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We assess the accuracy and efficiency of several exponential time integration methods coupled to a spectral discretization 
of the three-dimensional Boussinesq thermal convection equations in rotating spherical shells. Exponential methods are 
compared to implicit–explicit (IMEX) multi-step methods already studied previously in [1]. The  results of a wide  range 
of numerical simulations highlight the superior accuracy of exponential methods for a given time step, especially when 
employed with large time steps and at low Ekman number. However, presently available implementations of exponential 
methods appear to be in general computationally more expensive than those of IMEX methods and further research is 
needed to reduce their computational cost per time step. A physically justified extrapolation argument suggests that some 
exponential methods could be the most efficient option for integrating flows near Earth’s outer core conditions.

1. Introduction

Spectral (or, more accurately, pseudospectral) spatial discretizations are an established tool for problems in spherical 
geometry, see e.g. [2–5]. Due to the very high accuracy of such a space discretization method, the application of high order 
methods in time is meaningful and appropriate, in order to achieve the goal of minimizing both space and time truncation 
errors. On the other hand, for typical problems in spherical geometry in which spectral discretizations are employed, such as 
atmospheric modeling and mantle convection, extreme efficiency is mandatory, due to the need to carry out simulations on very 
long time scales. For these reasons, the numerical methods to be preferred should allow the use of relatively large time steps, 
while maintaining a high level of accuracy. In this work we assess the accuracy and efficiency of some high order exponential 
time integrators for spectral discretizations of thermal convection equations in spherical geometry. We extend previous works 
[1,6], where high order IMEX methods [7,8] were considered and their accuracy and efficiency evaluated.

Exponential integrators are an attractive technique for time discretization of systems of ordinary differential equations 
(ODEs). In the case of a linear, homogeneous Cauchy problem ẋ = Ax, x(0) = x0, they consist in the numerical approximation of 
the solution representation formula x(t) = exp(At)x0. As long as the exponential matrix can be computed accurately, this 
approach can be extended to obtain methods for nonlinear equations that are linearly unconditionally stable and provide the 
exact solution for linear ODE systems. Early methods of this type were proposed already in the late 1960s, see e.g. [9]. Accurate 
and reliable computation of the exponential matrix, however, is not an easy task, as discussed in the well known review [10]. In 
particular, for a long time these methods have been inapplicable to large ODE systems deriving from the spatial discretizations of 
partial differential equations. On the other hand, starting with the seminal paper by Y. Saad [11], Krylov space methods have 
established themselves as an advantageous option for this type of applications. Since then, an
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increasing attention has been devoted to the use of this technique for stiff problems and large scale computational problems 
have been successfully solved by these methods, see e.g. the results in [12,13]. Recent reviews and assessment of exponential 
methods can be found, among others, in [14–16], while other applications of exponential methods to thermal convection 
problems can be found in [17].

In this paper, we will focus especially on the application of the so called exponential Rosenbrock methods proposed in [18], 
which have already been applied to large scale fluid dynamics simulations in [13]. A wide range of numerical simulations clearly 
show that such exponential methods are more accurate by at least one order of magnitude than the equivalent order IMEX 
scheme. This is especially true when they are employed with large time steps and at small Ekman number. On the other hand, 
presently available implementations of exponential methods appear to be in general computa-tionally more expensive than 
those of IMEX methods, although in the small Ekman number limit they tend to be competitive also in terms of computational 
cost. Therefore, since the small Ekman number regime is among the most physically relevant for mantle convection problems, 
application of exponential methods appears to be very promising for this kind of applica-tions. Indeed, a physically justified 
extrapolation argument seems to hint that the exponential time differencing Rosenbrock methods (ETDR) could be the most 
efficient option for integrating flows near Earth outer core conditions.

The paper is organized as follows. In Section 2, the model equations and the spectral space discretization are introduced. 
In Section 3 the time integration methods are presented in detail, while in Section 4 the numerical simulations performed 
are shown and discussed. Some conclusions and perspectives for future work are summarized in Section 6.

2. The model equations and the spectral space discretization

We consider the thermal convection of a differentially heated spherical fluid shell, rotating about an axis of symmetry
with constant angular velocity � = Ωk and subject to radial gravity g = −γ r, where γ is a constant and r the position
vector. We write below the mass, momentum and energy equations in a rotating frame of reference with angular velocity �,
using the same formulation and non-dimensional units as in [1]. The units employed are the gap width, d = ro − ri , for the
distance, ν2/γ αd4 for the temperature, and d2/ν for time, ri and ro being the inner and outer radii, respectively, ν the
kinematic viscosity, and α the thermal expansion coefficient. The velocity field is expressed in terms of toroidal, Ψ , and
poloidal, Φ , potentials as

v = ∇ × (Ψ r) + ∇ × ∇ × (Φr). (1)

Consequently, the equations for both potentials, and the temperature perturbation, Θ = T − Tc , from the conduction state
v = 0, T = Tc(r), with r = ‖r‖2, are[(

∂t − ∇2)L2 − 2

E
∂ϕ

]
Ψ = − 2

E
QΦ − r · ∇ × (ω × v), (2)

[(
∂t − ∇2)L2 − 2

E
∂ϕ

]
∇2Φ + L2Θ = 2

E
QΨ + r · ∇ × ∇ × (ω × v), (3)

(
σ∂t − ∇2)Θ − Rη(1 − η)−2r−3L2Φ = −σ(v · ∇)Θ. (4)

Here ω = ∇ × v is the vorticity, R is the Rayleigh number, σ the Prandtl number, E the Ekman number and η is the radius
ratio. These non-dimensional parameters are defined in this context as

R = γ αT d4

κν
, E = ν

Ωd2
, σ = ν

κ
, η = ri

ro
, (5)

where κ is the thermal diffusivity, and T the temperature difference between the inner and outer boundaries. The oper-ators L2 

and Q are defined by L2 ≡−r2∇2 + ∂r (r2∂r ), Q ≡ r cos θ∇2 − (L2 + r∂r )(cos θ∂r − r−1 sin θ∂θ ), (r,θ,ϕ) being the spherical 
coordinates, with θ measuring the colatitude, and ϕ the longitude. In non-dimensional units the conduction state reads Tc (r) = 
T0 + Rη/σ (1 − η)2r. Non-slip, perfect thermally conducting conditions Φ = ∂rΦ = Ψ = Θ = 0 are assigned at the internal and 
external boundaries.

A standard treatment of the spatial dependence of the equations is used, so that we will only discuss the basic points (see, 
e.g., [19,20] for more details). The functions X = (Ψ,Φ,Θ) are expanded in spherical harmonic series up to degree L, namely

X(t, r, θ,ϕ) =
L∑

l=0

l∑
m=−l

Xm
l (r, t)Y m

l (θ,ϕ), (6)

with Ψ −m
l = Ψ m

l , Φ−m
l = Φm

l , Θ−m
l = Θm

l , Ψ 0
0 = Φ0

0 = 0 to uniquely determine the two scalar potentials, and Y m
l (θ,ϕ) =

Pm
l (cos θ)eimϕ , Pm

l being the normalized associated Legendre functions of degree l and order m. Eqs. (2)–(4) written for the
complex coefficients become



 
 
 
 

 
 

 
 
 

. 
 
 

∂tΨ
m
l = DlΨ

m
l + 1

l(l + 1)

[
2E−1(imΨ m

l − [QΦ]m
l

) − [
r · ∇ × (ω × v)

]m
l

]
, (7)

∂tDlΦ
m
l = D2

l Φm
l − Θm

l + 1

l(l + 1)

[
2E−1(imDlΦ

m
l + [QΨ ]m

l

) + [
r · ∇ × ∇ × (ω × v)

]m
l

]
, (8)

∂tΘ
m
l = σ−1DlΘ

m
l + σ−1l(l + 1)Rη(1 − η)−2r−3Φm

l − [
(v · ∇)Θ

]m
l , (9)

with boundary conditions

Ψ m
l = Φm

l = ∂rΦ
m
l = Θm

l = 0. (10)

The spherical harmonic coefficients of the operator Q=Qu +Ql are[
Qu f

]m
l = −l(l + 2)cm

l+1 D+
l+2 f m

l+1,[
Ql f

]m
l = −(l − 1)(l + 1)cm

l D+
1−l f m

l−1, (11)

where we have set

D+
l = ∂r + l

r
, cm

l =
(

l2 − m2

4l2 − 1

)1/2

, Dl = ∂2
rr + 2

r
∂r − l(l + 1)

r2
. (12)

In the radial direction, a collocation method is employed, using a Gauss–Lobatto mesh of Nr + 1 points (Nr − 1 being the 
number of inner points).

The spherical harmonic coefficients of the nonlinear terms in Eqs. (7)–(9) are obtained following [19]. The velocity and
vorticity fields are computed first on a collocation mesh in the three coordinates (r, θ ,  ϕ) with the help of dealiased Legendre
and fast Fourier transforms [3]. The cross product is computed on the mesh, and, finally, transformed back to the spectral space in
the angular variables. The computation of the coefficients of the nonlinear terms of Eq. (9) requires the evaluation of the inner
product (v · ∇)Θ on the collocation mesh, and then to transform back to the spectral space.

The mode m = l = 0 is nonzero only for Θ to uniquely determine Ψ and Φ , while the amplitudes for m = 0 are real. With these
considerations, a large system of ordinary differential equations of dimension N = (3L2 + 6L + 1)(Nr − 1) must be integrated in
time.

3. Time integration methods

In this section, we introduce the two different classes of methods for integrating stiff ordinary differential equations 
that have been considered in this paper, namely the IMEX backward differentiation formulae (IMEX-BDF) [7,8,21] and the 
exponential time differencing schemes (ETD) [15,18,22,23]. To describe these time integration methods, Eqs. (7)–(9) are 
written in the  form

L0u̇ = Lu +N (u), (13)

where u = (Ψ m
l (ri),Φ

m
l (ri),Θ

m
l (ri)) is the vector containing the values of the spherical harmonic coefficients at the inner

radial collocation points, and L0 and L are linear operators including the boundary conditions. The former is invertible. Its
action is that of the identity for the Ψ m

l and Θm
l components, while it is defined by the operator Dl for the component Φm

l
(see the time derivatives in Eqs. (7)–(9)). In the ETD schemes, the operator L includes all the linear terms, while in the
IMEX-BDF scheme it only includes the terms DlΨ

m
l , D2

l Φm
l −Θm

l , and σ−1DlΘ
m
l +σ−1l(l +1)Rη(1−η)−2r−3Φm

l of Eqs. (7),

(8) and (9), respectively, and part of the Coriolis terms (see below). In the IMEX-BDF scheme the operator N , which is treated
explicitly, always contains the nonlinear terms and the part of the Coriolis terms not included in L. In the  ETD  scheme, the
operator N only contains the nonlinear terms. All the time integration methods defined in the following will be assumed to
provide approximations un ≈ u(tn) to solutions of Eq. (13) at time levels tn = tn−1 + tn−1, n = 1, 2, . . . ,  M.

3.1. Implicit–explicit schemes

The IMEX-BDF schemes employed here were described in detail in [1,6] so only a very short description will be included here
IMEX-BDF schemes are collocation multistep methods, which obtain un+1 from the previous approximations un− j , j = 0, 1, . . . ,k
− 1, k being the number of steps in the formula. When constant time steps tn = h are considered, the linear system to be solved

in order to find un+1 can be expressed as(
I − h

γ0
L−1

0 L
)

un+1 =
k−1∑
i=0

αi

γ0
un−i +

k−1∑
i=0

βih

γ0
L−1

0 N
(
un−i), (14)

where the coefficients αi , β j and γ0 do not depend on n, and are listed, for instance, in [24]. It is well known that, if k � 6 and the 
time steps are constant (see e.g. [25, §III.3]), the BDF formulae are zero-stable, while they are unstable for k � 7. It
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is also known that for k � 6 the k-step formula is convergent of order k, that is, the errors u(tn) − un are O (hk). Therefore the k-

step formula is also termed the k-th order formula.

We have chosen the Q -splitting IMEX-BDF method of [1,6] because it had the best performance among the methods analyzed 
in fixed time step numerical tests. In this scheme, one step is performed by taking Qu of Eq. (11) implicitly (including it in the 
operator L of Eq. (13)), and Ql of Eq. (11) explicitly (including it in the operator N of Eq. (13)), while the opposite is done the 
next step. The rest of the linear operators are always treated implicitly and the nonlinear operator explicitly.

This study is restricted to fixed time step methods, although for comparison purposes results using variable step-size and 
variable order (VSVO) IMEX-BDF implementation are included in the efficiency plots of Sections 4.1 and 4.2. See [1] for details on 
this algorithm.

3.2. Exponential time differencing schemes

To describe the ETD schemes, Eq. (13) is written in the form

u̇ = L−1
0 Lu +L−1

0 N (u) = F(u), (15)

where L contains the linear terms (including the Coriolis term) and N the nonlinear terms of Eqs. (7)–(9).
We have considered first the ETDR schemes of orders 2 to 4 as described in [18]. The ETDR scheme of second order (ETDR2) is 

defined by the formula

un+1 = un + hϕ(h A)F
(
un), (16)

where h = tn+1 − tn, F is the right-hand side of Eq. (13), ϕ(z) = (ez − 1)/z and A = J (un), where J denotes the Jacobian of the 
right hand side of Eq. (15)

J (u) = L−1
0 L+L−1

0
∂N
∂u

(u) = ∂F
∂u

(u).

In our implementation, we either compute the action of the Jacobian of the nonlinear operator on a vector v by the
one-sided approximation(

∂N
∂u

(u)

)
(v) ≈ N (u + εv) −N (u)

ε
(17)

with, as usual, ε = ‖u‖2
√

εmach , εmach being an estimate of the round-off error, or by the centered formula(
∂N
∂v

(u)

)
(v) = 1

2ε

[
N (u + εv) −N (u − εv) , (18)

which is exact for a quadratic N , except for rounding errors. In this case we have always taken ε = 1 to reduce them. More
information on when they have been used is given below in this section, and at the end of Section 5.

Among the family of ETDR schemes of third order (ETDR3) proposed in [18] we choose that defined by

k1 = ϕ

(
1

2
h A

)
F

(
un), (19)

k2 = ϕ

(
1

2
h A

)
F

(
un + 4

3
hk1

)
, (20)

un+1 = un + h

(
13

16
k1 + 3

16
k2

)
, (21)

because it minimizes the number of matrix–vector multiplications necessary to achieve third order accuracy. For analogous
reasons, the specific fourth order formula (ETDR4) employed in the following is that given by

k1 = ϕ

(
1

2
h A

)
F

(
un), (22)

k2 = ϕ

(
1

2
h A

)(
F

(
un) + 1

8
h Ak1

)
, (23)

k3 = ϕ

(
1

2
h A

)(
F

(
un + 3

4
hk2

)
− 3

4
h Ak2

)
, (24)

un+1 = un + h

(
−43

k1 + 2k2 + 16
k3

)
. (25)
27 27
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Table 1
Computational cost, C (CPU time in seconds of an Intel Quad-Core at 2.40 GHz processor), the
evaluation of the linear L−1

0 L versus the nonlinear L−1
0 N operators. The radial resolution is Nr

and L is the truncation parameter of the spherical harmonics expansion.

Nr L C(L−1
0 N ) C(L−1

0 L)

32 54 0.157 0.036
50 84 0.657 0.182
80 160 5.026 1.745

It should be remarked, however, that different choices could have to be made to guarantee a given convergence order also
when an approximate Jacobian is employed, see e.g. the discussion in [26]. As will be seen in Section 5, we have only found
this type of failure for the ETDR4 method, which has been therefore implemented by using Eq. (18).

We have also considered the ETD Cox method of second order (ETDC2) of [17], which is a variant of a scheme introduced
in [15,27]. This scheme can be defined setting M = L−1

0 L and N = L−1
0 N . By multiplying Eq. (13) by the factor e−Mt , and

integrating over one time step h,

un+1 = eMhun + eMh

h∫
0

e−Mτ N
(
u(tn + τ )

)
dτ , (26)

is obtained.
Setting N(u(tn + τ )) ≈ Nn + τ (Nn − Nn−1)/h, being Nn = N(u(tn)), evaluated at τ = h/2, gives the ETDC2 scheme:

un+1 = eMhun +
(

eMh

h∫
0

e−Mτ dτ

)
h

2
(3Nn − Nn−1),

or

un+1 = eMhun + h

2
ϕ(Mh)(3Nn − Nn−1). (27)

This scheme can be interpreted as an extension of the second order Adams–Bashforth method and can be extended to
higher order along the same lines. The most attractive property of these schemes is that they are based only on matrix–
vector products of the linear operator L−1

0 L. Computing them is significantly less demanding than computing the actions
of the Jacobian required by ETDR methods, which entail repeated computation of the nonlinear terms. The difference in 
computational cost is displayed in Table 1. The number of nonlinear evaluations performed to advance one time level is 
the main shortcoming of the Rosenbrock methods for integrating the spectral thermal convection equations on spherical 
geometry.

The linear operators L and A are represented by large matrices. The block-tridiagonal structure of L is described in detail in 
the Appendix of [1]. Therefore, Krylov space methods based on the proposals of [11] can be conveniently employed to compute 
the exponential and related matrix functions that appear in the previous schemes. Notice that, employing the recipe proposed in 
[11], the computation of ϕ(h A ) can be achieved by computing the exponential of a bordered matrix. To evaluate the action of 
ϕ(h A ) on a vector  v , needed by the ETDR schemes, we use the subroutine DGPHIV of the EXPOKIT package [23]. In this 
subroutine, a variable time-stepping strategy is implemented, in order to compute w = ϕ(h A )v in a Krylov space of fixed 
dimension nK by taking partial substeps. At each of them taken with an increment hn, the norm of the error in the approximation 
of w at the current substep is estimated by εloc. Then the step is accepted if

εloc � 1.2hnεtol, (28)

with εtol a tolerance provided by the user, and 1.2 a safety factor which reduces the risk of rejecting the step. This strategy
ensures that the accumulated global error is bounded by 1.2hεtol independently of the number of substeps taken.

Since we are interested in comparing with IMEX-BDF fixed time-step methods, the above strategy is modified to change
the dimension of the Krylov subspace, nK , instead of the time step, hn , to satisfy the same condition given by Eq. (28).
Then, the convergence will depend only on the value of h and εtol . In case of ETDC2, the subroutine DGPHIV allows the
simultaneous computation of eMhun and ϕ(Mh)vn , with vn = 3Nn − Nn−1. Again, only a fixed time-stepping strategy with
variable Krylov dimension has been considered.

For analyzing the efficiency of ETD methods using Krylov spaces of dimension up to nK , one has to keep in mind that,
in order to advance one time step h, the number of evaluations of A = J (un) (in case of ETDR methods) or M = L−1

0 L
(in case of the ETDC2 method) is proportional to nK . In contrast, for the IMEX-BDF methods, only one evaluation of the
right hand side is required for each time step. Therefore, ETD methods need significantly larger time step than IMEX-BDF
methods to be competitive.
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Table 2
Ekman number, Rayleigh number, critical Rayleigh number, Rc , critical precession frequency, |ωc |, critical azimuthal wavenumber, mc , radial resolution, Nr ,
spherical harmonics truncation, L, and number of equations, N , for the test solutions T1, T2, T3, T12, and T13, considered.

Case T1 T2 T3 T12 T13

E 10−4 10−4 10−4 10−5 10−6

R 2.64 × 105 2 × 106 107 2.35 × 106 3.5 × 107

Rc 1.86 × 105 1.86 × 105 1.86 × 105 2.29 × 106 3.32 × 107

|ωc | 5.06 × 102 5.06 × 102 5.06 × 102 2.37 × 103 1.10 × 104

mc 6 6 6 11 23
Nr 32 50 80 50 80
L 54 84 160 84 160
N 281 263 1 083 650 6 143 119 1 083 650 6 143 119

Table 3
Values and intervals of the isosurfaces of the temperature, T = Tc +Θ , the square of the modulus of the velocity field, |v|2, and the longitudinal component
of the velocity, vϕ , plotted in Fig. 1 for the test solutions T1, T2, T3, T12, and T13, considered.

Case T1 T2 T3 T12 T13

Thot 3.2 × 106 2 × 107 108 2.7 × 107 4.7 × 108

Tcold 1.7 × 106 1.3 × 107 6.2 × 107 1.5 × 107 2.2 × 108

|v|2 2.2 × 103 1.5 × 106 1.1 × 107 6.5 × 102 4.2 × 103

|vϕ | 7.8 3.3 × 102 1.6 × 103 5.2 3.8 × 101

Tmin 1.4 × 106 1.1 × 107 5.3 × 107 1.3 × 107 1.9 × 108

Tmax 4.1 × 106 3.1 × 107 1.5 × 108 3.6 × 108 5.4 × 108

|v|2min 10−10 3.8 × 10−5 1.7 × 10−2 8 × 10−13 2 × 10−7

|v|2max 1.6 × 104 7.8 × 106 5.6 × 107 1.5 × 103 1.7 × 104

vϕmin −9.8 × 101 −2.3 × 103 −7.4 × 103 −2.6 × 101 −8.4 × 101

vϕmax 8.1 × 101 1.4 × 103 5.2 × 103 2.5 × 101 5.8 × 101

4. Numerical simulations

We have done several tests in order to compare the performance of the time integrators introduced above in different physical
regimes described in [28]. In all the cases, the radius ratio is η = 0.35 and the Prandtl number σ = 0.1 estimated  for the Earth’s
outer core.

To address the Rayleigh number dependence, we have considered three cases, denoted by T1, T2, and T3, respectively, where
the Ekman number is taken to be fixed at E = 10−4, while the values of the Rayleigh number increase according to the physical
regime to be represented (see Table 2). In case T1 (corresponding to S2 in [6]), the solution is a weak supercritical quasi-periodic
wave with R = 1.42Rc . In case  T2 (corresponding to S3 in [6]), the solution, computed with moderate Rayleigh number R =
10.78Rc is chaotic, but still maintains a recognizable columnar structure. Finally, a strongly supercritical and fully turbulent
solution with R = 53.58Rc is considered in case T3.

To address the Ekman number dependence, we have also considered cases T12 with E = 10−5 and R = 1.03Rc and T13 with E =
10−6 and R = 1.05Rc . In both cases, the solution is a periodic traveling wave. The linear stability analysis for this range of
parameters was performed in [29], where the power laws for the critical Rayleigh number, Rc , the absolute value of the critical
precession frequency, |ωc |, and the critical azimuthal wavenumber, mc , were found numerically. The Ekman numbers are in the
range for which the power laws of the asymptotic E limit are satisfied. The critical values and spatial resolutions considered are
shown in Table 2. Notice that the spatial resolutions are increased with the complexity of the solution, and in order to resolve the
small scale structures which appear in the turbulent solution T3 or that of the lowest E (T13), N = 6 143 119 equations must be
integrated. The analysis of the resolutions required to reproduce the dynamics of the flow in each regime is discussed in [28].

The isosurfaces of the temperature T = Tc + Θ , |v|2, and vϕ of the initial conditions of T i , i = 1, 2, 3, 12, 13, are shown in Fig
1. For each scalar field the values where the isosurfaces are taken and their limits are written down in Table 3. Cases  T1, T12 and
T13 resemble very much the eigenfunctions of the linear problem. There are mc spiraling convective columns which are parallel to
the axis of rotation, so nearly fulfilling the Taylor–Proudman theorem. As it is well known when E is decreased, mc increases, the
spiraling of the columns is more pronounced, and the columns are confined in a thin cylindrical layer near the inner boundary.

For the solution T2 displayed in the second row, the contribution of the zonal flow to the kinetic energy density is max-imum
and advective effects deform the temperature isosurfaces, but its velocity field already maintains a roughly columnar structure
The third row corresponds to T3. The reflection symmetry with respect to the equator is clearly broken, and the strong turbulent
convection fills the spherical shell. Although the mean zonal flow maintains its strength, its ratio to the convective part has
decreased.

To make the comparisons, all the test runs have been initialized starting from the initial conditions shown in Fig. 1. In
cases T1, T2 and T3, the initial conditions are obtained from a sequence of solutions obtained with lower R after the initial
transients are discarded and until a stationary pattern is reached, or until the time-averaged properties and the fundamental



Fig. 1. From left to right, snapshots of the isosurfaces of the temperature T (hot and cold respectively), of |v|2 and of vϕ . For the latter, red/blue means
positive/negative values. First row: Case T1 (E = 10−4 and R = 2.64×105). Second row: Case T2 (E = 10−4 and R = 2×106). Third row: Case T3 (E = 10−4

and R = 107). Fourth row: Case T12 (E = 10−5 and R = 2.35 × 106). Last row: Case T13 (E = 10−6 and R = 3.5 × 107). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

frequencies do not change more than 1%. The first solution of the sequence is at R = 2 × 105 and it is computed by starting
from an initial condition with velocity v = 0, and temperature

T B(r, θ,ϕ) = riro

r
− ri + 2A√

2π

(
1 − x2)3

Pm
m(θ) cos mϕ, (29)

where A = 0.1, x = 2r − ri − ro , m = 6, and



Table 4
Frequency of maximum amplitude fmax , mean frequency fmean , mean period Pmean , dimensional mean period Pd = Pmeand2

c /ν (dc = 2.3 × 106 m and
ν = 10−6 m2/s corresponding to values of the Earth’s outer core) and final time t f (at which errors ε(u) are computed) for all the cases considered.

Case fmax fmean Pmean Pd (years) t f

T1 59.11247 58.58775 1.706841 × 10−2 2.9 × 109 10−1

T2 48.31012 872.7377 1.145820 × 10−3 1.9 × 108 10−2

T3 168.9822 1187.499 8.421060 × 10−4 1.4 × 108 10−4

T12 367.5766 368.5130 2.713608 × 10−3 4.56 × 108 10−3

T13 1539.483 1539.483 6.495687 × 10−4 1.1 × 108 3.25 × 10−4

Fig. 2. Temperature perturbation Θ(ri + (ro − ri)/7,0,3π/8) plotted versus time for (a) T1, (b) T2, (c) T3, (d) detail of (c), (e) T12, and (f) T13.

Pm
m(θ) = √

(2m + 1)!!/2(2m)!! sinm θ

is the normalized associated Legendre function of order and degree m. As it is said the solution tends, after an abrupt
transient, to the above mentioned azimuthal traveling wave of wavenumber m = 6. For E = 10−5 (case T12), the first
solution is computed using the same initial condition, but with critical wavenumber m = 11, and at E = 10−6 (case T13)
with m = 23.

In Table 4, some quantities are shown to give some idea of the time scales corresponding to the different cases consid-
ered. The frequency fmax with maximum amplitude Amax of the frequency spectrum ( f i, Ai), the mean frequency fmean =∑

Ai f i/
∑

Ai , the mean period Pmean = 1/ fmean and the dimensional mean period Pd = Pmeand2
c /ν with dc = 2.3 × 106 m

and ν = 10−6 m2/s, corresponding to estimations of values for the Earth’s outer core. The system is evolved from the initial
condition to a final time t f which is given in the same table. It covers several mean periods of the orbit for T1 and T2.
However, for T3, T12 and T13, only a fraction of the mean period is considered, to avoid too long time integrations. We have
checked for T12 that the choice of a larger t f does not alter substantially the behavior of the time integration methods.

The time series of the temperature perturbation Θ at the point (ri + (ro − ri)/7,0,3π/8) are shown in Figs. 2(a)–(f), for
all the tests. The smooth oscillatory nature of cases T1, T12, and T13 with very different periods, and the chaotic temporal
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dependence of T2 and T3 can be clearly distinguished. The time interval is similar to t f only for T1 and T2. For the rest
(T3, T12, and T13) the time interval is between one and two orders of magnitude larger. Fig. 2(d) shows, for T3, a detail of
the oscillations with a time interval 10 times larger than t f .

To check the efficiency of the different schemes, the relation between the relative error, the time step h, and the run
time is analyzed. The former is defined as

ε(u) = ‖u − ur‖2

‖ur‖2
, (30)

where u is the solution we want to check, and ur is an accurate reference solution obtained with the Q -implicit variable size and 
variable order method of [1]. More precisely, ur is obtained with absolute and relative error tolerances εa = εr (see [1]), equal to 
10−13 for T1, to  10−11 for T2, T3 and T13, and to 10−12 for T12. The decrease of the relative error given by Eq. (30) is achieved by 
decreasing the step size h in the case of the IMEX method and also by decreasing the tolerances εtol (see Eq. (28)) for the local 
errors (coming from the Krylov approximation) in the case of the ETD methods. Notice that the errors computed in this way are to
be interpreted as empirical estimates of the time discretization error, while no attempt here is made to estimate the error due to 
the space discretization method.
For the IMEX-BDF methods the curves of relative error ε(u) versus h are extended to the right, up to the maximum h allowed by 
stability. In the case of ETD methods the limitations on the maximum time step are due to an increase in the
Krylov dimension nK used to approximate the exponentials. It was limited to nK � 50.

4.1. Rayleigh number dependence

In this subsection, the influence of the Rayleigh number on the performance of the time integration methods is studied by 
considering the cases T i , i = 1, 2, 3. Figs. 3(a), (c), (e) show ε(u) versus h for the methods described in Section 3. These  three 
plots suggest that:

– For a given time step h, the ETDR methods are always much more accurate than the corresponding IMEX-BDF methods of 
the same order. ETDR2 gives values of ε(u) similar to those of the IMEX-BDF3, while ETDR3 gives errors similar to those of 
IMEX-BDF5. As the Rayleigh number increases, the ETDR methods become even more accurate.

– ETDC2 is about one order of magnitude less accurate than ETDR2 for T1. At moderate and high supercritical conditions 
(T i , i = 1, 2) the accuracy of the former degrades, and its behavior and that of IMEX-BDF2 are nearly the same; most 
likely because their treatment of the nonlinear terms is very similar.

– For the three cases under consideration and a given time step h, all the ETD methods use similar values of the Krylov 
dimension nK . They range from 2–5 for the smallest h, up to 20–30 for the highest. For larger h than those shown in 
Figs. 3(a), (c), (e) the increase of the Krylov dimension employed is more pronounced.

– ETDRk methods of orders k = 3, 4 are, in general, much more accurate than those of second order. However, for T1 

the accuracy of ETDR4 is very similar to ETDR3. The order of the latter is exhibited for the smallest h, while for the 
larger the slopes of the ETDR3 and ETDR4 error curves in Fig. 3(a) are very similar. With increasing R the differences 
in accuracy between both methods are more pronounced (Figs. 3(c) and (e)).

Figs. 3(b), (d), (f) show ε(u) versus the run time, rt, for T1, T2, and T3, respectively. These three plots suggest that:

– When comparing IMEX-BDF and ETDR methods, it must be kept in mind that to advance one time step IMEX-BDF methods 
only require one linear solve (equivalent in cost to a linear evaluation) and one computation of the nonlinear terms, while 
ETDRk methods need O ((k − 1)nK ) evaluations of the linear and nonlinear terms if an approximated Jacobian (see Eq. (17)) is 
employed. If instead the exact Jacobian (Eq. (18)) is employed, the number of evaluations per time step is O (2(k − 1)nK ). 
ETDC2 is more efficient than ETDR methods because they only perform one evaluation of the nonlinear terms and O (nK ) of 
the linear, which are cheaper to perform.

– Taking the previous point into account, in order to obtain solutions with similar ε(u) at similar costs, the time step hETDRk of 
the ETDRk method should be O ((k − 1)nK ) times larger than hBDFk , required for the IMEX-BDFk methods. This does not 
happen for T i , i = 1, 2, 3, and thus IMEX-BDF methods are more efficient to obtain moderately accurate solutions at E = 10−4 

for the wide range of R explored. However, the difference hETDRk − hBDFk increases slightly with increasing R .
– The most accurate IMEX-BDF fixed step method (IMEX-BDF5) can achieve relative errors ε(u) down to O (10−10), O (10−5) 

and O (10−8), for  T1, T2, and T3, respectively. The most accurate solutions using ETDR4 have ε(u) down to O (10−12), O (10
−7) and O (10−12). The differences in accuracy between the most accurate solution obtained with IMEX-BDF5 and that 
obtained with ETDR4 increase as R is increased. In all the three test cases, the VSVO Q -implicit method of [1] (of orders from 
2 up to 5), with very low tolerance values, can obtain the same accuracy as the ETDR methods but more efficiently. 



Fig. 3. (a) The relative error, ε(u), plotted versus the constant time step h for the ETD and IMEX methods and the case T1 . (b) The relative error, ε(u), plotted versus 
the run time in seconds for the same methods shown in (a) and the case T1 . (c) Same as (a) but for the case T2. (d) Same as (b) but  for  the case T2 . (e) Same as 
(a) but for the case T3. (f) Same  as (b) but  for the case  T3 . The symbols and types of lines indicate: IMEX-BDF (•, dotted line),  IMEX-BDF-VSVO (∗, solid 
line), ETDC2 (�, dash-dotted line (red)), ETDRk (�, dashed  line (k = 2 green, k = 3 blue and k = 4 magenta)). The orders of the methods are labeled on the 

curves. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.2. Ekman number dependence

In this subsection, the influence of the Ekman number on the performance of the time integration methods is studied

by considering the cases T1 and T1i , i = 2, 3. Fig. 3(a) and Figs. 4(a), (c) show the relative error ε(u) plotted versus the time step h 

for the methods described in Section 3. These three plots suggest that:

– As for the R dependence, for a given time step h, the ETDR methods are always much more accurate than the corre-
sponding IMEX-BDF methods of the same order. As E decreases, the ETDR methods become even more accurate. This
is quantified in Table 5 where the constants Cmeth of the numerical fits ε(u) = Cmethhk are shown. For instance, notice
that at the lowest E (case T13) the constant for the ETDR3 method (the highest order taken for which the approximate
Jacobian can be used) is more than 5 orders of magnitude smaller than that of the IMEX-BDF3.

– ETDC2 is roughly one order of magnitude less accurate than ETDR2, but one order of magnitude more accurate than
IMEX-BDF2 for the three E considered. This is one of the reasons for which ETDC2 is the more efficient option (as will
be shown later) among the second order methods.

– As happened when addressing the R dependence, for the three cases under consideration and a given time step h, all
the ETD methods use similar values of the Krylov dimension nK . They range from 2–5 for the smallest h, up to 20–30
for the largest. It is nearly 40 for the largest h in cases T1i , i = 2,3, and ETDRk of orders k = 3,4.



Fig. 4. (a, c) Relative error, ε(u), plotted versus the constant time step, h, for ETD and IMEX-BDF methods for the cases T12 (E = 10−5) and T13 (E = 10−6),
respectively. (b, d) Relative error plotted versus the run time, rt, in seconds for the same methods and cases shown in (a) and (c). The symbols and types
of lines are those of Fig. 3.

– The facts that the Krylov dimension does not depend on E , (and neither on R) for the range of  ε(u) shown in the plots, and 
that the constants Cmeth are much larger for IMEX-BDF than for the ETDR suggest that the latter would be more efficient for 
integrating flows at E � 10−6.

– The vertical distance between the ETDR2 and ETDR3 (or ETDR4) curves of Fig. 3(a) and Figs. 4(a), (c) increases as E decreases. 
This can be seen by measuring the difference between ε(u) for ETDR2 and ETDR3 at, for instance, h = 10−4, h = 10−5, and h = 
10−6, and T1, T12, and T13, respectively. In the latter case the vertical distance is the largest. This suggest that high order (> 2) 
ETDR methods would be suitable at low E .

– In the case of the IMEX-BDF methods, as E is decreased the differences in accuracy (vertical distance) between the methods 
with orders k = 3, 4, 5 diminish. The range of h in which the curves are obtained without a noticeable accu-mulation of 

round-off errors (h for which ε(u) versus h has positive slope) also decreases with E . This suggest that as E is decreased fixed 
step and order IMEX-BDF methods with order larger than 3 would not improve substantially the accuracy. Moreover, 
selecting a time step h belonging to the region of absolute stability and without accumulation of round-off errors would be 
more difficult as E is decreased.
Fig. 3(a) and Figs. 4(b), (d) show the relative error ε(u) plotted versus the run time for the cases T1 and T1i , i = 2, 3. 

These three plots suggest that:

– As discussed in the previous subsection, in order to obtain solutions with similar ε(u) at similar costs, the time step
hETDRk of the ETDRk method should be O ((k − 1)nK ) times larger than hBDFk , required for the IMEX-BDFk methods. This
appears to happen at the lowest Ekman number E = 10−6 (case T13) and thus IMEX-BDF methods are more efficient
only for obtaining moderately accurate solutions at the moderately low Ekman numbers E = 10−4,10−5.

– The differences between hBDFk and hETDRk have stronger dependence on the decrease of E than on the increase of R as
in the previous subsection.

– The ETDC2 method is in general the most efficient among the second order methods for the three cases. This is be-
cause ETDC2 method retains the most attractive properties of the other two. It only requires one evaluation of the
nonlinear terms at each time step (as IMEX-BDF2) and the solution of the linear part is only constrained by the Krylov
approximation of the exponential (as for ETDR2).

– Implementations of higher order linear multistep exponential methods similar to ETDC2 could be competitive, but
would require the computation of the functions ϕ j(z) = (ϕ j−1 − 1/ j!)/z with j > 1, whose numerical approximation is
known to lead often to cancellation errors [30].

– As in the case of increasing R , when E is decreased, very accurate solutions can only be obtained with fixed-time step
by using ETDR methods of order k = 3,4 or the VSVO Q -implicit method [1] with very low tolerances. At the lowest E ,



 
 
 
 
 
 

 
 
 

Table 5
Least-squares fits for the constant C in ε(u) = Chk , where k = 2, 3, 4, 5 is the order of the method, as a function of the 
Ekman number E . The statistical errors of the fit are less than 5%, and for ETD methods less than 1%.

Method E = 10−4 E = 10−5 E = 10−6

ETDC2 3.7 × 105 2.7 × 106 4.7 × 107

ETDR2 7.6 × 104 1.4 × 105 4.6 × 106

ETDR3 3.0 × 105 3.7 × 106 1.5 × 108

ETDR4 1.3 × 1010 3.1 × 1010 2.3 × 1013

IMEX-BDF2 1.6 × 107 2.3 × 107 7.1 × 108

IMEX-BDF3 4.3 × 109 1.2 × 1011 5.5 × 1013

IMEX-BDF4 3.0 × 1012 3.1 × 1016 1.5 × 1020

IMEX-BDF5 1.6 × 1015 7.9 × 1021 4.1 × 1026

due to the large number of time steps required for the IMEX-BDF-VSVO method to achieve such high accuracy, the
ETDR3 method becomes more efficient because it can employ a time step generally larger than the average time step
of the IMEX-BDF-VSVO method.

Using the numerical fit ε(u) = Cmethhk, and assuming that Cmeth = Cmeth(E) (shown in Table 5), values of Cmeth can be extrapolated 
for regimes near the onset of convection for integrations over half a period of the solution. We use the
constants Cmeth(E) of the methods of third order (since they are the most efficient among the ETDRs) and E = 10−5, 10−6 (cases 
T1i , i = 2, 3) to make an extrapolation of C(Ecore) for Ecore = 2.6 × 10−15.

We have fitted a potential law, Cmeth = aEb , to cases  T1i , i = 2, 3 because both are traveling waves, which near to the onset 
of convection are confined near the inner core (see Fig. 1), and it is known that critical parameters Rc , ωc and mc follow this kind 
of dependence. With the parameters σ and η corresponding to those widely used for the Earth’s outer core the critical frequency 
is ωc = 1.1E−0.66 [29], and taking into account Ecore = 2.6 × 10−15, an approximate period T = 10−9 is obtained. In dimensional 
units it would be T = 7 × 109 s. This value matches well with long period oscillations (> 100 years) of the inner core estimated 
in [31]. In addition most of the physical properties and time scales in developed turbulent convection follow this type of law 
[28,32].

For ETDR3 and IMEX-BDF3, CETDR3 = 0.3E−1.6 and CBDF3 = 6 × 10−3 E−2.7 are obtained, respectively. By taking into ac-count 
Ecore = 2.6×10−15, the constants are CETDR3 = 7×1022 for ETDR3 and CBDF3 = 1037 for IMEX-BDF3. This result implies that for 
integrating half a period (roughly t f = 5 × 10−10 adimensional time units) of the first bifurcated traveling wave at the Earth’s 
outer core conditions, with relative error ε(u) = 10−6, the time step needed using ETDR3 and IMEX-BDF3 would be 
approximately 2 × 10−10 and 5 × 10−15, respectively. If the Krylov dimension required by the ETDR methods does not depend 
strongly on E to obtain solutions with a given value of ε(u), as suggested by our results, the ETDR methods could be the most 
efficient option for integrating flows near the Earth’s outer core conditions.

5. Numerical issues in the application of exponential methods

In this section, some implementation issues of the exponential methods are addressed. The details discussed are in 
general common to all the test cases, so only the computational aspects of the case T1 will be commented.

In Fig. 5(a) the relative error ε(u) is plotted versus the constant time step h for the ETD methods. For each h, the  Krylov
dimension nK used to approximate the exponentials is labeled in the curves. For a given h, the  values  of nK selected for the
different methods are very similar. The greatest differences (about 5) are between ETDC2 and ETDR methods and the larger time
steps, for which nK are larger. As h decreases, nK decreases too, from approximately 25 down to 5, and also the bound for the local
relative error, bloc(u) = 1.2hεtol‖ur ‖−1 (computed from Eq. (28)), used in the Krylov approximation. This bound is shown in Fig.
5(b) as a function of h for the solutions in Fig. 5(a). As it is expected bloc(u) must be decreased accordingly with the order of the
integration. This can be seen in the curves for the third and fourth order ETDR methods. The oscilla-
tions are due to the  way we have modified  εtol when changing h. In the case of second order we were conservative for the 
larger h, and therefore the slope is less than two.

Finally, Fig. 5(c) shows ε(u) versus the parameter ε used in the one-sided finite difference approximation of the Jacobian, for
the Rosenbrock methods of Fig. 5(a) with h = 10−4. The horizontal straight lines are the values of ε(u) obtained with the centered
exact formula. As the order of the method increases, the range of values of ε which can be used in the one-sided approximation,
giving the same result, decreases. For the second and third order methods the value selected in our tests,

ε = ‖u(0)‖2
√

εmach, is always in this range. In the case of the fourth order method the one-sided approximation always gives
a larger  ε(u) than that obtained with the exact computation of the Jacobian, as the theoretical results in [18] (Theorem 5.1) 
suggest.

6. Conclusions and open issues

In this work, we have carried out an assessment of the accuracy and efficiency of several exponential time integration
methods coupled to a spectral discretization of the three-dimensional Boussinesq thermal convection equations in rotating



Fig. 5. (a) The relative error, ε(u), versus the constant time step, h. The numeric labels indicate the Krylov dimension. (b) Bound for the local relative error
used in the Krylov approximation, bloc(u) = 1.2hεtol‖ur ‖−1, versus h. (c)  ε(u) versus the tolerance ε used in the one-sided approximation of the Jacobian for h 
= 10−4 . For each method the straight lines indicate the ε(u) obtained with the centered formula. All the plots correspond to the ETD methods and case T1 . The 
symbols and types of lines indicate: ETDC2 (�, dash-dotted line (red)), ETDRk (�, dashed line (k = 2 green, k = 3 blue and k = 4 magenta)).(For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

spherical shells. Fixed time-step exponential and IMEX-BDF methods have been compared. The latter were already studied 
in [1,6]. We have focused especially on the application of the so called exponential Rosenbrock methods proposed in [18].

A wide range of numerical simulations have shown clearly that, for a given convergence order, such exponential 
methods are more accurate by at least one order of magnitude than equivalent order IMEX-BDF schemes. This is especially 
true when they are employed with large time steps and at low Ekman number. The computational cost per time step is, 
in general, higher than that of the equivalent order IMEX-BDF scheme, at least for the present implementation. However, 
in the small Ekman number limit, exponential Rosenbrock methods tend to be competitive also in terms of 
computational cost, even compared with the VSVO implementation of the IMEX-BDF.

These conclusions appear to be very promising for their application, since this is the physically relevant regime for 
mantle and core convection problems. Future developments will address a number of computational issues, such as the 
full parallelization of the present serial implementation, and the reduction of the computational cost per time step by 
application of different approaches for the computation of the exponential matrix, such as e.g. those proposed in [33,34].
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