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1 Introduction

Two typical types of modeling standpoints employed to assess the dynamic behavior of a beam structure traversed 
by a moving load are the moving force and the moving mass. In this regard, the governing constraint equation of 
moving load/substructure contact force is assigned. Formulating the problem according to moving force, the 
inertial effects of the traversing inertial load on the substructure are ignored. To compensate for this deficiency, 
the moving mass should be adopted. Transverse acceleration of the beam beneath the traveling load in any time 
should be computed to reveal the load/structure interactions; wherein, a significant complexity is added to the 
numerical simulation.

A voluminous literature on the vibration of a structure exposed to the excitation by a moving load could be 
found. The early studies have been generally devised according to the moving force problems [1–5]. However, 
several articles have been published emphasizing the simulation and significance of the load/structure inertial 
interaction. Akin and Mofid [6] studied the dynamic behavior of an Euler–Bernoulli beam with various boundary 
conditions subjected to a moving mass to assess the effects of mass inertia in the modeling. They indicated that the 
critical dynamic response of the system is occurring at the high levels of mass velocity and weight. Rao [7] 
accounted for the terms relevant to centripetal and Coriolis accelerations of the inertial
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load on the dynamics of an Euler–Bernoulli beam with simple end conditions. Moreover, Michaltsos and 
Kounadis [8] investigated the influences due to centripetal and Coriolis forces on the dynamic response of 
light bridges under moving loads. Ichikawa et al. [9] have considered the inertial effects of the traveling 
mass in the formulation of a multi-span beam. The results confirmed the importance of inertial effects in 
evaluating the dynamic response of the structure, especially for the moving masses with high weight and 
velocity. Nikkhoo et al. [10] identified a critical velocity for which the effects of traversing objects 
convective accelerations should not be disregarded for velocities larger than this limit. The significance of 
moving load inertia and velocity on the dynamics of various beam structures has been also focused by other 
researchers. Hasheminejad and Rafsanjani [11] studied the action of an arbitrary moving load on the 
transient elastodynamic response of a thick simply supported beam. Rajabi et al. [12] investigated the 
influences of a moving inertial load on the dynamic behavior of functionally graded Euler–Bernoulli beams 
with simple end conditions. Pirmoradian et al. [13] analyzed the instability and resonance of a Timoshenko 
beam excited by the moving masses traversing the beam, periodically. Considering a vehicle as a traveling 
mass on the beams, Wang and Ko [14] assessed the vehicle-beam coupling effects when the vehicle passes 
the beam with variable speeds. Further researches have aimed at appraising the design dynamic parameters 
of single-/multi-span beams with various boundary conditions, by Kiani et al. [15,16].

It is strongly approved by the specialists and bridge engineers that the moving mass model outputs are 
distinctly diverse from those obtained by employing a moving force, depending on the effective parameters 
of the problems. In some recent researches, it has been highlighted that the moving mass simulation could be 
reasonably employed capturing the dynamics of a real parameter bridge [8,17]. As mentioned earlier, for heavy 
loads moving at high velocities, the load inertia dominates the analysis results; consequently, the moving mass 
appears to be a reasonable model in most of the cases. However, unfortunately, the moving mass simulation 
demands notable computational efforts, even in case of recently proposed optimized methods [17,18]; as 
a consequence of the increased complexity in the governing differential equations of motion, being time 
consuming in the numerical experiments, such analysis would not be favorable for the engineering practitioners. 
On the other hand, in all the articles mentioned, it has not been suggested any strategy/solution to overcome 
this issue. In fact, all these researches have only accounted for studying the importance of moving load inertia 
and exploring the dynamics of beams by providing the beam design parameters’ spectra.

In this paper, practitioners are provided with an effortless and highly simplified direct prediction of 
design parameters when inertial interactions are taken into consideration. To this aim, the dynamic response 
of a thin beam of arbitrary boundary conditions to a moving lumped inertial object is focused. The dynamic 
perfor-mance of the structure is inspected in detail for a comprehensive range of velocity and inertia 
parameters. The voluminous computational data of the beam deformation and flexural moment are processed 
via regression, and the overall dynamic behavior of the base beam is ultimately represented in a remarkably 
reduced form. The obtained set of conversion coefficients in this regard comprises the contribution of the 
convective accel-eration terms. Therefore, the engineers can conveniently deal with the beam dynamic 
behavior in a direct and straightforward fashion. The numerical data are provided by making recourse to the 
characteristic orthogonal polynomials (COPs) for discretization of the spatial domain. Unlike the common 
proposed spatial discretiza-tion methods such as eigenfunction expansion method (EEM) [19,20], this one is 
very handy and rapid. Then the conversion coefficients are determined by the regression models as function 
of moving mass weight and velocity; afterward, the ratio of moving mass–moving force normalized response 
is achieved. Finally, after evaluating the accuracy of regression models according to goodness-of-fit 
statistics, the proficiency and gener-alization of the coefficients in guesstimating the inertial effects of 
moving loads on the beam design parameters (the maximum deflection and bending moment) are discussed.

2 Problem formulation

Let us consider a single-span Euler–Bernoulli beam of length L and uniform, rectangular cross-section, acted 
upon by a load f (x, t) due to a mass m moving at a constant velocity v along the longitudinal direction of the 
beam. Let the reference frame be as reported in Fig. 1, with the origin of the x-axis placed at the left support 
of the beam.

To represent arbitrary end constraints, transversal and torsional springs with constants Kz and K y are, 
respectively, placed at beam end cross-sections. Relevant values of constants Kz and K y are shown in Table 1 
for boundary conditions (BCs) corresponding to simply supported or pinned (P), clamped (C) and free (F) 
cross-sections. Needless to say, intermediate values (namely, positive finite values) of these constants can be 
adopted for compliant restraints.



Fig. 1 Schematic of a single-span beam excited by a moving mass m

Table 1 Values of Kz and Ky for boundary conditions corresponding to pinned (P), clamped (C) and free (F) cross-sections

BCs P C F

Kz ∞ ∞ 0
Ky 0 ∞ 0

Let D(x, t) denote the vertical deflection of the beam, a function of the longitudinal coordinate x and of
time t ; the differential equation governing the elastic vibrations of an Euler–Bernoulli beam turns out to be:

ρA
∂2D(x, t)

∂t2
+ EI

∂4D(x, t)

∂x4
= f (x, t) (1)

where ρ is the mass density of the beam material, and E is Young’s modulus; A = bh is the cross-sectional 
area, and I = bh3/12 is the relevant moment of inertia (so that EI represents the flexural rigidity of the 
beam). In Eq. (1), material damping effects have been disregarded to slightly simplify the analysis.

If inertial effects due to the load mass are neglected, the external excitation f (x, t) is given by:

f (x, t) = mgδ(x − vt) (2)

where g is the gravitational acceleration, and δ is the Dirac delta function [i.e., δ(x − vt) = 1 if  x = vt , and 
δ(x − vt) = 0 if  x �= vt]. If inertial effects are instead accounted for within the so-called moving mass load 
case, we get (see also [21]):

f (x, t) = m

(
g − d2D0(t)

dt2

)
δ(x − vt) = m

(
g − d2D(vt, t)

dt2

)
δ(x − vt)

= m

(
g − ∂2D

∂t2
− 2v

∂2D

∂x∂t
− v2

∂2D

∂x2

)
x=vt

δ(x − vt) (3)

where D0(t) is the vertical displacement of the moving mass, namely D0(t) = D(x = vt, t). In Eq.  (3), it has 
been assumed that the mass does not separate from the beam at any time throughout the analysis.

Exploiting a variable separation technique, the unknown deflection D(x, t) can now be written as:

D(x, t) =
n∑
j=1

ϕ j (x)A j (t) (4)

where A j (t) and ϕ j (x) are, respectively, the j th assumed shape function of the beam and the corresponding 
j th time-dependent amplitude. As for the fundamental shape function ϕ1(x) and the procedure to generate the 
other shape functions (up to n) to attain the required accuracy, a methodology based on COPs is provided in 
the “Appendix”, where results are also collected for pinned–pinned (PP), clamped–clamped (CC), pinned–
clamped (PC) and clamped–free (CF) end cross-sections. Substituting Eq. (4) into Eq. (1), we get:

ρA
n∑
j=1

ϕ j (x)A j,t t (t) + EI
n∑
j=1

ϕ j,xxxx (x)A j (t) = m(g +
n∑
j=1

Θ j )δ(x − vt) (5)



where

Θ j =
{
0 if moving force
−ϕ j (vt)A j,t t (t) − 2vϕ j,x (vt)A j,t (t) − v2ϕ j,xx (vt)A j (t) if movingmass

. (6)

Multiplying both sides of Eq. (5) by the assumed shape function ϕi (x) and then integrating over the beam
length, we arrive at:

ρA
n∑
j=1

[∫ L

0
ϕi (x)ϕ j (x)dx

]
A j,t t (t) + EI

n∑
j=1

[∫ L

0
ϕi,xxxx (x)ϕ j (x)dx

]
A j (t)

= m(g +
n∑
j=1

Θ j )ϕi (vt). (7)

The above equation could be re-written in matrix form as:

M(t)
d2

dt2
A(t) + C(t)

d

dt
A(t) + K(t)A(t) = f(t) (8)

where

[M]i j = ρA
∫ L

0
ϕi (x)ϕ j (x)dx + [

M̄
]
i j , (9)

[C]i j = [
C̄

]
i j , (10)

[K]i j = EI
∫ L

0
ϕi,xx (x)ϕ j,xx (x)dx + [

K̄
]
i j , (11)

[f] j = mgϕ j (vt), (12)

[A] j = A j (t). (13)

The entries of matrices [M̄]i j , [C̄]i j and [K̄]i j are defined for the moving force case as:
[
M̄

]
i j = [

C̄
]
i j = [

K̄
]
i j = 0 (14)

and for the moving mass excitation as: [
M̄

]
i j = mϕi (vt)ϕ j (vt),[

C̄
]
i j = 2mvϕi (vt)ϕ j,x (vt),[

K̄
]
i j = mv2ϕi (vt)ϕ j,xx (vt). (15)

It should be mentioned that integral terms in [K̄ ]i j  have been dealt with in the weak formulation accounting 
for the aforementioned boundary conditions.

In the literature, different numerical methods like the Newmark–Beta and Crank–Nicholson algorithms 
were adopted to solve the equations of motion (8) in the time domain. In this paper, the matrix exponential 
approach [22] has been employed; the efficiency of this method was already proved in this context, e.g., in 
[23,24].

3 Simplified dynamic analysis of beams excited by a moving mass

As already mentioned, in this paper, we propose a simplified analysis of beam vibrations to account for the 
inertial effects of a moving mass. A set of conversion coefficients is determined once and for all for the 
typical BCs already introduced in Sect. 2 for a single-span regular beam, so as to properly modify the 
response of the same beam to a moving force. According to the above discussion, this latter solution appears 
easier to compute and does not depend on the interaction between beam and mass inertia, which comes into 
play in the proposed methodology by the mentioned conversion coefficients.

On the basis of this brief discussion, the proposed procedure thus consists in the following two steps: (i) 
compute the dynamic response of the beam under the action of a moving mass or a moving force, with the



defined BCs; (ii) perform a nonlinear regression analysis of the effects of the moving mass on beam dynamics, 
having set a proper mathematical model to cover the obtained results.

For the procedure to work, the mentioned mathematical model and regression analysis have to provide 
results depending only on some normalization parameters accounting for the inertial properties of beam and 
moving mass, and for the mechanical features of the beam (basically, its geometry and elasticity). A description 
of the procedure and an assessment on its accuracy are reported next.

3.1 Response spectra of beam deflection

According to the analysis presented in Sect. 2, a single-span beam with a uniform, rectangular cross-section is 
considered. The geometrical properties of the beam are supposed to be: L = 10 m, b = 0.3m, h = 0.6m. The beam is 
assumed to be made of steel; hence, its relevant material properties are: E = 2.1 × 1011 Pa and ρ = 7,800 kg/m3.

Normalization factors are introduced now according to:

Mn = m

ρAL
, Vn = v

√
ρAL2

π2EI
, Dn = Ddyn

Dst
, Bn = Bdyn

Bst
(16)

where Mn and Vn are the normalized mass and velocity of the moving load, and Dn and Bn are the maximum 
normalized deflection of the beam and bending moment. In Eq. (16), Ddyn(Bdyn) and Dst(Bst), respectively, 
denote the absolute maximum dynamic deflection (bending moment) due to the moving load and the 
maximum static deflection (bending moment), the latter ones associated with the equivalent statically applied 
load. Table 2 gathers the calculated values of Dst and Bst for the considered case, at varying BCs.

The adopted geometrical and material parameters have been chosen only to provide an exemplary analysis; 
it was already proved in [10,15,16] that the normalization factors (16) allow describing the beam response 
independently of the values of all the aforementioned parameters.

The normalized spectra of beam deflection for all the considered BCs are plotted in Fig. 2 against the 
normalized velocity 0 < Vn < 1 of the load, for the two loading cases corresponding to a moving force or a 
moving mass featuring normalized mass Mn = 0.05, 0.10, 0.15, 0.20 and 0.25. It can be seen that inertial 
effects are enhanced if the mass and velocity of the moving load both increase. Results of Fig. 2 are in line 
with those provided by Kiani et al. [15].

It should be mentioned that all the spectra presented in Fig. 2 and thereafter are related to the mid-span 
deflection, except for the cantilever beam case whose reference point is located at the free end. Although the 
maximum static and dynamic beam deflections do not necessarily occur at such points, it was previously 
shown in [24] that the discrepancy between the spectra related to the maximum deflection point and to the 
mid-span point is negligible, so that reported results do not get affected.

In Fig. 2, two aspects have to be mentioned. The first one is related to the kind of hoops showing up for 
smaller values of Vn; they are basically related to the fact that the maximum beam deflection occurs at 
different time instants when the mass velocity varies. Hence, a single spectrum does not have to be 
considered as a snapshot of the structural response to the dynamic load, but instead an envelope across the 
whole analysis period. It may thus happen that some of the results, typically those related to the smaller Vn 
values, are linked to the forced vibrations of the beam, whereas some others are linked to the free vibrations 
of the beam, occurring when the moving mass has already passed along the whole length of the structure. 
The second aspect to point out is related to the amplitude of the normalized spectra, which may become 
smaller than one in some instances, see e.g., Fig. 2d. As the moving mass is always assumed to be attached 
to the beam, it can provide inertial forcing terms in vertical directions, sometimes acting against the current 
vibrations and thereby reducing their amplitude.
In Fig. 3, results are reported in terms of the ratio between the normalized deflections of the beam caused by 
a moving mass or a moving force. It is shown that in some cases the two responses may differ by more than

Table 2 Values of Dst and Bst for the single-span beam with various boundary conditions

BCs PP CC PC CF

Dst/(mgL3/EI) 0.02077 0.00518 0.00906 0.33333
Bst/(mgL) 0.23843 0.12827 0.18623 1



Fig. 2 Effect of the normalized mass velocity Vn on the normalized deflection spectra, at varying normalized mass (solid line
moving force, dotted line Mn = 0.05, dash line Mn = 0.10, dash dot line Mn = 0.15, long dash line, Mn = 0.20, dash double
dot line, Mn = 0.25). a PP, b CC, c PC, d CF

Fig. 3 Effect of the normalized mass velocity Vn on the ratio between the normalized moving mass and moving force deflection 
spectra, at varying normalized mass (solid line Mn = 0.25, dash double dot line Mn = 0.20, dash line Mn = 0.15, dash dot line 
Mn = 0.10, dotted line Mn = 0.05). a PP, b CC, c PC, d CF

15 % for PP, CC and PC boundary conditions, and even by more than 60 % for CF conditions. Such outcomes 
testify the need for considering the moving mass models to properly catch all the effects on the structural 
response. In other words, the moving force model provides some unsafe designs for the PP, CC or PC cases, 
or uneconomical designs for the CF case.

3.2 Regression analysis

We now move to the regression analysis of results gathered in Fig. 3.
At low values of the normalizedmass velocity Vn, because of the fluctuations of the spectra and their limited

variations with respect to themoving force case, evidenced by 0.90 ≤ Dmass
n /Dforce

n ≤ 1.05, the inertial effects
of the moving mass are no further studied. Hence, the results obtained by considering the much simpler case
of a moving force are assumed to always hold. According to Fig. 3, the upper limiting speed values of this



Fig. 4 Best-fit models for the moving mass effects on beam dynamics. a PP, b CC, c PC and d-1, d-2 CF

regime are, respectively, V PP
n = 0.2, VCC

n = 0.37, V PC
n = 0.27 and VCF

n = 0.15 for the corresponding BCs.
These values depend only on the physical properties of the beam, and at assigned BCs, in accordance with 
the normalization defined by Eq. (16), they are invariant, see also [10,15,16].

As reported in the plots of Fig. 3, the normalized spectra of Dmass
n /Dforce

n do not monotonically vary. Hence,
to better approximate once and for all their dependence on Vn, the normalized mass velocity interval beyond
the aforementioned limiting values may be subdivided into subintervals. For instance, to handle the outcomes
relevant to the CF case, two regions are considered, according to 0.15 < V CF

n ≤ 0.60 and 0.60 < V CF
n < 1.

This analysis over Vn sub-domains does not look necessary for all the other BCs here investigated.
The regression analysis to best fit the shown spectra is now based on a polynomial function of order three

in Vn and Mn, as primary variables of the model. The adopted general form of the fitting function thus reads:

α = Dmass
n

Dforce
n

= P00 + P10Vn + P01Mn + P20V
2
n + P11VnMn

+P02M
2
n + P30V

3
n + P21V

2
n Mn + P12VnM

2
n (17)

where the constants Pi j  (linked through indexes i and j to the power of terms in Vn and Mn, respectively) are 
the sought regression coefficients.

By a least-squares procedure, the results of surface fitting turn out to be as depicted in Fig. 4 for all the 
considered BCs. As commented here above, for CF constraint conditions, the normalized mass velocity 
domain beyond the threshold to effectively sense the inertial effects of the moving mass, has been 
subdivided into the two reported sub-domains. Figure 4d-1, d-2 accordingly shows the two relevant 
interpolating surfaces.



Table 3 Regression coefficients Pi j and goodness-of-fit assessment of the regression analysis, for all the considered boundary
conditions

BCs PP CC PC CF

Vn interval (0.2, 1) (0.37, 1) (0.27, 1) (0.15, 0.6) (0.6,1)

Regression coefficients
P00 1.0250 0.8856 0.8946 1.098 −2.227
P10 −0.1665 0.5297 0.5102 −0.742 11.86
P01 −0.2242 0.6953 0.4526 1.307 1.367
P20 0.2871 −0.7951 −0.7866 1.53 −14.49
P11 1.8330 −0.8305 −0.5415 −12.97 −7.167
P02 0 0 0 −1.164 −0.874
P30 −0.1445 0.3903 0.3941 −1.183 5.778
P21 −0.9142 0.3932 0.5912 10.31 1.867
P12 0 0 0 10.09 7.234
Goodness of fit
SSE 0.0001 0.0010 0.0028 0.0051 0.0064
R2 0.9999 0.9940 0.9904 0.9985 0.9983
R̄2 0.9999 0.9939 0.9902 0.9985 0.9982
RMSE 0.0005 0.0018 0.0028 0.0048 0.0057

Fig. 5 Level sets of the conversion coefficient α. a PP, b CC, c PC, d-1, d-2 CF

The regression coefficients Pi j  for all the BCs are gathered in Table 3, along with an assessment of the 
resulting goodness of fit, in terms of SSE (summed square of residuals), R2 (R square),R̄2 (adjusted R2) and 
root-mean-squared error (RMSE) tests [25]. Table 3 and relevant Fig. 4 testify that the suggested regression 
model provides a very good agreement between the results, being always R2, R̄2 ≈ 1 and SSE, RMSE <0.01.

Results of best-fitting are finally reported in Fig. 5 as level sets of the conversion coefficient α. Such plots 
can be easily exploited once the values of the normalized mass Mn and velocity Vn are known, to compute the 
coefficient itself. Similar plots can be established for all the other quantities of interest relevant to beam 
dynamics, e.g., stress and strain parameters.



Fig. 6 Effect of the normalized mass velocity Vn on the normalized deflection spectra for a PP, b CC, c PC, d CF [solid line
moving mass (Mn = 0.15), dash dot line moving force, dash line modified moving force]

Table 4 Accuracy of the estimatedmaximum normalized bendingmoment (Bn), for the beam excited by amovingmass featuring
Mn = 0.20

BCs Vn Bn

Moving force Moving mass Modified moving force Difference (%)

PP 0.1 1.04699 1.04781 1.04700 0.08
0.5 1.52613 1.66873 1.66076 0.48
1.0 1.41887 1.62145 1.61754 0.24

CC 0.1 1.07310 1.07344 1.07310 0.03
0.5 1.29659 1.39545 1.39530 0.01
1.0 2.69147 2.86292 2.85861 0.15

PC 0.1 1.21991 1.22893 1.21992 0.74
0.5 1.85788 1.98394 1.98467 0.04
1.0 2.59418 2.87543 2.88671 0.39

CF 0.1 1.31188 1.32352 1.31189 0.89
0.5 1.16248 0.69049 0.69373 0.47
1.0 0.82417 0.32033 0.32044 0.03

3.3 Accuracy of the fitting procedure

    To assess the capability of the regression analysis of Sect. 3.2 to catch the inertial effects of a moving mass 
on beam dynamics, the beam is now assumed to be acted by a moving mass featuring Mn = 0.15. The 
maximum normalized deflection of the beam with the BCs already considered before is shown in Fig. 6 
against the normalized velocity of the mass.

By comparing the spectra computed according to the procedure of Sect. 2 and linked to the moving mass 
and moving force cases, with the related spectra obtained by modifying the moving force ones by the 
conversion coefficients of Table 3, the performance of the offered procedure can be neatly evidenced. 
Accordingly, by first conducting a simple and rapid dynamic analysis of the beam excited by a moving force 
and then employing the conversion coefficients, inertial effects of the moving mass can be appropriately 
accounted for.

4 Generalization of the conversion coefficients

   As already pointed out, conversion coefficients can be established once and for all and then adopted not only 
to predict the spectra of maximum deflection, but also e.g., the spectra of maximum bending moment. Relevant 
results are collected in Table 4 for a mass Mn = 0.20 moving with normalized velocity values Vn = 0.1, 0.5 and 
1.0. Outcomes are once again reported for all the considered BCs, in terms of values corresponding to



the full solution given by the moving force and moving mass, and by converting the moving force case via 
the coefficients still obtained with the regression analysis. The relative difference between the original and 
corrected solutions, shown in the rightmost column as being smaller than 1 %, testifies the attained accuracy 
of the solution.

For ease of analysis, similar to what was done for the lateral deflection of the beam, the reference point 
where the maximum normalized bending moment has been set a priori is located at the mid-span for the PP 
case, and at the clamped end for the CC, PC and CF cases.

5 Conclusions

In this paper, conversion coefficients have been computed to automatically obtain the dynamic solution of a 
single-span slender beam excited by a moving mass from the corresponding solution linked to a moving 
force. As reported, in the former case, the interaction between the beam motion and the mass inertia is more 
difficult to handle computationally: hence, the proposed methodology behind the computed coefficients is 
expected to allow time savings in the analysis of beam dynamics.

A beam with different end (boundary) conditions has been considered, and a handy semi-analytical 
method has been discussed to compute its dynamics, employing COPs to approximate beam deflection. By 
an exemplary case, the maximum deflection induced by a moving mass or a moving force has been 
computed, and the proposed regression analysis has been run. The regression functions have been assumed 
as cubic polynomial ones of order three, with a reported high goodness of fit independently of the mass and 
velocity of the loading system. The major feature of the obtained conversion coefficients is that they do not 
depend on the problem at hand, since mass, mass velocity, and beam deflection or bending moment have 
been all appropriately normalized, so that the coefficients here provided are always valid.

The proposed model thus leads to a satisfactory solution to estimate the inertial effects of moving loads 
on beam-like structures. It has also been shown that the obtained conversion coefficients have a remarkable 
accuracy also to transform other design parameters linked to a moving force into those related to a moving 
mass.

Finally, it looks worth pointing out that the proposed method can be routinely used to post-process results 
of analyses of beam structures carried out with, e.g., commercial software, without any external subroutine 
necessary to properly account for the aforementioned effects of moving masses.

Acknowledgments S.M. wishes to acknowledge a partial financial support from Fondazione Cariplo by Project Safer Helmets.

Appendix

Exploiting a procedure based on the COPs in the Rayleigh–Ritz method, the shape functions for the single-
span beam can be computed for any boundary condition, see e.g., [26,27]. In this context, the first shape 
function ϕ1(x) is assumed as a polynomial function of order four, to satisfy the natural and geometrical BCs 
[28]. Accordingly:

ϕ1(x) = 3√
L

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
2,170
31

[( x
L

) − 2
( x
L

)3 + ( x
L

)4] if PP
√
70

[( x
L

)2 − 2
( x
L

)3 + ( x
L

)4] if CC
√
1,330
19

[( x
L

) − 3
( x
L

)3 + 2
( x
L

)4] if PC
√
130
52

[
6
( x
L

)2 − 4
( x
L

)3 + ( x
L

)4] if CF

. (A1)

Additional shape functions to increase the accuracy of the solution are obtained by employing the Gram–
Schmidt procedure, leading to [27,28]:

ϕ2(x) = (x − P2)ϕ1(x), (A2)

ϕn(x) = (x − Pn)ϕn−1(x) − Qnϕn−2(x); n = 3, 4, 5, . . . (A3)



where

Pn =
∫ L
0 x

[
ϕn−1(x)

]2
W (x)dx∫ L

0

[
ϕn−1(x)

]2
W (x)dx

; n = 2, 3, 4, . . . , (A4)

Qn =
∫ L
0 xϕn−1(x)ϕn−2(x)W (x)dx∫ L

0

[
ϕn−2(x)

]2
W (x)dx

; n = 3, 4, 5, . . . (A5)

In the equations above, W (x) is a weight function which is taken unit in this study. The polynomial functions
thus obtained are always orthogonal; i.e.,:∫ L

0
ϕa(x)ϕb(x)W (x)dx

{= 0 if a �= b
�= 0 if a = b . (A6)
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