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Abstract— The problem of identifying a model of a system
from input/output observations is typically formulated as an
optimization problem over all available data that are collected
by a central unit, in the same operating conditions. However,
the massive diffusion of networked systems is changing this
paradigm: data are collected separately by multiple agents
and cannot be made available to some central unit due to,
e.g., privacy constraints. In this paper, we address this novel
set-up and consider the case in which multiple agents are
cooperatively aiming at identifying a model for a nonlinear
system, by performing local computations on their private data
sets. The problem of identifying the structure and parameters
of the system has a mixed discrete and continuous nature, which
hampers the application of classical distributed schemes. Here,
we propose a method that overcomes this limit by adopting
a probabilistic reformulation of the model structure selection
problem.

I. INTRODUCTION
The objective of system identification is to determine a

mathematical representation (model) of a dynamical system
from observed data. In particular, the identification of nonlin-
ear systems has been extensively studied [15], using various
classes of nonlinear models, such as Volterra series, block-
oriented systems (e.g., Hammerstein and Wiener models),
and difference equation models.

A frequently adopted representation of the last class is
the nonlinear auto-regressive with exogenous input (NARX)
model [8], [9], which consists in a recursive input-output
expression, where the current output is obtained by means
of a nonlinear functional expansion involving lagged inputs
and outputs. The functional expansion is often in the form
of a polynomial, which yields a linear-in-the-parameters
structure of the model that is particularly convenient for
parameter estimation purposes. On the downside, the number
of monomials in the expansion grows rapidly with the model
order and nonlinearity degree, which motivates the interest
in the problem of model structure selection (MSS), i.e., the
selection of the appropriate monomials to include in the
model. This is a combinatorial problem that cannot generally
be handled by exhaustive approaches, due to the excessive
size of the solution space. Not surprisingly, most effort in the
literature has been devoted to the development of heuristic
search methods aimed at identifying a parsimonious model.
Among all, the orthogonal forward regression (OFR) [3]
method represents a milestone, and several variants of this
method have been proposed (see, e.g., [14], [7]). The OFR
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method adopts an incremental greedy scheme to progres-
sively augment the model by adding the most promising term
according to a model performance based criterion. A key
feature of this approach is an orthogonalization technique
which allows to evaluate independently the importance of
each new candidate term, relative to the current model struc-
ture. Unfortunately, such relative measure of the importance
of model terms can greatly vary depending on the model
structure, which impairs the reliability of the selection pro-
cess and may ultimately lead to suboptimal solutions. This
issue has lead to new approaches based on the introduction
of randomness in the search strategy and different criteria for
the ranking of candidate model terms. In [2] the problems
of MSS and the parameter estimation have been tackled
jointly within a Bayesian framework where the probability
distribution defined over models is dealt with a Reversible
Jump Markov Chain Monte Carlo procedure. In [5] an
iterative randomized algorithm (RaMSS) has been proposed
in which independent Bernoulli variables are associated to
the model terms, representing the probability that those terms
are present in the true model structure. The distributions of
such Bernoulli variables are tuned based on the information
gathered from a population of extracted models, according
to a randomized approach.

In system identification, data are typically collected by a
single entity and the identification problem is formulated in
terms of an optimization problem involving all data at once.
However, when data are collected separately by multiple
entities and cannot be made available to a central unit, due to,
e.g., privacy or communication constraints, the problem of
identifying the same model based on separately available data
sets arises. If the entities collecting data have computing and
communication capabilities, one can formulate the problem
in a distributed computation framework, where a network of
agents are cooperatively solving the identification problem
by local optimization.

In the literature, there are various examples of linear-
in-the-parameters regression problems solved according to
distributed approaches, as documented e.g. in [6], [12], [16].
However, none of the mentioned methods deals explicitly
with MSS, which makes the optimization problem hard to
solve because of the introduced discrete decision variables.
In this respect, there are only a few attempts to solve the
MSS problem in a distributed fashion. Recently, in [18],
[10] the authors have proposed an extension of OFR-type
algorithms to select a common-structure sparse model from
multiple data sets, within the NARX modeling framework.
The rationale behind this technique is to evaluate indepen-



dently the importance of each term in each data set, and
then selecting that term which maximizes the (weighted)
average importance. The selected term is hence removed
from the candidate set, and the procedure is repeated. Once
the common structure has been selected, the final parameter
estimate is the (weighted) average of the least-square esti-
mates obtained from all the data sets, which is however not
guaranteed to be optimal according to any global criterion.

In this paper, we propose a novel method for NARX model
identification in a distributed computation framework, where
each agent i has its own data set and its own cost function
fi : Rn → R to assess the quality of the model in terms
of its parametrization ϑ ∈ Rn (which also encompasses
the model structure, in that only the terms included in
the model have nonzero parameters). The N agents aim at
reaching consensus on a common value for ϑ that optimizes∑N
i=1 fi(ϑ), but without sharing their local data sets and

costs. Unfortunately, standard privacy-preserving distributed
schemes, such as those based on the subgradient, [13], and
on proximal minimization, [11], are not applicable in our
framework, because the MSS task introduces binary decision
variables and makes the identification problem a mixed
integer optimization problem. Inspired by [5], we reformulate
the MSS problem in terms of the optimization of a common
probability distribution over the space of all possible model
structures, thus transforming the purely combinatorial MSS
task into a continuous optimization problem. Based on this
reformulation, we develop a distributed computation method
to address both MSS and parameter estimation and show its
effectiveness on some numerical examples.

The rest of the paper is organized as follows. Section II
provides a formulation of the NARX multi-agent identi-
fication problem and sets the fundamental notation. The
probabilistic reformulation of the MSS problem leading to
a randomized approach for NARX model identification is
discussed in Section III-A. The proposed method is devel-
oped in Section III-B and Section III-C, and its performance
illustrated through the analysis of some numerical examples
in Section IV. Some conclusive remarks end the paper.

II. PROBLEM STATEMENT

Consider a NARX model with scalar input u and output
y, represented as

y(t) = g (x(t);ϑ) + e(t), (1)

where x(t) = [y(t−1) . . . y(t−ny) u(t−1) . . . u(t−nu)]T

is a finite-dimensional vector containing lagged input and
output values (ny and nu being suitable maximum lags), e(t)
is a stochastic process characterized as a sequence of i.i.d.
zero mean random variables, and g is an unknown nonlinear
function parameterized via a vector ϑ = [ϑ1 . . . ϑn]T

of coefficients, with ϑj ∈ R. We represent the nonlinear
function g as a polynomial functional expansion, whereby
model (1) takes the form of a linear regression:

y(t) = ϕ(t)Tϑ+ e(t), (2)

where the regressors ϕj (collected in vector ϕ =
[ϕ1 . . . ϕn]T ) are monomials of the elements in x(t) up
to a given degree nd.

We assume that N input-output data sets Di =
{xi(t), yi(t)}Ti

t=1 with length Ti, i = 1, . . . , N , have been
collected from system (1) separately by N agents, possibly
in different experimental set-ups. Let σ2

1 , . . . , σ
2
N be the

corresponding output process variances.
We can then formulate the identification of ϑ as the

following optimization problem:

min
ϑ
f(ϑ) = min

ϑ

N∑
i=1

fi(ϑ), (3)

with the function fi : Rn → R defined as

fi(ϑ) =
1

σ2
i

Ti∑
t=1

(
yi(t)− ϕi(t)Tϑ

)2
+ λ‖ϑ‖0Ti, (4)

where the first term accounts for the accuracy of the iden-
tified NARX model ϑ on the data set Di, and the second
for the model complexity (as measured by the zero norm of
ϑ, ‖ϑ‖0 = card{ϑj : ϑj 6= 0}, i.e., the number of non-
zero entries of that vector, which corresponds to the actual
model size). The latter is a regularization term introduced to
prevent redundant terms from entering the model structure.
In (4), parameter λ > 0 tunes the accuracy-complexity trade-
off. We shall denote with ϑ? the optimal solution of (3) and
by f? the corresponding optimal cost

∑N
i=1 fi(ϑ

?).
Note that the `0 penalty term ‖ϑ‖0 in (4) disrupts the

continuity of the optimization problem and makes it a mixed
integer program, since one has to count the non-zero terms in
ϑ representing the model structure. A possible workaround
is replacing the `0 norm of ϑ with its closest convex
approximation ‖ϑ‖1 =

∑n
j=1 |ϑj | (the `1 norm), as done

in LASSO-based (least-absolute shrinkage and selection op-
erator) approaches (see, e.g., [12]). However, this would
denature the model selection problem, which is intrinsically
combinatorial, and would lead to not much accurate results
in terms of structure selection [4].

In this work, we then address the NARX model iden-
tification problem (3) with local costs given by (4). Our
aim is to introduce a distributed computation framework,
where the agents do not share their data sets. This goal
is challenging because of the mixed integer nature of the
optimization program (3), which hampers the adoption of
standard distributed schemes.

III. DISTRIBUTED SCHEME FOR NARX MODEL
IDENTIFICATION VIA RANDOMIZATION

In this section we first introduce a variant of the Ran-
domized Model Structure Selection (RaMSS) algorithm in
[5] and then guide the reader through the derivation of a
new distributed computation algorithm for NARX model
identification.



A. A modified RaMSS algorithm

The RaMSS algorithm in [5] leverages a probabilistic
reformulation of the MSS task to tackle its combinatorial
nature. Differently from [5], we rely on the `0 penalty term
in the cost function instead of an a posteriori statistical test
to prune redundant regressors from the model.

Let m = [m1 · · · mn]
T be a vector collecting n discrete

variables mj ∈ {0, 1}, j = 1, . . . , n, where mj encodes the
presence or absence of the term ϕj in the model, i.e. mj = 0
if ϑj = 0 and mj = 1 otherwise. Then, vector m ∈ M ≡
{0, 1}n encodes a model structure, and its performance can
be measured as the cost associated to the best parametrization
compatible with the model structure defined by m, i.e.,

J(m) = min
ϑ∈Θm

f(ϑ) (5)

where Θm = {ϑ : ϑj = 0,∀j : mj = 0}. Let us further
denote as

m? = arg min
m∈M

J(m) and J? = J(m?)

the best model structure and its (optimal) performance, which
is assumed to be unique.

Now, let φ be a discrete random variable taking values
in M according to some probability distribution P . By
definition of expectation, the average performance of φ is
given by

EP [J(φ)] =
∑
m∈M

J(m)P(φ = m), (6)

and, if we let P vary over all possible distributions overM,
we notice that the minimum value of (6) as a function of P
is obtained by making all probability mass concentrate on
the true model. Formally, denoting as

P? = arg min
P

EP [J(φ)], (7)

it holds that P?(φ = m?) = 1 and P?(φ = m) = 0 for all
m ∈M \ {m?}.

As it stands, the optimization of (6) with respect to P
is hardly solvable since it requires an exponential num-
ber of variables to completely characterize P . A suitable
parametrization of P is therefore needed to make the problem
tractable. The idea in [5] is to assign to each mj , j =
1, . . . , n a Bernoulli random variable γj , whose success
probability µj ∈ [0, 1] represents the belief that mj takes
value 1, i.e. that the regressor ϕj is present in the model.
Taking γ1, . . . , γn to be independent from each other we
have that

P(φ = m) =
∏

j:mj=1

µj
∏

j:mj=0

(1− µj) , (8)

for any m ∈ M. The reader should note that P? can be
obtained from (8) setting µj = µ?j = m?

j , j = 1, . . . , n.
The RaMSS algorithm in [5] seeks P? by iteratively

refining µ = [µ1 · · · µn]T based on the following update
rule

µ(k + 1) = µ(k)− α(k) ∇µEP [J(φ)]|µ(k) (9)

where α(k) is a variable step-size, ∇µ =
[
∂
∂µ1
· · · ∂

∂µn

]T
,

∂EP [J(φ)]

∂µj

∣∣∣∣
µ(k)

= EPk
[J(φ)|γj = 1]− EPk

[J(φ)|γj = 0],

(10)
and Pk is given by (8) when µ = µ(k). Note that a saturation
shall be employed to ensure µ(k + 1) ∈ [0, 1]n.

In [5], local convergence of the RaMSS algorithm to P?
is proven.

B. An intuitive extension based on distributed computation
Given that (9) represents a gradient descent algorithm and

considering the separable structure of f(ϑ) in (3), one might
be tempted to derive a distributed version of the RaMSS
update rule as follows

µ̄(k) =
1

N

N∑
i=1

µi(k)

µi(k + 1) = µ̄(k)− α(k) ∇µEP [Ji(φ)]|µ̄(k)

(11)

where µi represents agent i’s local estimate of the common
µ vector and

∂EP [Ji(φ)]

∂µj

∣∣∣∣
µ̄(k)

= EP̄k
[Ji(φ)|γj = 1]−EP̄k

[Ji(φ)|γj = 0],

with Ji(m) defined as in (5) with fi(ϑ) in place of f(ϑ) and
P̄k given by (8) when µ = µ̄(k). Notice that (11) allows each
agent to locally compute ∇µEP [Ji(φ)]|µ̄(k) based on its own
dataset only. Briefly, in (11) at each step the local estimates
µi(k) are averaged and each agent performs an iteration of
rule (9) starting from the common average µ̄(k).

Unfortunately, this intuitively simple strategy presents
some drawbacks. Indeed, if we compute the average of
µ1(k + 1), . . . , µn(k + 1), we obtain

µ̄(k + 1) =
1

N

N∑
i=1

µi(k + 1)

=
1

N

N∑
i=1

µ̄(k)− α(k)
1

N

N∑
i=1

∇µEP [Ji(φ)]|µ̄(k)

= µ̄(k)− α(k)

N
∇µ

[
N∑
i=1

EP [Ji(φ)]

]∣∣∣∣∣
µ̄(k)

= µ̄(k)− α(k)

N
∇µEP

[
N∑
i=1

Ji(φ)

]∣∣∣∣∣
µ̄(k)

,

which means that the update rule (11) is minimizing the cost
function EP

[∑N
i=1 Ji(φ)

]
, rather than EP [J(φ)] as in (6).

The two cost functions can actually be different, considering
that for all m ∈M the following holds:
N∑
i=1

Ji(m) =

N∑
i=1

min
ϑi∈Θm

fi(ϑ
i) ≤ min

ϑ∈Θm

N∑
i=1

fi(ϑ) = J(m),

(12)
where we used ϑi with superscript i in the left hand side of
(12) to emphasize the fact that the optimal parameterizations
might be different from one agent to another.



Albeit showing that minimizing EP
[∑N

i=1 Ji(φ)
]

does
not necessarily go into the direction of minimizing EP [J(φ)],
(12) provides us with a precious intuition on how to modify
(11) to correctly distribute equation (9). Indeed, if we could
force all agents to agree on a common ϑ while evaluating
Ji(m) for any m, then we could turn (12) into an equality
and correct iteration (11) to make it minimize EP [J(φ)].

C. A distributed scheme for NARX model identification

Inspired by the proximal algorithm presented in [11], we
propose to correct (11) modifying how the agents assess the
performance of a generic model structure m, and specifically
replacing Ji(m) in (11) with

Ji,k(m) = min
ϑi∈Θm

fi(ϑ
i) +

ρ(k)

2
‖ϑi − ϑ̄(k)‖22, (13)

where the additional proximal term ‖ϑi − ϑ̄(k)‖22 penalizes
the distance of the parameter estimate ϑi computed by agent
i from an average parameter vector ϑ̄(k) and ρ(k) > 0 tunes
the trade-off between the agent’s local cost fi(ϑi) and the
disagreement among the agents.

The calculation of quantity ϑ̄(k) requires some further
explanation. This quantity represents a “common” param-
eter vector among the agents, obtained, e.g., by averaging
the current best parameterizations of the agents. However,
there is not an obvious characterization of such best local
parametrization, since each agent is endowed with a proba-
bility distribution over the model collection M, as opposed
to a specific model structure. To calculate ϑ̄(k) we therefore
associate first to each agent the single model structure m̂i(k)
that currently has the highest probability of being the optimal
one, according to the local probability distribution. Then,
we find for each agent the parametrization ϑ̂i(k) minimizing
(13) with m = m̂i(k). Finally, we average the minimizers
ϑ̂i(k), i = 1, . . . , N to get ϑ̄(k).

Accordingly, the proposed algorithm is based on the
following iteration:

ϑ̄(k) =
1

N

N∑
i=1

ϑ̂i(k)

µ̄(k) =
1

N

N∑
i=1

µi(k)

µi(k + 1) = µ̄(k)− α(k) ∇µEP [Ji,k(φ)]|µ̄(k) (14)

m̂i(k + 1) = arg max
m∈M

Pik+1

ϑ̂i(k + 1) = arg min
ϑi∈Θm̂i(k+1)

fi(ϑ
i) +

ρ(k)

2
‖ϑi − ϑ̄(k)‖22

where a saturation is applied to ensure µij(k + 1) ∈ [0, 1],
j = 1, . . . , n. Note that the last three equations in (14) are
calculated by the individual agents, based on their private
data sets, whereas the computation of the first two equations
requires either a broadcasting mechanism or the introduction
of a central unit.

Intuitively, if we increase ρ(k) at a proper rate, we can
push the agents towards the (common) ϑ̄(k) while they keep

optimizing their own local objective functions. Once the
ϑ̂i(k) are sufficiently close to each other, then it holds that

N∑
i=1

Ji(m) ≈ J(m),

which implies that the algorithm is actually minimizing
EP [J(φ)]. The performance of the proposed algorithm is
evaluated on some numerical examples in the following
section.

IV. NUMERICAL EXAMPLES

We considered two different scenarios, where either all the
agents have access to homogenously obtained data (i.e., data
resulting from experiments in similar conditions, with equal
input and noise signal characterizations), or one of them has
data from a different type of experiment on the unknown
system.

Model selection was carried out over a candidate regressor
set including all monomials with lags not larger than ny =
nu = 3 and maximum degree nd = 3, amounting to n = 84
terms and 284 = 1.9 · 1025 possible model structures. The
initial µij , ∀j, i, were set to µij(0) = 1/n. ϑ̄j(0) were set to
zero, ∀j. The λ value in (4) has been suitably selected for
each studied NARX system by using the L-curve criterion,
which is a convenient graphical tool for displaying the trade-
off between the size and the accuracy of the model as
a function of the regularization parameter. The stepsize α
in (14) is a decreasing function of time according to the
following (often adopted) rule:

α(k) = β/
√
k, β > 0. (15)

We adopted an increasing factor ρ(k) = 2k in (14), with k
being the iteration index.

Notice that an exact computation of the expected values
appearing in (14), as well as those in (9), cannot be obtained
in practice, since it would require to consider exhaustively
all the possible structures. We hence adopt a Monte Carlo
approach to approximate such values with their sampled
counterparts. More precisely, at each iteration each agent
draws Np = 1000 sample model structures from P , evaluates
them in terms of Ji,k(m), and calculates the corresponding
sampled averages.

To account for the randomization inherent in the algorithm,
a Monte Carlo analysis has been carried out in all the
experiments, by running the algorithm 100 times on the same
data sets.

All the tests have been performed in MATLAB 2017a
environment, on an HP ProBook 650 G1 CORE i7-4702MQ
CPU @2.20 GHz with 8GB of RAM.

A. Experiment 1

We considered the following benchmark systems taken
from the literature [17], [2], [4], [1]:
S1: y(t) = −1.7y(t− 1)− 0.8y(t− 2) + u(t− 1)

+0.8u(t− 2) + e(t),
with u(t) ∼WUN(−2, 2), e(t) ∼WGN(0, 0.01)



S2: y(t) = 0.7y(t− 1)u(t− 1)− 0.5y(t− 2)
−0.7y(t−2)u(t−2)2 +0.6u(t−2)2 +e(t),

with u(t) ∼WUN(−1, 1), e(t) ∼WGN(0, 0.04)

S3: y(t) = 0.8y(t− 1) + 0.4u(t− 1)
+0.4u(t− 1)2 + 0.4u(t− 1)3 + e(t),

with u(t) ∼ WGN(0, 0.333), e(t) ∼
WGN(0, 0.1)

S4: y(t) = 0.25u(t− 1) + 0.75y(t− 2)
−0.2y(t− 2)u(t− 1) + e(t),

with u(t) ∼ WGN(0, 0.25), e(t) ∼
WGN(0, 0.02)

where WGN(η, σ2) is a White Gaussian Noise with mean η
and variance σ2, while WUN(a, b) denotes a White Uniform
Noise defined in the interval [a, b]. The employed λ values
are: λS1 = λS2 = λS3 = 0.01, λS4 = 0.001. βS1 = βS2 =
βS3

= 0.01, βS4
= 0.1, in (15). Four data sets of length

2000 have been generated, one for each agent.

TABLE I
EXPERIMENT 1: AVERAGE STATISTICS.

S1 S2 S3 S4

Correct selection 100% 100% 100% 100%
# of Iterations 45.9 33.6 42.3 45.8
Elapsed Time [sec] 27.8 12.3 24.7 24.9
MSE on parameter estimate 3.9E-7 1.3E-5 2.2E-5 2.3E-4

TABLE II
EXPERIMENT 1: AVERAGE PARAMETER ESTIMATES.

S1
True -1.7 -0.8 1 0.8
Estimated -1.6993 -0.8002 0.9999 0.7990

S2
True 0.7 -0.5 -0.7 0.6
Estimated 0.6987 -0.4977 -0.7066 0.6007

S3
True 0.8 0.4 0.4 0.4
Estimated 0.7975 0.4069 0.4057 0.3983

S4
True 0.25 0.75 -0.2
Estimated 0.2528 0.7414 -0.1751

The proposed algorithm has been applied to this case, and
the aggregated results are reported in Table I, where each cell
reports the average value of the corresponding parameter.
Specifically, the following statistics have been considered:
the correctness of the structure selection, the elapsed time
and number of iterations required to reach consensus, and
the mean square error (MSE) of the parameter estimates.
Table II displays the average parameter estimates.

The proposed algorithm performed well in all cases both
regarding the model structure selection and the estimation of
the parameters.

B. Experiment 2

In this experiment, we considered the following system:
S5: y(t) = 0.5y(t−1)+0.8u(t−2)+0.1u(t−1)2+e(t),

with e(t) ∼WGN(0, 0.01)

Again, 4 data sets Di, i = 1, . . . , 4 were collected, of
length 5000 each, but this time the data are originated
from different experimental set-ups. Specifically, in the first

3 experiments, u(t) ∼ WGN(0, 0.01), while in the last,
u(t) ∼WGN(0, 1).

The peculiarity of this example lies in the impossibility
to identify the full model structure based on the data sets
D1, D2, or D3, since the input amplitude is insufficient
to excite the nonlinear dynamics in the model. On the
other hand, the nonlinear dynamics is fully excited when
u(t) ∼ WGN(0, 1) is employed (data set D4). To see this,
check Table III, which reports the first eight terms selected
by the OFR method, applied separately to each data set. The
model terms are listed in the same order as they have been
selected, which reflects their importance in the model. The
terms in bold represent the final model structure, as selected
according to the BIC criterion. Apparently, while the correct
model structure is identified for D4 (albeit with a redundant
term), only the linear sub-model is correctly selected in the
other three cases, and the nonlinear missing term is not even
among those suggested by the OFR immediately after the
two correct regressors.

The explained difficulty of this example causes the failure
of approaches such as that explained in [10] (denoted as
PRESS-based OFR), as documented in Table IV, where the
final model structure has been selected according to the
Average-BIC criterion defined in [10]. Again, only the linear
sub-part of the model has been correctly identified, while the
nonlinear term has been masked by the prevailing linear data,
and has been selected only as fourth term, to be rejected by
the Average-BIC criterion.

Table V displays the aggregated results obtained by run-
ning our algorithm. The design parameters were set to λ =
0.005 and β = 0.01. Apparently, the algorithm proposed in
the paper fruitfully combines the information gathered from
all the data sets, ultimately leading to the identification of the
correct model structure and accurate parameter estimates.

Fig. 1. Experiment 2: Nonlinear parameter estimation results with ρ(k) =
2k for the proposed approach. The dashed curve is associated to agent 4.

Figure 1 shows the evolution for all agents of the pa-
rameter associated to the nonlinear term (denoted ϑiu(t−1)2 ),
during a single execution of the algorithm, using ρ(k) = 2k
in (14). As expected, the 4th agent immediately recognizes



TABLE III
EXPERIMENT 2: MODEL STRUCTURE SELECTION RESULTS WITH THE OFR METHOD ON DIFFERENT DATA SETS.

Sel. order D1 D2 D3 D4

1 u(t− 2) u(t− 2) u(t− 2) u(t− 2)
2 y(t− 1) y(t− 1) y(t− 1) y(t− 1)
3 y(t− 2)y(t− 3) y(t− 3) y(t− 2)u(t− 2)u(t− 3) u(t− 1)2

4 y(t− 3)u(t− 3) u(t− 2)u(t− 3) u(t− 2)2u(t− 3) y(t− 3)u(t− 2)u(t− 3)
5 u(t− 3) y(t− 3)u(t− 2)u(t− 3) y(t− 2)u(t− 1)2 y(t− 1)u(t− 2)2

6 y(t− 1)y(t− 3) u(t− 1)2u(t− 2) u(t− 1)2u(t− 2) u(t− 1)2u(t− 2)
7 y(t− 1)u(t− 1)u(t− 3) y(t− 1)u(t− 1) y(t− 3)u(t− 1)u(t− 2) y(t− 3)u(t− 1)
8 u(t− 1)2 u(t− 1)u(t− 3) u(t− 2)u(t− 3) u(t− 1)2u(t− 3)

TABLE IV
EXPERIMENT 2: RESULTS WITH THE PRESS-BASED OFR.

Sel. order Model Term Par. estimate
1 u(t− 2) 0.794143
2 y(t− 1) 0.508702
3 y(t− 2)u(t− 2)u(t− 3) –
4 u(t− 1)2 –

TABLE V
EXPERIMENT 2: AVERAGE STATISTICS OF THE PROPOSED APPROACH.

Correct selection 100%
# of Iterations 222.6
Elapsed Time [sec] 85.5
Selected model terms y(t− 1), u(t− 2), u(t− 1)2

Parameter estimates 0.5050, 0.7983, 0.0977
MSE on parameter estimates 1.1E-5

the importance of the nonlinear term and provides a very
accurate estimate of the corresponding parameter, while the
others are slower, given that their data does not clearly
emphasize the nonlinearity. However, they are still able to
identify the presence of that term and its parameter value,
which is very close to the true one.

V. CONCLUSIONS
A novel distributed scheme with model structure selection

was proposed for nonlinear system identification using the
NARX model representation. The proposed approach relies
on the standing assumption that there are multiple data sets
collected from several experiments which cannot be made
centrally available, and hence the identification problem
has to be solved by distributing the computation among
agents. Its performance was evaluated using Monte Carlo
simulations over two different scenarios. In both cases, the
algorithm was capable of retrieving the correct structure and
parameterization of the process model, in a computationally
efficient way. Furthermore, it was shown that the presented
method outperforms an OFR-based competitor in terms of
reliability of the structure selection.
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