing

& D Œv1; : : : ; vn�w;

then (A.8) follows.
We now estimate the quantity

ı.A;B/ D max
iD1;:::;n�1

ˇ̌̌̌
ˇi

ˇn
�
hA.p/vi ; vi i

hA.p/vn; vni

ˇ̌̌̌
:

For i D 1; : : : ; n � 1 we write
ˇi

ˇn
�
hAvi ; vi i

hAvn; vni
D

�
ˇi

ˇn
�
hBvi ; vi i

hBvn; vni

�
C
hBvi ; vi ihAvn; vni � hAvi ; vi ihBvn; vni

hBvn; vnihA.p/vn; vni

where B D B.P� / and A D A.p/. Thenˇ̌̌̌
ˇi

ˇn
�
hvi ; vi i

hAvn; vni

ˇ̌̌̌
�

ˇ̌̌̌
�max.B/

�min.B/
�
�min.B/

�max.B/

ˇ̌̌̌
C �max.A/

jB � Aj

�min.A/�min.B/

�

1C �max.B/
�min.B/

�min.B/
.�max.B/ � �min.B//C

�max.A/

�min.A/

jB � Aj

�min.B/
:

(A.14)

Since
�max.B/ � �min.B/ � 2jB � I j;

keeping in mind (A.14), we conclude thatˇ̌̌̌
ˇi .P� /

ˇn.P� /
�
hA.p/vi ; vi i

hA.p/vn; vni

ˇ̌̌̌
� 2

�Cƒ

�2
jB � I j C

ƒ

�2
jB � Aj

� 2
�Cƒ

�2
jB � I j C

ƒ

�2
jB � I j C

ƒ

�2
jA � I j � 6

ƒ

�2
!:

Thus, with the previous choice of & , we infer

j& j2 � jwj2 � C.ƒ; n/
jr�.p/j2 C ı.A;B/

�.p/
� C
jr�.p/j2 C ı.A;B/

�.p/
;

which is (A.9).
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Finally, from (A.6) we obtain

Tr.A.p/D2�.p// � �.p/Œj& j2 � h�; &i2�

D Tr.A.p/D2�.p// � �.p/j& j2

� Tr.A.p/D2�.p// � C 2�.p/
�
jr�.p/j C ı.A;B/

�.x/

�2
� Tr.A.p/D2�.p// � C 2

.jr�.p/j C !/2

�.p/
;

(A.15)

that is (A.10), concluding the proof. �
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