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A B S T R A C T

With manufacturing shifting from traditional products to high value products, the complexity and accuracy of
the products are increasing in order to reduce energy costs, create friendly environment and better health care.
Structured surfaces, freeform surfaces, and other functional engineering surfaces are becoming the core part of
high value manufacturing products. However, measurement of these surfaces is becoming very difficult due to
instrumental limitations including measurement range, speed, resolution and accuracy. Multi-instruments/
sensors measurement are now being developed for freeform and structured surface assessment, which requires
the fusion of the data into a unified system to achieve larger dynamic measurements with greater reliability. This
paper discusses the process of combining data from several information sources (instruments/sensors) into a
common representational format and the surface topography can be reconstructed using Gaussian processes and
B-spline techniques. In this paper the Gaussian process model is extended in order to take into account the
uncertainty propagation and a new data fusion model based on least squares B-splines that drastically reduce the
computational time are presented. The results are validated by two for freeform surface measurements.

1. Introduction

In modern manufacturing technology, manufactured surfaces are
characterized by complex features, designed to meet functional speci-
fications. In this competitive environment, the ability to rapidly design,
production and inspection of the specifications of these pieces is be-
coming essential. To this aim, measurement with more than one sensor
can improve the accuracy and the precision of the measurement and
decreases the acquisition time. The main idea of a multiple sensor
measurement is to use different sensors to acquire the same object, the
results are then combined to improve the results of each single mea-
surement. A classification of multiple sensor systems according to the
way the information contribute to the final objective can be found in
Girao et al. [1]. A multiple sensor system can be classified into: (i)
complementary: the sensors are not directly dependent but their output
can be combined to yield better data, under a pre-defined criterion; (ii)
competitive: the sensors provide independent measurements of the
same quantity They can be identical or can use different measuring
methods and they compete in the sense that when discrepancies occur,
a decision on which to believe must be made, sensors are put in com-
petition either to increase the reliability of a system or to provide it

with fault tolerance; (iii) cooperative: the sensors' outputs are combined
to produce information that is unavailable from each sensor if used
alone; iV independent: all the remaining cases, basically when the
sensors’ outputs are not combined. The process to combine multiple
data from different sensors is defined in Weckenmann et al. [2] as
combining data from several sources (sensors) in order that the metrological
evaluation can benefit from all the available sensor information data.

The literature on data fusion often suggests sequential use of the
sensors. In Carbone et al. [3] and Shen et al. [4] optical and contact
sensors are sequentially used for reverse engineering applications. First,
a point cloud is acquired with an optical system and there is a first
digitization of the object. With this information, it is possible to write a
CMM part program that acquires the desired point cloud. The final CAD
model is thus built by refining the first raw model (based on non contact
data) with the more precise CMM data points.

An example of competitive data fusion can be found in Ramasami
et al. [5] where a multiscale approach based on wavelet decomposition
is presented. The authors show how an appropriate multiscale model
can increase the measurement result in micro-scale manufacturing.

Another example where the two sensors are used in a competitive
way can be found in Xia et al. [6]. The authors used a data fusion
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technique in order to align point clouds coming from two different
sensors. In this case, the main idea is to reconstruct the information
provided by the Lo-Fi sensor with a Bayesian Gaussian Process (GP)
model. Then, the alignment with the Hi-Fi data is performed thanks to a
local kernel smoothing technique and with a rigid transformation ma-
trix (translation and rotation).

Starting form the approach proposed by Xia et al. [6], Colosimo
et al. [7] presented a data fusion model to merge data from non contact
and contact devices with a GP model. The model was applied to re-
construct a surface with application to normal and large scale me-
trology. The fusion process was performed using contact data to locally
correct the model of the non contact point cloud.

As an alternative approach, Wang et al. [8] summarized different
weighted least squares fusion techniques for homogeneous multi-sensor
data fusion, which show remarkable efficiency enhancement than GP-
based methods.

Yin et al. [9] proposed a Bayesian multiscale data fusion model by
designing composite covariance functions. The authors proposed to use
different covariance functions to estimate different features composing
the surface: smooth or rough.

In their following work Yin et al. [10] proposed and intelligent
sampling plan for the data fusion model based on the uncertainty of the
prediction.

Following the work of Colosimo et al. [7], the uncertainty from the
Lo-Fi model is taken into account in the fusion model and an equation
for the uncertainty propagation is provided. However, a fatal dis-
advantage of a data fusion model based on GP is the high estimation
time, due to the time necessary to solve a large linear system multiple
times. If the number of measured point is high, it may be not possible to
estimate the model parameters’, due to the limited CPU memory. To
overcome these issues a data fusion model based on B-splines approx-
imation is proposed. The proposed model allows to estimate the para-
meters quicker compared to the existing data fusion models based on
Gaussian process, achieving similar reconstruction performances.

The paper is structured as follow: in Section 2 the data fusion
models are described, in Section 3 the models are applied to real test
cases and in Section 5 conclusions and future developments are given.

2. Fusion model

In this Section, the general scheme of an hierarchical fusion model is
presented. The model described in Colosimo et al. [7] is briefly recalled
and a formula to estimated the uncertainty of prediction of the fusion
model is presented in Section 2.1. In Section 2.2 the proposed B-splines
model and its properties are discussed.

Data coming from different measurement systems with different
precision and/or accuracy, called Low-Fidelity (Lo-Fi) and High-
Fidelity (Hi-Fi) data, are analyzed. Usually the number of Lo-Fi data is
greater than the number of Hi-Fi data, but the Hi-Fi data are more
accurate. The aim of a fusion model is to link the Lo-Fi to Hi-Fi data in
order to achieve better prediction of the real, unknown, surface points.
The data acquired using the Lo-Fi device can be expressed by

= +s s sz f( ) ( ) ( )l l l (1)

where =s u v( , )T is a vector describing the spatial location, sz ( )l is the
value of the measured Lo-Fi point at the spatial location s, sf ( ) is a
function of the spatial location that describe the measured surface and

s( )l represents the randomness of the measurement with the Lo-Fi
device.

Once the Lo-Fi data are described, a model to merge the two sets of
data can be defined as

= + +s s s sz z f( ) ˆ ( ) ( ) ( )h l (2)

where sz ( )h is the value of the measured Hi-Fi point at the spatial lo-
cation s, sẑ ( )l is the prediction with the Lo-Fi model at location same
location, sf ( ) is the function that describe the discrepancy between Lo-

Fi and the Hi-Fi data and s( ) is the measurement error of the differ-
ence between the Hi-Fi device and the prediction of the Lo-Fi model.

Since the Lo-Fi and the Hi-Fi data can be acquired at different
spatial locations, the prediction with the Lo-Fi model has to be used in
the linkage model. A further advantage of using the prediction is that
the random measurement error should be removed.

2.1. Gaussian Process model

Gaussian Process (GP) is a model commonly used in spatial statistics
[11] and to describe the output of computer experiments [12]. Many
authors, see for example Kennedy and O'Hagan [13], Qian et al. [14],
Xia et al. [6], Colosimo et al. [7], have used this model to describe
booth Lo-Fi and Hi-Fi data in a data fusion framework. The observed Lo-
Fi value, zl, at a generic spatial location s can be described, using a GP
model, by the relation

= + + = …s f s s sz i n( ) ( ) ( ) ( ), 1, ,l l
T

l l l (3)

where f s( )l
T is the transpose of f s( )l

r , which is a vector of known
basis functions which act as regressors, l

r is a vector of unknown
parameters, GPs( )~ (0, , )l2 is a GP with zero mean and variance-
covariance matrix defined through the parameter 2 and the vector of
scale parameters l

2. The term s( )l is the random term of the Lo-Fi
points, known also as nugget, which is assumed to be independent and
normally distributed, i.e. Ns( )~ (0, )l l

2 . The nugget effect is included
to represent randomness characterizing the data.

The core of the GP is the variance-covariance matrix defined as

=s s s sov r[ ( ), ( )] ( , )i j i j
2 (4)

where =s u v( , )i i i
T and s sr ( , )i j is the correlation function modeling the

dependence between two distinct points si and sj as a function of their
distance. This type of correlation structure is useful if points closed in
the space have similar values and hence a good prediction at a given
location can be done by looking at its neighborhood. In this paper the
power exponential distance is used

= + < =s sd s s s s p k( , ) | | | | 0 2 1,2.i j i j
p

i j
p

k1 1 1 2 2 21 2 (5)

When the scale parameters, 1 and 2, have the same value the
correlation is called isotropic, i.e. it does not depend on the specific
spatial direction; otherwise the correlation is called anisotropic. The
prediction at any new point s0 can be computed using the best linear
unbiased predictor (BLUP) estimator (see for example Santner et al.
[15] or Shabenberger and Gotway [16]), defined as

= +s f s r z Fẑ ( ) ( ) ( )l l
T T

l l l l0 0
2 1 (6)

where =r s sr( ( , ),1 0 …s s s sr r( , ), , ( , ))n2 0 0l is the correlation vector
between the new point s0 and all the observed nl points, l is the var-
iance-covariance matrix of the Lo-Fi points and

= … ×F f s f s f s[ ( ), ( ), , ( )]l l l l n
T n r1 2 l

l represent the matrix of regressors.
The prediction variance can be computed as

= +s r r f s F r

F F f s F r

ˆ ( ) ( ( ) )

( ) ( ( ) ).
l

T
l l l

T
l

T

l
T

l l l l
T

l

2
0

2 4 1
0

1

1 1
0

1 (7)

The objective of a data fusion model is to combine the Lo-Fi and Hi-
Fi data in order to improve predictions achievable by using the Lo-Fi or
the Hi-Fi data sets alone. The core of the data fusion model is a linkage
or second-stage model, which represents the connection between Lo-Fi
and Hi-Fi data and can be expressed as [7,14]

= + + + = …s s s sz z i n( ) ˆ ( ) ( ) ( ) 1, , .h i l i i i h0 (8)

The aim is to “correct” the Lo-Fi predictions sẑ ( )l i using a “shift”
effects, represented by + s( )i0 , with GPs( )~ (0, , )i

2 . Combining
the linkage model in Equation (8) and first-stage model in Equation (3),
the model obtained via data fusion allows one to predict a process
realization at each new location s0 as:
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= + + + ( )s s r z zz zˆ ( ) ˆ ( ) ˆ ( ) ˆ ˆ 1h l
T

h l n0 0 0
2

0
1

0 h (9)

where

=
z z1

1 1
ˆ ( ˆ )

,n
T

h l

n
T

n
0

1

1
h

h h (10)

= …r s s s s s sr r r( ( , ), ( , ), , ( , ))n1 0 2 0 0h is the correlation vector between
the new point s0 and all the other nh points, 0 is a vector with entries

= s sov z z( ˆ ( ), ˆ ( ))i l i l0 0 = …i n1, , h and is the variance-covariance
matrix of the linkage model, computed as

= + +R In0
2 2

h (11)

where 0 is the kriging variance of the Lo-Fi model (given by the first
stage equation), but computed at the Hi-Fi locations and R il the GP
variance-covariance matrix.

While the variance of prediction, or kriging variance, can be com-
puted as:

= + + +

+ +

s s r rˆ ( ) ˆ ( ) ( ) ( )

.r

l
T

1

1 1

2
0

2 2
0

2
0

1 2
0

[1 ( ) ]T
nh

nh
T nh

2 0 1 2

1 (12)

Further details about the parameters estimation and the computa-
tion of the prediction variance can be found in Appendix A.

2.2. Least squares B-splines approximation fusion model

The least squares B-splines approximation (LSBA) is an algorithm
that approximate the observed data using as basis functions using
uniform cubic B-splines. The LSBA algorithm is first present, then the
fusion model is analyzed.

The evaluation of a point of the surface, at a spacial location s, can
be computed as

= =
= =

+ +sz z u v B r B t( ) ( , ) ( ) ( )
k l

k l i k j l
0

3

0

3

( )( )
(13)

where + +i k j l( )( ) are the coefficients (control points) to be estimated,
=i u 1, =j v 1, =r u u , =t v v and B· are uniform

cubic B-spline defined as

=

=

=

=

+

+ + +

B t

B t

B t

B t

( )

( )

( )

( )

t

t t

t t t

t

0
(1 )

6

1
3 6 4

6

2
3 3 3 1

6

3 6

3

3 2

3 2

3

(14)

with <t0 1, where • represents the floor operator.
Since the basis B-splines surfaces are described through the cross

product of two B-splines basis (see Equation (13)) the control points ij
are defined over a rectangular lattice domain. The control lattice of the
model, k, is shown in Fig. 1, it is defined on a rectangular domain and

i j, the value of the ij-th control point at i j( , ) for = … +i m1,0, , 1 and
= … +j n1,0, , 1.
In order to estimate the model parameters’, the point evaluation

must be rewritten in matrix notation as

= +z F (15)

where z n is the vector of the observed data, p is the vector of
coefficients, ×F n p is the sparse matrix of B-splines coefficients

=

…
…

…

F

B u v B u v
B u v B u v

B u v B u v

( , ) ( , )
( , ) ( , )

( , ) ( , )

p

p

n n p n n

1 1 1 1 1

1 2 2 2 2

1

where B· correspond to the B-splines basis and is the vector the
measurement errors, which are assumed to be independent and iden-
tically distributed normal random variables. As it is possible to observe
form Equation (14) only 16 coefficients are not zero, so the matrix F is
extremely sparse. The unknown coefficients can be computed mini-
mizing the function

= +
= +

= E
z F z F E

z zSSE ( ˆ )
( ) ( )

i
n

i i
T

T T
1

2

where zi and ẑi are the value observed and predicted at location si while
the second term ( 0) is a smoothing penalty term, where ×E n n is
a symmetric sparse matrix whose entries are

=e B u v B u v dudv( , ) ( , )ij i j

where is the divergence operator and is the vector scalar product.
The minimum value of (16) respect to can be found by solving the

sparse linear system

+ =F F E F z( ) .T T (16)

To solve the sparse system in Equation (16) the sparse Cholesky
decomposition implemented in the Eigen library [17] was used.

As suggested in Hjelle and Daehlen [18], λ is chosen between the
multiples of

= F F
Ed
T

F

F

where · F is the Frobenius matrix norm.
As for the GP model the LSBA algorithm is firstly applied to the Lo-

Fi data at the first stage. The observed Lo-Fi data can be described by

= +z Fl l l l (17)

where zl are the observed Lo-Fi data, Fl is the model matrix of the B-
splines basis, l is the vector B-splines coefficients and l is a vector of
i.i.d. normally distributed random variables. The LS estimation of l is

= +F F E F zˆ ( ) .l l
T

l l l l
T

l
1 (18)

The estimation of its variance-covariance matrix is

= + +F F E F F F F Eˆ ˆ ( ) ( )l l
T

l l l l
T

l l
T

l l lˆ 2 1 1
l (19)

Eventually, the estimate of l
2 required in the last equation can be

given by

=
+

z z
F F F E Fn tr

ˆ ˆ
[ ( ) ]l

l l

l l l
T

l l l l
T

2
1 (20)

or (approximately) by

= z z
n

ˆ ˆ
l

l l

l

2
(21)

to avoid the computation of the solution of the linear system

Fig. 1. Lattice control scheme on a rectangular domain.
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+F F E F( )l
T

l l l l
T1 if the number of measured points is high.

The variance of the prediction in a new location s0 can be computed
as

= =s f s f s f sar z ar[ ˆ ( )] [ ( ) ˆ ] ( ) ( ).l l
T

l l
T

l0 0 0 ˆ 0l (22)

It should be noted that, since the inverse of +F F El
T

l l l is not ex-
plicitly computed a linear system has to be solved for each new loca-
tion.

The observed Hi-Fi points can be described as

= + +z z Fˆ .h l (23)

Since the prediction with the Lo-Fi model has prediction variance
that is a function of the spatial location u v( , ) this information can be
taken into account assigning a weight to each prediction. The weight
correspond to inverse of the prediction variance, i.e. a smaller im-
portance is given to predictions with higher variability. The variance of
the residual process, =z z ẑh l, is a multiple of the variance of the
predicted values with the Lo-Fi model

= = =z z z Wov ov ov( ) ( ) ( ˆ ) ,h l
2 1 (24)

the variance of the observed Hi-Fi data become

= + = +z z z W Wov ov ov( ) ( ˆ ) ( ) .h l
1 2 1 (25)

The variance of the fusion model is then bigger than the variance of
ẑl because is the sum of two independent random vectors. The para-
meters can be estimated with the weighted least squares (WLS) proce-
dure, the estimator of is

= +
=

F W F E F W z
Q z Q F S Q y

ˆ ( )
( )

T T

h l h l l

1

(26)

where

= +Q F W F E F W( )T T1

= +Q F F E F( ) .l l
T

l l l l
T1

The prediction in a new location s0 can be computed as

= + = +
= +

= +

s s s f s f s
f s Q z f s Q z z

f s f s Q F S Q z f s Q z

z z zˆ ( ) ˆ ( ) ˆ ( ) ( ) ˆ ( ) ˆ

( ) ( ) ( ˆ )
( ( ) ( ) ( )) ( )

h l l
T

l
T

l
T

l l
T

h l

l
T T

l h l l
T

h

0 0 0 0 0

0 0

0 0 0

and its variance is

= +
= +

+
=

+ +
+

s f s f s Q F S Q z f s Q z
f s f s Q F S Q z f s Q z

f s Q z f s f s Q F S Q z
f s f s Q F S Q Q f s F S Q f s

f s Q W W Q f s
f s Q F S Q Q f s F S Q f s

ar z ar
ar ar

ov

[ ˆ ( )] [( ( ) ( ) ( )) ( ) ]
[( ( ) ( ) ( )) ] ( ( ) )

2 [ ( ) , ( ( ) ( ) ( )) ]
( ( ) ( ) ( )) ( ( ) ( ) ( ))

( ) ( ) ( )
2 ( ) ( ) ( ( ) ( ) ( ))

h l
T T

l h l l
T

h

l
T T

l h l l
T

h
T

h l
T T

l h l l

l l
T T

l h l l
T

l l
T

h
T

T T

l
T

l h l l
T

l l
T

h
T

0 0 0 0

0 0 0

0 0 0
2

0 0 0 0

0
1 2 1

0
2

0 0 0

(27)

where

Fig. 2. Predicted surface with error map.
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= + +

=

f s Q z f s f s Q F S Q z

f s Q F S Q z F z Q

f s F S Q f s
f s Q F S Q Q f s F S Q f s

ov

ov

[ ( ) , ( ( ) ( ) ( )) ]

( ) [ ( ) , ]

( ( ) ( ) ( ))
( ) ( ) ( ( ) ( ) ( ))

T
h l

T T
l h l l

T
l h l l l l

T

l l
T

h
T

l
T

l h l l
T

l l
T

h
T

0 0 0

0

0 0
2

0 0 0

because zl and are independent. If it is possible to assume that the
variance of the difference between the observed Hi-Fi data and the
prediction of the Lo-Fi model is constant, i.e. = +z Iov ( ) ( )h l n

2 2
h the

parameters can be estimated using a LS algorithm. This approximation
may be useful in a big data scenario because the computation of the
values in Equation (22) can lead to high computational time. In order to

include an approximation of the variance of the predicted Lo-Fi points
the prediction variance can be computed as

=

+ +
+

s f s f s Q F S Q

Q f s F S Q f s
f s Q V I Q f s

f s Q F S Q Q f s F S Q f s

ar z[ ˆ ( )] ( ( ) ( ) ( ))

( ( ) ( ) ( ))
( ) ( ) ( )

2 ( ) ( ) ( ( ) ( ) ( ))

h l l
T T

l h l

l
T

l l
T

h
T

T
l n

T

l
T

l h l l
T

l l
T

h
T

0
2

0 0

0 0

0
2

0
2

0 0 0

h

(28)

where

= +Q F F E F( )T T1

and

=V diag { ˆ }l l
2 (29)

is a diagonal matrix with entry equal to the mean variance of the Lo-Fi
model defined as

= s s
S

dˆ 1
| |

ˆ ( )l S l
2 2

(30)

where sˆ ( )l
2 is the predicted variance in the spatial location =s u v( , ), S

is the surface domain and S| | is its area.
In order to speed up the computation it is assumed that the matrix

W is a diagonal matrix. The uncertainty of the Lo-Fi model is taken into
account, but not the correlation between the predictions, the prediction
variance the matrix W become

=W
s

diag 1
ˆ ( )

.
l i
2 (31)

The data fusion model was coded in C++, the points evaluation
and the variance computation was easily parallelized using OpenMP
[19]. Although the computation of the prediction variance requires the
solution of one (few) linear system for the Lo-Fi (fusion) model it is still

Fig. 3. Models' RMSE

Fig. 4. Free form surface.

Fig. 5. Lo-Fi and Hi-Fi points analyzed.
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fast. For example the computation of the mean value and its variance of
the Lo-Fi model takes about 1 s for 10000 points, for a model with a
control grid of ×30 30 control points, while it takes few seconds for the
estimation of the prediction variance of a fusion model with a control
grid of ×10 10 control points. The computational times were recorder
using a computer with an Intel(R) Core(TM) i7-5930K CPU @ 3.50 GHz
processor.

2.2.1. Test case
In this Section the advantages of combining different data sets with

the proposed hierarchical data fusion approach are investigated using
some simulated data. To this aim, performance of three different
models are compared:

• Lo-Fi model: the predictions are computed using a single model that
considers the Lo-Fi data only;

• Hi-Fi model: the predictions are computed using a single model that
considers the Hi-Fi data only;

• Fusion model: the predictions are based on the two-stage hier-
archical model presented before.

The performances of the model estimated using both the Lo-Fi and
Hi-Fi points as they both come from the same source, called addition, it
is not investigated. As observed in Colosimo et al. [7], the addition
model does not lead to smaller prediction if the Lo-Fi data have a sys-
tematic bias.

The performance indicator used throughout this paper is the root
mean square (prediction) error (RMSE), defined as

=
=

s
n

eRMSE 1 ( )
i

n

i
1

2

(32)

where se ( )i is the prediction error at location si, given by

=s s se z z( ) ( ) ˆ ( )i i i

where sz ( )i is the true point at location si and sẑ ( )i is the value pre-
dicted at the same location using one of the aforementioned ap-
proaches.

In order to show the prediction ability of the LSBA-based fusion
model the Matlab peaks function was used. This function is a mixture of
translated and scaled bivariate Gaussian probability density function.
The peaks function is given by

= + +sf u e u u v e e( ) 3(1 ) 10
5

1
3

.u v u v u v2 ( 1) 3 5 ( 1)2 2 2 2 2 2

(33)

The Hi-Fi data were simulated from the following model

N= + =s sz f( ) ( ) , (0, 0. 2 ).h h h
2 (34)

while the Lo-Fi data model were randomly generated using the fol-
lowing equation:

N= + + =s s sz f( ) ( ) bias( ) , (0, 0. 4 )l l l
2 (35)

where a bias term was added. This bias term was assumed to have the
following model:

= +s u vbias( )
10 10

,
2 2

which describes a Lo-Fi measurement system where the bias increases
as the u and v coordinates increase in module. This bias term gives
evidence to the need of performing data fusion. As a matter of fact, the
Hi-Fi data have to be used to correct the Lo-Fi bias where needed.

A total number of 250000 Lo-Fi points were generated from a reg-
ular grid of ×[500 500] points in u and v directions. Since the number of
the available Hi-Fi points is usually lower than the Lo-Fi sample size,
only 100 Hi-Fi points were generated on a regular grid of ×[10 10]
points.

For the estimation of the Lo-Fi model a lattice of ×30 30 control
points and a smoothing parameter = 1 were used. A ×10 10 control
lattice and a smoothing parameters equal to 0.01 and 0.1 were used to
estimate the Hi-Fi and fusion model respectively.

For each of the competitive models, an error map is computed as the
difference between the predicted and the nominal value at each loca-
tion ( se ( )i ). The error maps are reported in Fig. 2. The shape of the error
map of the Lo-Fi model shows that the simulated bias affected the ac-
curacy of the predictions. The error map of the Hi-Fi model shows that

Fig. 6. Example of 100 Hi-Fi points sampled according to the analyzed sample strategies.

L. Pagani, et al. Precision Engineering 60 (2019) 570–586

575



the error is generally smaller (because those data are assumed to be
characterized by zero bias). The error map of the fusion model shows
that a hierarchical model can correct the error of the Lo-Fi model where
needed, using only a small set of Hi-Fi data. It should be also noted that,
since the fusion model has to estimate the difference between the
prediction of the Lo-Fi model and the Hi-Fi data, a higher smoothing
parameter, compared to the Hi-Fi model, can be set to avoid the on-
dulation in the flat portion of the surface.

Considering this peaks model as a toy example, 10 different reali-
zations of the surface were run and the prediction ability of each model
was tested using the RMSE.

The average time to estimate the parameters of the LSBA-based
fusion model is 0.35s, so with this model is also possible to handle point
clouds with a large amount of data.

The confidence interval on the mean of the RMSE computed on
these 10 replications are drawn in Fig. 3. It is clear that the fusion

model outperforms all the other methods in this case study.

3. Case study: freeform surface reconstruction

In this Section the advantages of the data fusion model applied to
the reconstruction of a real smooth freeform surface are investigated. In
this case study, the performance of different models are computed
while varying the number of Hi-Fi points. Furthermore, three different
sampling plans to locate Hi-Fi points were analyzed: (i) a uniform
sampling plan according to a classic regular grid; (ii) Halton [20] and
(iii) Hammersley [21] sampling strategies which are widely used in
metrology [22].

In their work, Petrò et al. [23] acquired the point clouds of the free
form surface shown in Fig. 4 with both a Structured Light (SL) scanner
(Lo-Fi) and a Coordinate Measuring Machine (CMM) Zeiss “Prismo 5
HTG VAST” equipped with a analog probe head with maximum probing

Fig. 7. Predicted surfaces and error map using the GP model.
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error MPEP=2 μm (Hi-Fi).
This case study is used to compare performance of three competitive

approaches:

• Lo-Fi: model based on the Lo-Fi (SL) points only;
• Hi-Fi: model based on the Hi-Fi (CMM) points only;
• Fusion: two-stage fusion model based on both the Lo-Fi and the Hi-Fi

points.

The number of points acquired with each device was 9635. Clearly,
acquiring this sample size via CMM required a long acquisition time,
which is almost unfeasible in real practice. As a matter of fact, it is
assumed that only a subset of these Hi-Fi (CMM) data were effectively
available to perform data fusion, while the remaining set was used as
test set to compute the prediction errors of all the competitive methods.
In other words, =n h% 9635h data were used to reconstruct the surface
with all the proposed methods, while the remaining set of

=n n9635test h points was used to represent the “real” surface.
Predictions at all the locations of ntest data were computed with all the
competitive methods and the corresponding prediction errors ( se ( )i )
will be computed.

The whole set of 9635 Lo-Fi and Hi-Fi points representing a smooth
freeform surface are shown in Fig. 5. The color map in Fig. 5b re-
presents the difference error of the Lo-Fi points, computed as the dif-
ference between the measured Hi-Fi and Lo-Fi points. The negative
errors of the SL scanner are located near the peak, and on the right
corner, while the positive errors are located on the left corner.

In order to compute the performance of each model as a function of
the number of Hi-Fi points, the percentage h of the Hi-Fi data used to fit
the surface models was changed (from =n 25h to a maximum value of
4% of the total amount, i.e., =n 400h Hi-Fi data points). The sampling
of 100 Hi-Fi points, for each of the analyzed sampling strategy, are
shown in Fig. 6. Since the “real” points were available only on a finite
set of locations (the ones measured using the CMM) after computing the

Fig. 8. Predicted surface and mean standard deviation using the GP model.
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theoretical locations the closest point, between the points not already
included in the set, were selected as Hi-Fi point.

3.1. GP-based fusion model

The surfaces reconstructed with the GP model, using 100 H-Fi
points, are shown in Fig. 7. The color represents the difference between
the test point and the predicted one. The errors of the Lo-Fi model has
an higher magnitude on the left of the surface. On the peak the error is
positive, while on the bottom left it is negative. These discrepancies are
systematic due to the SL measurement system. On the contrary the
systematic error of both the Hi-Fi and the fusion models appear smaller,
so the reconstruction result is better. The error map of the Hi-Fi model
shows that, due to the small number of Hi-Fi points available, the model
has high errors in some locations of the reconstructed surface. On the
contrary, the fusion model uses the information of both the Lo-Fi model
and the Hi-Fi points to better reconstruct the surface reducing the error
magnitude everywhere. The major differences between the Hi-Fi and
the fusion models can be observed along the border of the surface,
where there aren't Hi-Fi points available, or in the portion of the surface
where the distance between the Hi-Fi points is higher. The GP fusion
model can therefore “correct” the prediction of the Lo-Fi model using
the Hi-Fi points as “attractors”.

Fig. 8 shows the standard deviation of the predicted mean value.
The uncertainty of the points predicted using the Lo-Fi model is lower
compared to the other models because the parameters are estimated
using a higher number of points. Since the number of Hi-Fi points is
low, the uncertainty of the predictions of the Hi-Fi model is the highest.
The standard deviation using a grid sampling shows a sinusoidal pat-
tern. This is due to the effect of the anisotropic correlation function,
since the estimated correlation along the u direction is higher, the
prediction uncertainty is lower. The uncertainty of the fusion model has
the same behaviour of the Hi-Fi model one, but with a lower magni-
tude.

3.2. LSBA-based fusion model

In order to use the LSBA algorithm, the first step is to choose the
three parameters that characterize the model: the number of control
points in u and v direction and the smoothing factor λ. For the fusion
model the number of parameters to set is double because there are two
different models involved. The RMSE values were computed using the
whole set of Lo-Fi data and 100 Hi-Fi points sampled according to an
uniform grid. The values of λ explored during the experiments were
0.01, 0.1 and 1, while the control lattice were ×10 10, ×30 30 and

×50 50 for the Lo-Fi model, and ×5 5, ×10 10 and ×15 15 for both the
Hi-Fi and the fusion models. The experiment was run for all the 81
possible combinations of the parameters, in Fig. 9 are reported the
RMSEs as a function of the smoothing parameters (with a control lattice
of ×30 30 for the Lo-Fi model and ×10 10 control points for both the
Hi-Fi and fusion models) and the control lattices (with = 1l , = 0.01h
and = 0.1) for the three models. Both the results of the Lo-Fi and
fusion models are robust respect to the parameter λ, while a small
parameter, 0.01, is preferable for the Hi-Fi model. The behaviour of the
RMSE is similar for the three analyzed model: if few points are used, the
accuracy of the model is not good.

The surface reconstructions using the LSBA algorithm and the re-
construction errors are shown in Fig. 10. The behavior of the error is
comparable with the one of the GP models, but the error of the Hi-Fi
models is higher if there are not points located on the boundary of the
surface. The standard deviation of the mean prediction, show in Fig. 11,
is lower compared to the GP models for all the model analyzed. Since
the spatial correlation of the points is not taken into account the stan-
dard deviation of the Hi-Fi model has a check board effect, it is low
were there are the measured points and higher in the other locations.
Differently from the GP model, the behaviour of the standard deviation
of the fusion model is similar to the one of the Lo-Fi model, i.e. the
uncertainty due to the second stage model is low.

Fig. 9. RMSEs as function of the control lattices and the smoothing parameters.
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3.3. Performance comparison

In this Section the reconstruction performances of the analyzed
model are compared according to the RMSE metric. The smoothing
parameters of the LSBA algorithm were = 1l , = 0.01h and . A
lattice grid of ×30 30 control points for the Lo-Fi points, while a lattice
equal to ×n nmin{ , 30} { , 30}h h for both the Hi-Fi and the fusion
models. Fig. 12 shows the values of the computed RMSEs. The fusion
models can improve the performances of the Lo-Fi data, but if the
number of Hi-Fi points is high enough the RMSEs of the fusion and the
Hi-Fi model are comparable. In Fig. 13 are reported the RMSEs of the
LSBA and GP model for the three analyzed sampling strategies. Both the
LSBA and GP models seems not be affected by the analyzed sampling

strategies, except the Hi-Fi model with 100 uniform sampled points.
The performance of the LSBA algorithm is better if there are few Hi-Fi
points, while if their number increase the RMSE values are similar.

Fig. 14 shows the computational times, in seconds, needed by the
GP-based and the LSBA-based approaches as a function of the number
of Hi-Fi points used. Since in the fusion model there are two stages, it
takes longer compared to the Lo-Fi and Hi-Fi models. The slowest fitting
for the LSBA model takes less than 1s, while the GP estimation is
slower. The time to estimate the parameters of the Lo-Fi model takes
approximately 1 h because a full matrix of approximately ×9635 9635
has to be solved many times in order to estimate the parameters of the
correlation function.

Fig. 10. Predicted surface and error map using the LSBA model.
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4. Case study: portion of impeller blade

A portion of an impeller blade was measured using both a structured
light scanner and a CMM. The SL measurement was carried out using
Creaform HandyScan 7000, with a + L20 60 /1000 μm uncertainty, L
expressed in mm. Before the measurement, the blade was painted to
matt and a set of anchor points was arranged in the exterior region of
the measuring blade as the coordinate reference as shown in Fig. 15a.
The painting was performed according to the ISO 3452 [24], the sen-
sitivity of detection was equal or less than 0.5 μm. The red-bounded
area was then densely scanned with the sampling resolution of 0.2 mm
(0.05mm with the refinement algorithm). The employed CMM was a
Hexagon Global Classis SR 05.07.05 with the composite uncertainty in

+ L2.3 3 /1000 μm, L expressed in mm. The measuring probe was a

Renishaw SP25 with a 1.5mm diameter ruby ball. Without using a CAD
model, the blade was automatically measured by manually setting the
initial scanning points, directions and scanning bounds as shown in
Fig. 15b. Once the center coordinates of the ruby ball were obtained
after scanning, the surface points were calculated by compensating a
ball radius along the surface normal, which were fitted using a set of
neighboring points.

A total number of 291 293 Lo-Fi (with the SL scanner) and 1616 Hi-
Fi points (with the touching probe) were measured. The two point
clouds were first aligned using the rigid iterative point closest algorithm
implemented in CloudCompare [25]. The measured points are shown in
Fig. 16 along with the estimated systematic error of the Lo-Fi data.
Since, due the sampling size, is not possible to see the measured points,
a decimated version is shown in Fig. 16b.

Fig. 11. Predicted surface and mean standard deviation using the LSBA model.
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In this second test case the systematic error appears to have non
linear shape, it is positive in the top and on the bottom left portion of
the surface and negative elsewhere. It is not possible to estimate the
parameters using the GP because the number of the Lo-Fi points is too
high, with a 64 GB RAM is not possible to compute the correlation
matrix. To check the prediction performance of the GP model, the SL
point cloud was decimated using a uniform sampling in the space with a
minimum sampling distance distance of 0.5 mm. The decimated data,
shown in Fig. 16b, has a total number of 3828 points.

In order to check the goodness of the analyzed models (Lo-Fi, Hi-Fi
and fusion) a subset of Hi-Fi points was used to estimated the models’
parameters, while the remaining points were used to compute the
prediction error. A total number of 25, 100, 225 and 400 points were
sub-sampled from the CMM data, using the grid, Halton and
Hammersley samples strategies. For each sampling strategy the nominal
points were first generated, the closest available Hi-Fi points were then
selected to perform the analysis. Since the duplicate points were de-
leted, the total number of Hi-Fi points is smaller than the designed one.

Fig. 12. Models' RMSEs.

Fig. 13. Fusion models' RMSEs.

Fig. 14. Computation times of the GP and LSBA algorithm (axes in log scale).
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Fig. 15. Measured configurations.

Fig. 16. Measured points and systematic error of the portion of impeller blade.
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The analyzed Hi-Fi points (nominal size of 100 samples) are shown in
Fig. 17. The RMSEs were then computed using the remaining Hi-Fi
points inside the domain of the training points. Fig. 18 shows the results
of the test case. A lattice grid of ×30 30 control points and a λ para-
meter of 0.1 were used for the Lo-Fi model, while a grid of ×10 10
control points and λ equal to 0.01 were set for the Hi-Fi and fusion
models. The execution time of the Hi-Fi model is the lowest due to the
limited number of measured points, but the best RMSE can be obtained
using the fusion model. It should be noted that the estimation times of
both the Lo-Fi and fusion model are fast, both the models can estimate
the parameters in less than 1 s.

The results of using the decimated version of the Lo-Fi data are
shown in Fig. 19. Due to the limited complexity of the analyzed mesh, it
is possible to achieve the same prediction performances. As in the
previous test case, the results of the GP and LSBA methods are com-
parable, but the time required to estimate the model parameters of the
LSBA method is one order of magnitude faster.

5. Conclusions

In this paper a LSBA-based fusion model and a formula for the

propagation of the uncertainty of prediction from the Lo-Fi to the
linkage model were presented. A formula to compute the prediction
variance for the GP-based fusion model proposed in Ref. [7] was also
proposed.

The advantages of the proposed LSBA-based fusion model were
firstly explored with artificially generated data, then the prediction
performances of the proposed model were then compared to the GP-
based fusion model with a real test case. It was shown the RMSE of the
two models are comparable, but the time required for the parameters’
estimation of LSBA-based fusion model is orders of magnitude lower
compared to the GP-based one. It was further observed that the un-
certainty of the prediction of the LSBA model is lower compared to the
GP one.

In the test case three sampling strategies were analyzed, the results
shown that the sampling had no effect on the RMSE values. Other
sampling plans based both on the curvature [26,27] of the Lo-Fi model
or on the uncertainty prediction uncertainty [28] has to be investigated.

A second test case on real data showed that the proposed LSBA
model can deal with a larger amount of points in a lower execution time
compared to the GP model.

The proposed LSBA model uses a B-splines basis function that

Fig. 17. Example of 100 Hi-Fi points sampled according to the analyzed sample strategies.
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Fig. 18. RMSEs and estimation times of the portion of impeller blade.

Fig. 19. RMSEs and estimation times of the portion of impeller blade (after the decimation of the Lo-Fi points).
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correspond to the cross product of the two B-splines basis function in u
and v directions, a data fusion model based on local B-splines function,
such as the truncated hierarchical B-splines [29] or the locally refined
B-splines [30] has to be developed.

The reconstruction of shapes from large data set can be performed
by combining segmentation (to identify surface patches) and surface
fitting via data fusion, new approaches for data fusion of multi-patches
surfaces have to be developed.
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Appendix A. Prediction of new Point and its Propriety

The prediction value and the uncertainty interval of a new observations at location s0 is now computed. As for the classic GP model, the starting
point is the joint distribution between zh and =sz z( )h 0 0
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Since the real parameter values are unknown, we can substitute them with their estimates (plug-in procedure).
The parameters can be estimated with the maximum likelihood (ML) procedure, i.e. by minimizing the function
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where is known as the mean squares prediction error (MSPE) or kriging variance.
=R s sr{ ( , )}i j is the correlation matrix of the GP for the shift effect s( )i , ×In
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The other unknown parameters can be found by minimizing twice the logarithm of the restricted likelihood [31] given by:
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Substituting ˆ0 from Equation (A.2) the prediction in a new location s0 can be rewritten as
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a* is the vector which minimizes the Mean squared prediction error (MSPE) of sẐ ( )h 0 .
First of all, the prediction is unbiased
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Starting from the definition it is possible to compute the MSPE, or the so called kriging variance
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