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Abstract

We address the optimization of a large scale multi-agent system where each agent has discrete and/or continuous decision
variables that need to be set so as to optimize the sum of linear local cost functions, in presence of linear local and global
constraints. The problem reduces to a Mixed Integer Linear Program (MILP) that is here addressed according to a decentralized
iterative scheme based on dual decomposition, where each agent determines its decision vector by solving a smaller MILP
involving its local cost function and constraint given some dual variable, whereas a central unit enforces the global coupling
constraint by updating the dual variable based on the tentative primal solutions of all agents. An appropriate tightening of
the coupling constraint through iterations allows to obtain a solution that is feasible for the original MILP. The proposed
approach is inspired by a recent paper to the MILP approximate solution via dual decomposition and constraint tightening,
but shows finite-time convergence to a feasible solution and provides sharper performance guarantees by means of an adaptive
tightening. The two approaches are compared on a plug-in electric vehicles optimal charging problem.
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1 Introduction

In this paper we are concerned with the optimization of
a large-scale system composed of multiple agents, each
one characterized by its set of decision variables that
should be chosen so as to solve a constrained optimiza-
tion problem where the agents’ decisions are coupled
by some global constraint. More specifically, the goal is
to minimize the sum of local linear cost functions, sub-
ject to local polyhedral constraints and a global linear
constraint. As in the inspiring work [18], we consider a
framework where decision variables can have both con-
tinuous and discrete components, a feature that makes
the problem challenging.

Let m denote the number of agents. Then, the optimiza-
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tion problem takes the form of the following Mixed In-
teger Linear Program (MILP):

min
x1,...,xm

m∑
i=1

c>i xi (P)

subject to:

m∑
i=1

Aixi ≤ b

xi ∈ Xi, i = 1, . . . ,m

where, for all i = 1, . . . ,m, xi ∈ Rni is the decision
vector of agent i, c>i xi its local cost, and Xi = {xi ∈
Rnc,i × Znd,i : Dixi ≤ di} its local constraint set de-
fined by a matrix Di and a vector di of appropriate
dimensions, nc,i being the number of continuous deci-
sion variables and nd,i the number of discrete ones, with
nc,i + nd,i = ni. The coupling constraint

∑m
i=1Aixi ≤ b

is defined by matrices Ai ∈ Rp ×Rni , i = 1, . . . ,m, and
a p-dimensional vector b ∈ Rp. Note that all inequalities
involving vectors have to be intended component-wise.

Despite the advances in numerical methods for integer
optimization, when the number of agents is large, the
presence of discrete decision variables makes the opti-
mization problem hard to solve, and calls for some de-
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composition into lower scale MILPs, as suggested in [18].

A common practice to handle problems of the form of
P consists in first dualizing the coupling constraint in-
troducing a vector λ ∈ Rp of p Lagrange multipliers and
solving the dual program

max
λ≥0

−λ>b+

m∑
i=1

min
xi∈Xi

(c>i + λ>Ai)xi, (D)

to obtain λ?, and then constructing a primal solution
x(λ?) = [x1(λ?)> · · · xm(λ?)>]> by solving m MILPs
given by:

xi(λ) ∈ arg min
xi∈vert(Xi)

(c>i + λ>Ai)xi, (1)

where the search within the closed constraint polyhedral
setXi can be confined to its set of vertices vert(Xi) since
the cost function is linear. Unfortunately, while this pro-
cedure guarantees x(λ?) to satisfy the local constraints
since xi(λ

?) ∈ Xi for all i = 1, . . . ,m, it does not guar-
antee the satisfaction of the coupling constraint. An ex-
ample illustrating this case is reported in Part 1 of Ex-
ample 1 in Appendix A.

A way to enforce the satisfaction of the coupling con-
straint is to follow the approach in [16], where the dual
program D is solved via a particular iterative method-
ology, namely, the subgradient algorithm. At each iter-
ation of the subgradient algorithm a tentative primal
solution is generated by every agent. By appropriately
averaging the tentative solutions across iterations (see
[16, pag. 117]), one can obtain a solution that satisfies
the joint constraint. However, when discrete decision
variables are present, such solution does not necessar-
ily satisfy also the local constraints. Specifically, letting
conv(Xi) denote the convex hull of Xi, i = 1, . . . ,m, if
we apply the above procedure to P, we obtain an opti-
mal solution x?LP to the following Linear Program (LP):

min
x1,...,xm

m∑
i=1

c>i xi (PLP)

subject to:

m∑
i=1

Aixi ≤ b

xi ∈ conv(Xi), i = 1, . . . ,m.

This fact is true because the dual of the convexified
problem PLP coincides with the dual of P and is given
by D (see [11] for a proof). Clearly x?LP ∈ conv(X1) ×
· · · × conv(Xm) does not necessarily imply that x?LP ∈
X1×X2×· · ·×Xm. Therefore the solution x?LP recovered
using [16] satisfies the coupling constraint but not nec-
essarily the local constraints. An alternative approach
for finding an optimal solution to the primal-dual pair
PLP-D is to exploit the column generation algorithm

(see [13]). Even in this case however the procedure con-
verges to a solution x?LP of PLP, which is not guaranteed
to be feasible for the local constraints in P. An exam-
ple in which the solution to PLP is not feasible for the
local constraints is reported in Part 2 of Example 1 in
Appendix A.

For these reasons recovery procedures for MILPs are
usually composed of two steps: a tentative solution that
is not feasible for either the joint constraint or the local
ones is first obtained exploiting one of the two procedures
described above, and then a problem-specific heuristic
is applied to recover a feasible solution for P, see, e.g.,
[4,15].

Problems in the form of P arise in different contexts
like power plants generation scheduling [19] where the
agents are the generation units with their on/off state
modeled with binary variables and the joint constraint
consists in energy balance equations, or buildings en-
ergy management [12], where the cost function is a cost
related to power consumption and constraints are re-
lated to capacity, comfort, and actuation limits of each
building. Other problems that fit the structure of P are
supply chain management [8], portfolio optimization for
small investors [2], and plug-in electric vehicles [18]. In
all these cases it is of major interest to guarantee that
the derived (primal) solution is implementable in prac-
tice, which means that it must be feasible for P.

Interestingly, a large class of dynamical systems involv-
ing both continuous and logic components can be mod-
eled as a Mixed Logical Dynamical (MLD) system, using
the terminology established in [3], which are described
by linear equations and inequalities involving both dis-
crete and continuous inputs and state variables. Finite
horizon control for multiple MLD systems modeling in-
teracting agents that are jointly optimizing a linear ob-
jective function while sharing some resources could be
formulated as problem P. Designing an iterative decen-
tralized algorithm that is guaranteed to solve P in finite
time is then important for the development of decentral-
ized model predictive control schemes for multi-agent
MLD systems, since problem P has to be repeatedly
solved online within some time interval in that context.

Finite-time convergence to a solution which is at least
feasible for P is a desirable feature for most of the afore-
mentioned applications. The main goal of this paper is
to provide such a guarantee, which has up to now proven
to be elusive.

1.1 Background

Problems in the form of P have been investigated in [1],
where the authors studied the behavior of the duality
gap (i.e., the difference between the optimal value of P
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and D) showing that it decreases relatively to the opti-
mal value of P as the number of agents grows. The same
behavior has been observed in [4]. In the recent paper
[18], the authors explored the connection between the
solutions x?LP to the linear program PLP and x(λ?) re-
covered via (1) from the solution λ? to the dual program
D. They proposed a method to recover a primal solution
which is feasible for P by using the dual optimal solu-
tion of a modified primal problem, obtained by tighten-
ing the coupling constraint by an appropriate amount.

We now recall those parts of [18] that are relevant for
the developments in this paper.

Let ρ ∈ Rp with ρ ≥ 0 and consider the following pair
of primal-dual problems:

min
x1,...,xm

m∑
i=1

c>i xi (PLP,ρ)

subject to:

m∑
i=1

Aixi ≤ b− ρ

xi ∈ conv(Xi), i = 1, . . . ,m

and

max
λ≥0

−λ>(b− ρ) +

m∑
i=1

min
xi∈Xi

(c>i + λ>Ai)xi. (Dρ)

PLP,ρ constitutes a tightened version of PLP, whereas
Dρ is the corresponding dual. For all j = 1, . . . , p, let
ρ̃ ∈ Rp be defined as follows:

[ρ̃]j = p max
i∈{1,...,m}

{
max
xi∈Xi

[Ai]jxi − min
xi∈Xi

[Ai]jxi

}
, (2)

where [Ai]j denotes the j-th row of Ai and [ρ̃]j the j-th
entry of ρ̃.

Define P̃LP and D̃ as the primal-dual pair of optimization
problems that are given by setting ρ equal to ρ̃ in PLP,ρ

and Dρ.

Assumption 1 (Existence and uniqueness, [18])

Problems P̃LP and D̃ have unique solutions x?LP,ρ̃ and λ?ρ̃.

Proposition 1 (Theorem 3.1 in [18]) Let λ?ρ̃ be the

solution to D̃. Under Assumption 1, we have that any
x(λ?ρ̃) satisfying (1), is feasible for P.

The proof of Proposition 1 rests on Theorem 2.5 in [18].
Example 2.6 in [18] shows how Theorem 2.5 in [18],
and therefore also Proposition 1, strongly depend on the
uniqueness part of Assumption 1. Note, however, that in

case P̃LP has multiple solutions, then a small perturba-
tion in its cost coefficients will render its solution unique,

thus making Assumption 1 fulfilled again. We refer the
reader to [18] for further details.

Let us define

γ̃ = p max
i∈{1,...,m}

{
max
xi∈Xi

c>i xi − min
xi∈Xi

c>i xi

}
. (3)

Consider the following assumption:

Assumption 2 (Slater, [18]) There exist a scalar ζ >
0 and x̂i ∈ conv(Xi) for all i = 1, . . . ,m, such that∑m
i=1Aix̂i ≤ b − ρ̃ − mζ1, where 1 ∈ Rp is a vector

whose elements are equal to one.

Then, the sub-optimality level of the approximate solu-
tion x(λ?ρ̃) to P can be quantified as follows:

Proposition 2 (Theorem 3.3 in [18]) Let λ?ρ̃ be the

solution to D̃. Under Assumptions 1 and 2, we have that
x(λ?ρ̃) derived from (1) with λ = λ?ρ̃ satisfies

m∑
i=1

c>i xi(λ
?
ρ̃)− J?P ≤ γ̃ +

‖ρ̃‖∞
pζ

γ̃, (4)

where J?P is the optimal cost of P.

Assumption 2 is used to estimate (through Lemma 1 in
[14]) the norm of the optimal solution λ?ρ̃ to the dual
problem, which is needed in the proof of Proposition 2 to
derive the performance bound. Assumption 2 is instead
not needed to prove feasibility.

Note that both Proposition 1 on feasibility and Proposi-
tion 2 on optimality require knowledge of the dual solu-
tion λ?ρ̃. This may pose some issues if λ?ρ̃ cannot be com-
puted centrally, which is the case, e.g., when the agents
are not willing to share with some central entity their pri-
vate information coded in their local cost and constraint
set. In those cases, the value of λ?ρ̃ can only be achieved

asymptotically using a decentralized/distributed scheme

to solve D̃.

1.2 Contribution of this paper

In this paper, we propose a decentralized iterative pro-
cedure which computes in a finite number of iterations
a solution that is feasible for the optimization problem
P. We also provide performance guarantees quantifying
the sub-optimality level of our solution with respect to
the optimal one of P.

The proposed iterative method is inspired by the work
in [18]. As in [18], we exploit some tightening of the
coupling constraint to enforce feasibility. The amount of
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tightening introduced in our method is adaptively cho-
sen throughout the iterations, based on the explored
candidate solutions xi ∈ Xi, i = 1, . . . ,m, and is guar-
anteed to be lower than or equal to the worst-case tight-
ening ρ̃ adopted in [18] which is obtained by letting xi
vary over the whole set Xi (see equation (2)). Note that

a large value of ρ̃ may prevent P̃LP to be feasible thus
hampering the applicability of the approach in [18]. This
is easy to understand if b in the coupling constraint is
interpreted as the maximum available amount of some
(shared) resource: if such an amount is reduced by ρ and
ρ is large, then, it might be that the remaining amount
of resource b − ρ is not enough to satisfy the local con-
straints of the agents, thus resulting in infeasibility. A
less conservative way of selecting the amount of tight-
ening as in our method may preserve the feasibility in
the tightened problem, thus making our approach ap-
plicable to cases where the approach in [18] is not. This
is shown in Section 5 where the plug-in electric vehicles
charging problem originally presented in [18] is consid-
ered as a case study: in the vehicle to grid setup with
m = 250 vehicles, when the maximum power b that the

network can deliver is reduced, then, P̃LP becomes in-
feasible and, hence, the approach in [18] cannot be ap-
plied, whereas our method remains applicable because it
introduces a smaller tightening. We can then claim that
our method can be applied to a larger class of problems
than the method in [18]. Furthermore, when both meth-
ods can be applied but the tightening of our method is
smaller, performance guarantees are better for our so-
lution as quantified through the bound on the obtained
improvement derived in Remark 1 at the end of Section
2. This is also demonstrated in Section 5: in all the 1000
instances of the plug-in electric vehicles charging prob-
lem generated though some random perturbation of the
involved parameters, tightening is smaller and perfor-
mance is better in our method.

Finite-time convergence is certainly the main feature
of our approach, which makes it attractive for various
applications and for MPC in particular. Additionally,
finite-time convergence has a direct impact on compu-
tational complexity, which is alleviated with respect to
the approach in [18]. This is clarified next.
Both methods exploit the structural properties of the
MILP P to cope with its combinatorial complexity by
decomposing it into m smaller MILPs with fewer dis-
crete decision variables. However, from the point of view
of the resolution of the dual program, a different com-
putational complexity arises in the two methods. In the
simulation section of [18] a subgradient algorithm that
asymptotically converges to the dual optimal solution is
employed. Therefore, the approach in [18] would need,
in principle, to solve themMILPs for an infinite number
of iterations, whilst we only have to solve themMILPs a
finite number of times. This clearly shows that the com-
putational complexity needed for our method to solve P
is lower compared to that in [18].

Algorithm 1 Decentralized MILP

1: λ(0) = 0
2: s̄i(0) = −∞, i = 1, . . . ,m
3:

¯
si(0) = +∞, i = 1, . . . ,m

4: k = 0
5: repeat
6: for i = 1 to m do
7: xi(k + 1)← arg min

xi∈vert(Xi)
(c>i + λ(k)>Ai)xi

8: end for
9: s̄i(k+1) = max{s̄i(k), Aixi(k+1)}, i = 1, . . . ,m

10:
¯
si(k+ 1) = min{

¯
si(k), Aixi(k+ 1)}, i = 1, . . . ,m

11: ρi(k + 1) = s̄i(k + 1)−
¯
si(k + 1), i = 1, . . . ,m

12: ρ(k + 1) = pmax{ρ1(k + 1), . . . , ρm(k + 1)}
13: λ(k + 1)

=
[
λ(k)+α(k)

( m∑
i=1

Aixi(k+1)− b+ρ(k+1)
)]

+

14: k ← k + 1
15: until some stopping criterion is met.

In summary, the differences between the approach pro-
posed here and the one presented in [18] are:

(1) adaptive versus worst-case constraint tightening,
with implications in terms of applicability to a
larger class of problems and better performance
guarantees when both approaches are applicable;

(2) finite-time versus asymptotic guarantees, with im-
plications in terms of computational complexity.

Notably, both methods allow agents to preserve privacy
of their local information, since they do not have to share
either their cost coefficients or their local constraints.

2 Proposed approach

We next introduce Algorithm 1 for decentralized compu-
tation in a finite number of iterations of an approximate
solution to P that is feasible and improves over the so-
lution in [18] both in terms of amount of tightening and
performance guarantees.

Algorithm 1 is a variant of the dual subgradient algo-
rithm. As the standard dual subgradient method, it in-
cludes two main steps: step 7 in which a subgradient of
the dual objective function is computed by fixing the
dual variables and minimizing the Lagrangian with re-
spect to the primal variables, and step 13 which in-
volves a dual update step with step size equal to α(k),
and a projection onto the non-negative orthant (in Al-
gorithm 1 [ · ]+ denotes the projection operator onto the
p-dimensional non-negative orthant Rp+). The operators
max and min appearing in steps 9, 10, and 12 of Algo-
rithm 1 with arguments in Rp are meant to be applied
component-wise. The sequence {α(k)}k≥0 is chosen so
as to satisfy limk→∞ α(k) = 0 and

∑∞
k=0 α(k) = ∞, as

requested in the standard dual subgradient method to
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achieve asymptotic convergence. Furthermore, in order
to guarantee that the solution to step 7 of Algorithm 1 is
well-defined, we impose the following assumption on P:

Assumption 3 (Boundedness) The polyhedral sets
Xi, i = 1, . . . ,m, in problem P are bounded.

If arg minxi∈vert(Xi)(c
>
i +λ(k)>Ai)xi in step 7 is a set of

cardinality larger than 1, then, a deterministic tie-break
rule is applied to choose a value for xi(k + 1).

Algorithm 1 is conceived to be implemented in a decen-
tralized scheme where, at each iteration k, every agent
i updates its local tentative solution xi(k+ 1) and com-
municates Aixi(k + 1) to some central unit that is in
charge of the update of the dual variable. The tentative
value λ(k+ 1) for the dual variable is then broadcast to
all agents. Note that agents do not need to communicate
to the central unit their private information regarding
their local constraint set and cost but only their tenta-
tive solution xi(k).

The tentative primal solutions xi(k + 1), i = 1, . . . ,m,
computed at step 7 are used in Algorithm 1 by the central
unit to determine the amount of tightening ρ(k + 1)
entering step 13. The value of ρ(k + 1) is progressively
refined through iterations based only on those values of
xi ∈ Xi, i = 1, . . . ,m, that are actually considered as
candidate primal solutions, and not based on the whole
sets Xi, i = 1, . . . ,m. This reduces conservativeness in
the amount of tightening and also in the performance
bound of the feasible, yet suboptimal, primal solution.

A further reduction in the level of conservativeness can
be achieved by assigning to [ρi(k+ 1)]j in step 12 of Al-
gorithm 1 the (less conservative) sum of the p-largest
[ρi(k + 1)]j , for all j = 1, . . . , p. Further discussion is
provided after the proof of Proposition 1. Although this
is not discussed in [18], also the results in [18] can be
modified to use this less conservative bound. For a fair
comparison, this modification is not included in Algo-
rithm 1 as well.

Algorithm 1 terminates after a given stopping cri-
teria is met at the level of the central unit, e.g., if
for a given number of subsequent iterations x(k) =
[x1(k)> · · · xm(k)>]> satisfies the coupling constraint.
As shown in the numerical study in Section 5, variants
of Algorithm 1 can be conceived to get an improved so-
lution in the same number of iterations of Algorithm 1.
The agents should however share with the central entity
additional information on their local cost, thus partly
compromising privacy preservation.

As for the initialization of Algorithm 1, λ(0) is set equal
to 0 so that at iteration k = 0 each agent i computes its
locally optimal solution

xi(1)← arg min
xi∈vert(Xi)

c>i xi.

Since ρ(1) = 0, if the local solutions xi(1), i = 1, . . . ,m,
satisfy the coupling constraint (and they hence are opti-
mal for the original problem P), then, Algorithm 1 will
terminate since λ will remain 0, and the agents will stick
to their locally optimal solutions.

Before stating the feasibility and performance guaran-
tees of the solution computed by Algorithm 1, we need
to introduce some further quantities and assumptions.

Let us define for any k ≥ 1

γ(k) = p max
i∈{1,...,m}

{
max
r≤k

c>i xi(r)−min
r≤k

c>i xi(r)
}
, (5)

where {xi(r)}r≥1, i = 1, . . . ,m, are the tentative primal
solutions computed at step 7.

Due to Assumption 3, for any i = 1, . . . ,m, conv(Xi)
is a bounded polyhedron. If it is also non-empty, then
vert(Xi) is a non-empty finite set (see Corollaries 2.1
and 2.2 together with Theorem 2.3 in [6, Chapter 2]). As
a consequence, the sequence {γ(k)}k≥1 takes values in
a finite set. Since this is a monotonically non-decreasing
sequence, it converges in finite-time to some value γ̄.
The same reasoning can be applied to show that the se-
quence {ρ(k)}k≥1, iteratively computed in Algorithm 1
(see step 12), and given by

[ρ(k)]j = p max
i∈{1,...,m}

{
max
r≤k

[Ai]jxi(r)−min
r≤k

[Ai]jxi(r)
}
,

for j = 1, . . . , p, converges in finite-time to some ρ̄ since
it takes values in a finite set and is (component-wise)
monotonically non-decreasing. Note that the limiting
values ρ̄ and γ̄ for {ρ(k)}k≥1 and {γ(k)}k≥1 satisfy ρ̄ ≤ ρ̃
and γ̄ ≤ γ̃ where ρ̃ and γ̃ are defined in (2) and (3).

Define PLP and D as the primal-dual pair of optimiza-
tion problems that are given by setting ρ equal to ρ̄ in
PLP,ρ and Dρ.

In order to state the feasibility and performance proper-
ties of Algorithm 1, besides Assumption 3, the following
two further assumptions are needed.

Assumption 4 (Existence and uniqueness)
Problems PLP and D have unique solutions x̄?LP and λ̄?.

Assumption 5 (Slater) There exists a scalar ζ > 0
and x̂i ∈ conv(Xi) for all i = 1, . . . ,m, such that∑m
i=1Aix̂i ≤ b− ρ̄−mζ1.

Note that Assumptions 4 and 5 are similar to Assump-
tions 1 and 2, respectively. However, owing to the fact
that ρ̄ ≤ ρ̃, imposing Assumptions 4 and 5 in place of
Assumptions 1 and 2 makes Algorithm 1 applicable to a
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larger class of problems with respect to the approach in
[18].

The discussion about the necessity and plausibility of
these assumptions follows closely that related to As-
sumptions 1 and 2 in Section 1.1 and is here omitted.

We are now in a position to state the two main results
of the paper.

Theorem 1 (Finite-time feasibility) Under As-
sumptions 3 and 4, there exists a finite iteration index K
such that, for all k ≥ K, x(k) = [x1(k)> · · · xm(k)>]>,
where xi(k), i = 1, . . . ,m, are computed by Algo-
rithm 1, is a feasible solution for problem P, i.e.,∑m
i=1Aixi(k) ≤ b, k ≥ K and xi(k) ∈ Xi, i = 1, . . . ,m.

Theorem 2 (Performance guarantees) Under As-
sumptions 3-5, there exists a finite iteration index K
such that, for all k ≥ K, x(k) = [x1(k)> · · · xm(k)>]>,
where xi(k), i = 1, . . . ,m, are computed by Algorithm 1,
is a feasible solution for problem P that satisfies the
following performance bound:

m∑
i=1

c>i xi(k)− J?P ≤ γ̄ +
‖ρ̄‖∞
pζ

γ̃. (6)

By a direct comparison of (4) and (6) we can see that
the bound in (6) is no worse than (4) due to the fact that
ρ̄ ≤ ρ̃ and γ̄ ≤ γ̃.

In the following remark, performance improvement is
quantified when both methods are applicable and ρ̄ < ρ̃.

Remark 1 (Performance improvement versus [18])
Suppose that Assumption 1 (and, hence, Assumption 4)
is satisfied. Let ρ̄ < ρ̃.
Consider x̂i ∈ conv(Xi), i = 1, . . . ,m, such that As-

sumption 2 is satisfied with a given ζ̃. Then, Assump-
tion 5 is satisfied with the same x̂i, i = 1, . . . ,m, and
ζ̄ = ζ̃ + 1

m minj=1,...,p{[ρ̃]j − [ρ̄]j} > ζ̃. This implies that
our performance bound in (6) is tighter than the one in
(4) by an amount equal to

γ̃ − γ̄ +
γ̃

p

[
‖ρ̃‖∞
ζ̃
− ‖ρ̄‖∞

ζ̄

]
> 0,

where we used the fact that ρ̄ < ρ̃, ζ̄ > ζ̃ and γ̄ ≤ γ̃.

Note that if PLP is not feasible for the resulting ρ̄, then∑m
i=1Aixi(k + 1) − b + ρ(k + 1) is bounded below by

some positive constant for a sufficiently high k given
that ρ(k + 1) converges to ρ̄. Since

∑∞
k=0 α(k) = ∞,

step 13 of Algorithm 1 will then produce a {λ(k)}k≥0

sequence diverging towards +∞. Therefore, observing a

component of λ(k) which diverges as k increases is an
indication that the existence part of Assumption 4 is not
satisfied.

3 Proof of the main results

3.1 Preliminary results

Proposition 3 (Dual asymptotic convergence)
Under Assumptions 3 and 4, the Lagrange multiplier
sequence {λ(k)}k≥0 generated by Algorithm 1 converges

to an optimal solution of D.

Proof. As discussed after equation (5), there exists a
K ∈ N such that for all k ≥ K we have that the tight-
ening coefficient ρ(k) computed in Algorithm 1 becomes
constant and equal to ρ̄. Therefore, for any k ≥ K, Al-
gorithm 1 reduces to the following two steps

xi(k + 1) ∈ arg min
xi∈vert(Xi)

(c>i + λ(k)>Ai)xi (7)

λ(k + 1) =

[
λ(k) + α(k)

(
m∑
i=1

Aixi(k + 1)− b+ ρ̄

)]
+

(8)

which constitute a gradient ascent iteration for D. Ac-
cording to [5], the sequence {λ(k)}k≥0 generated by the
iterative procedure (7)-(8) is guaranteed to converge to
the (unique under Assumption 4) optimal solution of D.

Note that this result requires only uniqueness of the op-
timal solution of D. Uniqueness of the optimal solution
to PLP is not necessary. 2

Lemma 1 (Robustness against cost perturbation)
Let P be a non-empty bounded polyhedron. Consider the
linear program minx∈P (c> + δ>)x, where δ is a pertur-
bation in the cost coefficients. Define the set of optimal
solutions as X (δ). There always exists an ε > 0 such
that for all δ satisfying ‖δ‖ < ε, we have X (δ) ⊆ X (0).

Proof. Let u(δ) = minx∈P (c> + δ>)x. Since P is a
bounded polyhedron, the minimum is always attained
and u(δ) is finite for any value of δ. The set X (δ) can
be defined as

X (δ) = {x ∈ P : (c> + δ>)x ≤ u(δ)}, (9)

which is a non-empty polyhedron. As such, it can be
described as the convex hull of its vertices (see Theo-
rem 2.9 in [6, Chapter 2]), which are also vertices of P
(Theorem 2.7 in [6, Chapter 2]).

Let V = vert(P ) and Vδ = vert(X (δ)) ⊆ V . Consider
δ = 0.

6



If V0 = V , then, given the fact that, for any δ, X (δ) is
the convex hull of Vδ and Vδ ⊆ V = V0, we have trivially
that X (δ) ⊆ X (0), for any δ.

Suppose now that V0 ⊂ V . For any choice of x? ∈ V0 and
x ∈ V \ V0, we have that c>x? < c>x, or equivalently
c>(x? − x) < 0. Pick

ε = min
x?∈V0

x∈V \V0

−c
>(x? − x)

‖x? − x‖
(10)

and let (x̄?, x̄) be the corresponding minimizer. By con-
struction, (10) is well defined since x̄? is different from
x̄. Since c>(x? − x) < 0 for any x? ∈ V0 and x ∈ V \ V0,
we have that ε > 0. Moreover, for any x? ∈ V0 and
x ∈ V \ V0, if δ satisfies ‖δ‖ < ε, then

(c> + δ>)(x? − x) = c>(x? − x) + δ>(x? − x)

≤ c>(x? − x) + ‖δ‖‖x? − x‖
< c>(x? − x) + ε‖x? − x‖

≤ c>(x? − x) +

(
−c
>(x? − x)

‖x? − x‖

)
‖x? − x‖

= c>(x? − x)− c>(x? − x) = 0, (11)

where the first inequality is given by the fact that
u>v ≤ |u>v| together with the Cauchy–Schwarz in-
equality |u>v| ≤ ‖u‖‖v‖, the second inequality is due
to δ satisfying ‖δ‖ < ε, and the third inequality is given
by the definition of ε in (10).
By (9) and the definition of u(δ), for any point xδ in the
set Vδ, we have that (c> + δ>)xδ ≤ (c> + δ>)x, for all
x ∈ V , and therefore (c>+ δ>)xδ ≤ (c>+ δ>)x? for any
x? ∈ V0 ⊂ V . By (11), whenever ‖δ‖ < ε, we have that
(c>+ δ>)x? < (c>+ δ>)x for any choice of x? ∈ V0 and
x ∈ V \ V0, therefore (c> + δ>)xδ < (c> + δ>)x for any
x ∈ V \ V0. Since the inequality is strict, we have that
xδ 6∈ V \ V0, which implies xδ ∈ V0. Since this holds for
any xδ ∈ Vδ, we have that Vδ ⊆ V0.
Finally, given the fact that, for any δ, X (δ) is the con-
vex hull of Vδ and Vδ ⊆ V0, we have X (δ) ⊆ X (0), thus
concluding the proof. 2

Exploiting Lemma 1, we shall show next that each
{xi(k)}k≥1 sequence, i = 1, . . . ,m, converges in finite-
time to some set. Note that, for the subsequent result,
only uniqueness of the optimal solution of D is required.

Proposition 4 (Primal finite-time set convergence)
Under Assumptions 3 and 4, there exists a finite K such
that for all i = 1, . . . ,m the tentative primal solution
xi(k) generated by Algorithm 1 satisfies

xi(k) ∈ arg min
xi∈vert(Xi)

(c>i + λ̄?>Ai)xi, k ≥ K, (12)

where λ̄? is the limit value of the Lagrange multiplier
sequence {λ(k)}k≥0.

Proof. Consider agent i, with i ∈ {1, . . . ,m}. We can
characterize the solution xi(k) in step 7 of Algorithm 1
by performing the minimization over conv(Xi) instead
of vert(Xi) since the problem is linear and by enlarg-
ing the set vert(Xi) to conv(Xi) we still obtain all mini-
mizers that belong to vert(Xi). Adding and subtracting
λ̄?>Aixi to the cost, we then obtain

xi(k) ∈ arg min
xi∈conv(Xi)

(c>i +λ̄?>Ai+(λ(k−1)−λ̄?)>Ai)xi.

(13)

Set δi(k−1)> = (λ(k−1)−λ̄?)>Ai, and let Xi(δi(k−1))
be the set of minimizers of (13) as a function of δi(k−1).
By Lemma 1, we know that there exists an εi > 0 such
that if ‖δi(k − 1)‖ < εi, then Xi(δi(k − 1)) ⊆ Xi(0).

Since, by Proposition 3, the sequence {λ(k)}k≥0 gener-
ated by Algorithm 1 converges to λ̄?, by definition of
limit, we know that there exists a Ki such that ‖δi(k −
1)‖ = ‖(λ(k − 1)− λ̄?)>Ai‖ < εi for all k ≥ Ki. There-
fore, for every k ≥ K = max{K1, . . . ,Km}, we have
that xi(k) ∈ Xi(0) = arg minxi∈conv(Xi)(c

>
i + λ̄?>Ai)xi,

i = 1, . . . ,m. This property jointly with the fact that
xi(k) ∈ vert(Xi), i = 1, . . . ,m, leads to (12), thus con-
cluding the proof. 2

3.2 Proof of Theorems 1 and 2

Before discussing the proofs of Theorem 1 and 2 we shall
emphasize that Theorem 2.5 in [18] and Lemma 1 in [14]
are key for the following derivations.

Proof of Theorem 1. Theorem 2.5 of [18] establishes
a relation between the solution x̄?LP of PLP and the one
recovered in (1) from the optimal solution λ̄? of the dual
optimization problemD. Specifically, it states that there
exists a set of indices I ⊆ {1, . . . ,m} of cardinality at
least m − p, such that [x̄?LP](i) = xi(λ̄

?) for all i ∈ I,

where [x̄?LP](i) is the subvector of x̄?LP corresponding to
the i-th agent. Therefore, following the proof of Theo-
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rem 3.1 in [18], we have that

m∑
i=1

Aixi(λ̄
?)

=
∑
i∈I

Aixi(λ̄
?) +

∑
i∈Ic

Aixi(λ̄
?)

=
∑
i∈I

Ai[x̄
?
LP](i) +

∑
i∈Ic

Aixi(λ̄
?)

=

m∑
i=1

Ai[x̄
?
LP](i) +

∑
i∈Ic

Ai

(
xi(λ̄

?)− [x̄?LP](i)
)

≤ b− ρ̄+ p max
i=1,...,m

{Aixi(λ̄?)−Ai[x̄?LP](i)}, (14)

where Ic = {1, . . . ,m}\I, and b−ρ̄ constitutes an upper
bound for

∑m
i=1Ai[x̄

?
LP](i) given that x̄?LP is feasible for

PLP.

According to [16, pag. 117], the component [x?LP](i) of

the (unique, under Assumption 4) solution x̄?LP to PLP

is the limit point of the sequence {x̃i(k)}k≥1, defined as

x̃i(k) =

∑k−1
r=1 α(r)xi(r + 1)∑k−1

r=1 α(r)
.

By linearity, for all k ≥ 0, we have that

Aix̃i(k) =

∑k−1
r=1 α(r)Aixi(r + 1)∑k−1

r=1 α(r)

≥ min
r≤k

Aixi(r)

=
¯
si(k)

≥
¯
si,

where the first inequality is due to the fact that all α(k)
are positive and the second equality follows from step 10
of Algorithm 1. In the final inequality,

¯
si(k) is lower

bounded by
¯
si, that denotes the limiting value of the

non-increasing finite-valued sequence {
¯
si(k)}k≥0. Recall

that all inequalities have to be intended component-wise.
By taking the limit for k →∞, we also have that

Ai[x̄
?
LP](i) ≥

¯
si. (15)

By Proposition 4, there exists a finite iteration index K
such that xi(k) satisfies (12). Since (14) holds for any
choice of xi(λ̄

?) which minimizes (c>i + λ̄?>Ai)xi over
vert(Xi), if k ≥ K, then we can choose xi(λ̄

?) = xi(k).

Therefore, for all k ≥ K, (14) becomes

m∑
i=1

Aixi(k)

≤ b− ρ̄+ p max
i=1,...,m

{Aixi(k)−Ai[x?LP](i)}

≤ b− ρ̄+ p max
i=1,...,m

{
max
r≤k

Aixi(r)−Ai[x?LP](i)
}

= b− ρ̄+ p max
i=1,...,m

{
s̄i(k)−Ai[x?LP](i)

}
≤ b− ρ̄+ p max

i=1,...,m
{s̄i −

¯
si}

= b, (16)

where the second inequality is obtained by taking
the maximum up to k, the first equality is due to
step 9 of Algorithm 1, the third inequality is due
to the fact that s̄i is the limiting value of the non-
decreasing finite-valued sequence {s̄i(k)}k≥1 together
with (15), and the last equality comes from the def-
inition of ρ(k) = pmax{ρ1(k), . . . , ρm(k)} where
ρi(k) = s̄i(k)−

¯
si(k).

From (16) we have that, for any k ≥ K, the iterates
xi(k), i = 1, . . . ,m, generated by Algorithm 1 provide a
feasible solution for P, thus concluding the proof. 2

As mentioned in Section 2, we can make Algorithm 1 less
conservative by assigning to [ρi(k+1)]j in step 12 of Al-
gorithm 1 the sum of the p-largest [ρi(k+1)]j , for all j =
1, . . . , p. To adapt the proof, it suffice to note that the
j-th component of pmaxi=1,...,m{Aixi(λ̄?)−Ai[x̄?LP](i)}
in (14) can be substituted with the sum of the p-largest
values in the set {[Ai]jxi(λ̄?)−[Ai]j [x̄

?
LP](i)}mi=1, and the

following derivations will remain unchanged. In the same
vein one can redefine γ̄ in (5) and change (18) in the proof
of Theorem 2 below replacing pmaxi=1,...,m{c>i xi(λ̄?)−
c>i [x̄?LP](i)} with the sum of the p-largest values in the

set {c>i xi(λ̄?)−c>i [x̄?LP](i)}mi=1 to obtain a tighter bound
also on the performance guarantees.

Proof of Theorem 2. Denote as J?P , J?PLP
, and J?PLP

the optimal cost of P, PLP, and PLP, respectively. From
Assumption 3 it follows that J?P , J?PLP

, and J?PLP
are

finite.

Consider the quantity
∑m
i=1 c

>
i xi(k)− J?P .

As in the proof of Theorem 3.3 in [18], we add and sub-
tract J?PLP

and J?PLP
to obtain

m∑
i=1

c>i xi(k)−J?P =
( m∑
i=1

c>i xi(k)− J?PLP

)
+ (J?PLP

− J?PLP
) + (J?PLP

− J?P). (17)
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We shall next derive a bound for each term in (17).

Bound on
∑m
i=1 c

>
i xi(k)− J?PLP

:

Similarly to the proof of Theorem 1 for feasibility, due
to Theorem 2.5 in [18], we have that there exists a set I
of cardinality at least m− p such that xi(λ̄

?) = [x̄?LP](i),
for all i ∈ I. Therefore,

m∑
i=1

c>i xi(λ̄
?)− J?PLP

=

m∑
i=1

c>i xi(λ̄
?)−

m∑
i=1

c>i [x̄?LP](i)

=
∑
i∈Ic

c>i xi(λ̄
?)− c>i [x̄?LP](i)

≤ p max
i=1,...,m

{
c>i xi(λ̄

?)− c>i [x̄?LP](i)
}
, (18)

where Ic = {1, . . . ,m} \ I.

According to [16, pag. 117], the components [x̄?LP](i) of

the (unique, under Assumption 4) solution x̄?LP to PLP

is the limit point of the sequence {x̃i(k)}k≥1, defined as

x̃i(k) =

∑k−1
r=1 α(r)xi(r + 1)∑k−1

r=1 α(r)
.

By linearity, for all k ≥ 1, we have that

c>i x̃i(k) =

∑k−1
r=1 α(r)c>i xi(r + 1)∑k−1

r=1 α(r)
≥ min

r≤k
c>i xi(r) ≥

¯
γi,

where the first inequality is due to the fact that all
α(k) are positive and the last one derives from the fact
{minr≤k c

>
i xi(r)}k≥1 is a non-increasing sequence that

takes values in a finite set, and hence is lower bounded
by its limiting value

¯
γi. Therefore, by taking the limit

for k →∞, we also have that

c>i [x̄?LP](i) ≥
¯
γi. (19)

Since (18) holds for any choice of xi(λ̄
?) which minimize

(c>i + λ̄?>Ai)xi over vert(Xi), by Proposition 4 it follows
that, for k ≥ K̄, xi(λ̄

?) = xi(k) and, as a result

m∑
i=1

c>i xi(k)− J?PLP

≤ p max
i=1,...,m

{
c>i xi(k)− c>i [x̄?LP](i)

}
≤ p max

i=1,...,m

{
max
r≤k

c>i xi(r)− c>i [x̄?LP](i)
}

≤ p max
i=1,...,m

{
max
r≤k

c>i xi(r)−
¯
γi

}
,

where the second inequality is obtained by taking the
maximum up to iteration k and the third inequality is
due to (19).

Now if we recall the definition of γ(k) in (5) and its
finite-time convergence to γ̄, jointly with the fact that

¯
γi

is the limiting value of {minr≤k c
>
i xi(r)}k≥1, we finally

get that there exists K ≥ K̄, such that for k ≥ K

p max
i=1,...,m

{
max
r≤k

c>i xi(r)−
¯
γi

}
= γ̄,

thus leading to

m∑
i=1

c>i xi(k)− J?PLP
≤ γ̄, k ≥ K.

Bound on J?PLP
− J?PLP

:

Problem PLP can be considered as a perturbed version
of PLP, since the coupling constraint of PLP is given by

m∑
i=1

Aixi ≤ b− ρ̄

and that of PLP can be obtained by adding ρ̄ to its
right-hand-side. From perturbation theory (see [7, Sec-
tion 5.6.2]) it then follows that the optimal cost J?PLP

is
related to J?PLP

by:

J?PLP
− J?PLP

≤ λ̄?>ρ̄. (20)

From Assumption 5, by applying Lemma 1 in [14] we
have that for all λ ≥ 0

‖λ̄?‖1 ≤
1

mζ

(
m∑
i=1

c>i x̂i + λ>b−
m∑
i=1

min
xi∈Xi

(c>i + λ>Ai)xi

)
.

(21)
Substituting λ = 0 in (21) we get

‖λ̄?‖1 ≤
1

mζ

(
m∑
i=1

c>i x̂i −
m∑
i=1

min
xi∈Xi

c>i xi

)

≤ 1

ζ
max

i=1,...,m

{
max
xi∈Xi

c>i xi − min
xi∈Xi

c>i xi

}
=

γ̃

pζ
, (22)

where the second inequality comes from the fact that
c>i x̂i ≤ maxxi∈Xi

c>i xi and that
∑m
i=1 βi ≤ mmaxi βi

for any βi, and the last equality is due to (3). Using (22)
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in (20) we have

J?PLP
− J?PLP

≤ λ̄?>ρ̄
≤ ‖λ̄?‖1‖ρ̄‖∞

≤ ‖ρ̄‖∞
pζ

γ̃,

where the second inequality is due to the Hölder’s in-
equality.

Bound on J?PLP
− J?P :

Since PLP is a relaxed version of P, then J?PLP
−J?P ≤ 0.

The proof is concluded considering (17) and inserting
the bounds obtained for the three terms. 2

4 Performance-oriented variant of Algorithm 1

While Algorithm 1 is able to find a feasible solution to
P, it does not directly consider the performance of the
solution, whereas the user is concerned with both fea-
sibility and performance with higher priority given to
feasibility. This calls for a modification to Algorithm 1
which also takes into account the performance achieved.

Theorem 1 guarantees that there exists an iteration in-
dex K after which the iterates stay feasible for P for
all k ≥ K. Now, suppose that the agents, together with
the Aixi(k) also transmit c>i xi(k) to the central unit,
then the central unit can construct the cost of x(k) =
[x1(k)>, · · · , xm(k)>]> at each iteration. When a feasi-
ble solution is found, its cost may be compared with that
of a previously stored solution, and the central unit can
decide to keep the new tentative solution or discard it.
This way we are able to track the best feasible solution
across iterations.

The modified procedure is summarized in Algorithm 2.
Note that, compared to Algorithm 1, each agent is re-
quired to transmit also the cost of its tentative solution.

5 Application to optimal PEVs charging

In this section we show the efficacy of the proposed ap-
proach in comparison to the one described in [18] on the
Plug-in Electric Vehicles (PEVs) charging problem de-
scribed in [18]. This problem consists in finding an opti-
mal overnight charging schedule for a fleet of m vehicles,
which has to satisfy both local requirements and limita-
tions (e.g., maximum charging power and desired final
state of charge for each vehicle), and some network-wide
constraints (i.e., maximum power that the network can
deliver at each time slot). We consider both version of
the PEVs charging problem, namely, the “charge only”
setup in which all vehicles can only draw energy from

Algorithm 2 Performance-oriented version

1: % Initialize variables
2: λ← 0, s̄i ← −∞,

¯
si ← +∞, i = 1, . . . ,m

3: J̌ ← +∞, δ ← 0, k ← 0
4: repeat
5: for i = 1 to m do
6: % Store tentative local solution
7: if δ = 1 then
8: x̌i ← xi
9: end if

10: % Update tentative local solution
11: xi ← arg minxi∈vert(Xi)(c

>
i + λ>Ai)xi

12: end for
13: % If solution is feasible and has better cost, then

tell agents to update their tentative solutions
14: if

∑m
i=1Aixi ≤ b and

∑m
i=1 c

>
i xi < J̌ then

15: J̌ ←
∑m
i=1 c

>
i xi

16: δ ← 1
17: else
18: δ ← 0
19: end if
20: % Update tightening
21: s̄i ← max{s̄i, Aixi}, i = 1, . . . ,m
22:

¯
si ← min{

¯
si, Aixi}, i = 1, . . . ,m

23: ρi ← s̄i −
¯
si, i = 1, . . . ,m

24: ρ← pmax{ρ1, . . . , ρm}
25: % Update dual variables
26: λ← [λ+ α(k)(

∑m
i=1Aixi − b+ ρ)]+

27: % Update iteration counter
28: k ← k + 1
29: until time is over

the network, and the “vehicle to grid” setup where the
vehicles are also allowed to inject energy in the network.

The improvement of our approach with respect to that
in [18] is measured in terms of the following two relative
indices: the reduction in the level of conservativeness
∆ρ% and the improvement in performance achieved by
the primal solution ∆J% defined as

∆ρ% =
‖ρ̃‖∞ − ‖ρ̄‖∞
‖ρ̃‖∞

·100 and ∆J% =
Jρ̃ − Jρ̄
Jρ̃

·100,

where Jρ̃ =
∑m
i=1 c

>
i xi(λ

?
ρ̃) and Jρ̄ =

∑m
i=1 c

>
i xi(λ̄

?).
A positive value for these indices indicates that our ap-
proach is less conservative.

For a thorough comparison we determined the two in-
dices while varying: i) the number of vehicles in the net-
work, ii) the realizations of the random parameters en-
tering the system description (cost of the electrical en-
ergy and local constraints), and iii) the right hand side
of the joint constraints. All parameters and their prob-
ability distributions were taken from Table 1 in [18].

In Table 1 we report the conservativeness reduction and
the cost improvement for the “vehicle to grid” setup. As
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Fig. 1. Histogram of the performance improvement (∆J%)
achieved by the primal solution obtained by the proposed
method with respect to the one proposed in [18] over 1000
runs.

it can be seen from the table, the level of conservative-
ness is reduced by 50% while the improvement in per-
formance (witnessed by positive values of ∆J%) drops
as the number of agents grows. This is due to the fact
that the relative gap between Jρ̃ and J?P tends to zero
as m → ∞, thus reducing the relative margin for per-
formance improvement.

We do not report the results for the “charge only” setup
since the two methods lead to the same level of conser-
vativeness and performance of the primal solution.

We also tested the proposed approach against changes of
the random parameters defining the problem. We fixed
m = 250 and performed 1000 tests running Algorithm 1
and the approach in [18] with different realization for all
parameters, extracted independently. Figure 1 plots an
histogram of the values obtained for ∆J% in the 1000
tests. Note that the cost improvement ranges from 3%
to 15% and, accordingly to the theory, is always non-
negative. The reduction in the level of conservativeness
is also in this case 50%, suggesting that the proposed
iterative scheme exploits some structure in the PEVs
charging problem that the approach in [18] overlooks.
Also in this case, in the “charge only” setup the two
methods lead to the same level of conservativeness and
performance.

Finally, we compared the two approaches in the “vehicle
to grid” setup against changes in the joint constraints.
If the number of electric vehicles is m = 250 and we de-
crease the maximum power that the network can deliver

m 250 500 1000 2500 5000 10000

∆ρ% 50% 50% 50% 50% 50% 50%

∆J% 13.9% 3.1% 1.1% 0.15% 0.05% 0.02%

Table 1
Reduction in the level of conservativeness (∆ρ%) and im-
provement in performance (∆J%) achieved by the primal
solution obtained by the proposed method when compared
with the one proposed in [18].
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Algorithm 1
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Fig. 2. Histogram of the relative distance from the optimal
value of P achieved by the primal solution obtained by Al-
gorithm 1 (blue) and Algorithm 2 (orange), over 1000 runs.

by 37%, then the ρ̃ that results from applying the ap-

proach in [18] makes P̃LP infeasible, thus violating As-
sumption 1. Whereas PLP associated with the limiting
value ρ̄ for {ρ(k)}k≥1 in Algorithm 1 remains feasible.

5.1 Comparison between Algorithms 1 and 2

To show the benefits of Algorithm 2 in terms of perfor-
mance, we run 1000 test with m = 250 vehicles in the
“charge only” setup, where we are also able to compute
the optimal solution of P, and compare the performance
of Algorithm 1 and 2 in terms of relative distance from
the optimal cost J?P of P.

Figure 2 shows the distribution of (Jρ̄−J?P)/J?P ·100 ob-

tained with Algorithm 1 (blue) and (J̌−J?P)/J?P ·100 ob-
tained with Algorithm 2 (orange) for the 1000 runs. As
can be seen from the picture, most runs of Algorithm 2
result in a performance very close to the optimal one,
while the runs from Algorithm 1 exhibit lower perfor-
mance.

6 Concluding remarks

We proposed a new method for computing a feasible
solution to a large-scale mixed integer linear program
via a decentralized iterative scheme that decomposes the
program in smaller ones and has the additional beneficial
side-effect of preserving privacy of the local information
if the problem originates from a multi-agent system.

This work improves over existing state-of-the-art results
in that feasibility is achieved in a finite number of iter-
ations and the decentralized solution is accompanied by
a less conservative performance guarantee. The applica-
tion to a plug-in electric vehicles optimal charging prob-
lem verifies the improvement gained in terms of perfor-
mance.

Our method was recently extended to a distributed setup
without any central unit in [10], by integrating within
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the decentralized iterative scheme proposed here a max-
consensus algorithm on the tightening coefficient and
employing the distributed approach for updating the
dual variables proposed in [9]. Finite convergence prop-
erties are retained in the distributed scheme.

Future research directions include the computation of
an upper bound on the number of iterations needed for
convergence. This is more critical in a distributed setup
where no central unit exists that can directly monitor
feasibility and/or inspect performance. Moreover, we
aim at exploiting the analysis of [17] to generalize our
results to problems with nonconvex objective functions.

A Appendix

We provide an example illustrating that the two solu-
tion methodologies outlined in Section 1, namely, using
the optimal dual solution to recover a primal one via
(1), and using a subgradient methodology together with
the averaging procedure described in [16, pag. 117], may
both lead to infeasible solutions.

Example 1 Consider the following problem

min
x

x

subject to: − x ≤ −0.5

x ∈ {0, 1, 2},

whose dual (dualizing only the inequality constraint) is
given by

max
λ≥0

0.5λ+ min
x∈{0,1,2}

(1− λ)x.

We will now apply the two solution methodologies out-
lined in Section 1.

Part 1 If we solve the dual up to optimality we get λ? =
1 as the unique solution. Using (1) with λ = 1 we get
x(λ?) = 0 and x(λ?) = 2 as possible solutions. Clearly,
x(λ?) = 0 is feasible for the local constraint but it is
not feasible for the dualized constraint x ≥ 0.5.

Part 2 If we employ the averaging procedure described
in [16, pag. 117] while solving the dual using the sub-
gradient method, then we will converge to the unique
solution of the following convexified program

min
x

x

subject to: − x ≤ −0.5

x ∈ conv({0, 1, 2}) = [0, 2],

which is x?LP = 0.5. Clearly, x?LP satisfies the dualized
constraint but not the local one.
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