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Abstract

Fault diagnostics problems can be formulated as classification tasks. Due to limited data and to uncer-

tainty, classification algorithms are not perfectly accurate in practical applications. Maintenance decisions

based on erroneous fault classifications result in inefficient resource allocations and/or operational dis-

turbances. Thus, knowing the accuracy of classifiers is important to give confidence in the maintenance

decisions. The average accuracy of a classifier on a test set of data patterns is often used as a measure of

confidence in the performance of a specific classifier. However, the performance of a classifier can vary in

different regions of the input data space. Several techniques have been proposed to quantify the reliability

of a classifier at the level of individual classifications. Many of the proposed techniques are only applicable

to specific classifiers, such as ensemble techniques and support vector machines. In this paper, we propose

a meta approach based on the typicalness framework (Kolmogorov’s concept of randomness), which is in-

dependent of the applied classifier. We apply the approach to a case of fault diagnosis in railway turnout

systems and compare the results obtained with both extreme learning machines and echo state networks.

Keywords: Confidence estimation, Reliability of classifiers, Typicalness framework, Railway turnout

system, Extreme learning machines, Echo state networks

1. Introduction

The potential impact of failures and malfunctions of components and systems of hazardous plants and

critical infrastructures has motivated an increased use of monitoring devices for operation, control and

condition-based maintenance. Monitoring data provide information on the state of components and systems,

which can be used for fault detection and diagnostics [7]. If an impending or an incipient failure condition

can be detected, isolated and identified [30], [23], the operator can proactively intervene to prevent an

interruption of operation.

We consider fault diagnostics, for which there are different approaches. Data-based approaches in

particular have been emerging as an effective solution in practical applications [18], [32], [28]. The task

of fault diagnostics can be formulated as a classification problem: separating the data patterns in the input

space into distinct classes [1]. To solve this task corresponds to finding a separating hyperplane, respectively

a decision boundary that separates the data into different classes as accurately as possible, i.e. with minimum

classification error [9].

Classification tasks can be learned either in a supervised or an unsupervised way. In this paper, we

focus on supervised learning, for which the mapping between input patterns and target labels is known. The

task of the classification algorithm in supervised learning is to deduce the implicit relationship between the

patterns in the input data and the target labels [1]. The separating hyperplane is found through a learning

process driven by minimization of a defined loss function, e.g. the average number of misclassified patterns.

The trained classifier is, then, used to predict the labels of unknown patterns different from those of training.

For effective maintenance decision-making, classifications need to be provided with a measure of their

accuracy. In supervised learning, the accuracy of a classifier has been measured by means of the confusion
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matrix or graphical methods, such as Receiver Operating Characteristic (ROC) curves [17]. Additionally,

information theoretic measures have been applied [19].

Most of the measures of learning algorithms quantify performance on average over all the patterns in

a given testing dataset or in different folds by cross-validation [17]. The average performance is a good

indicator for the selection of a classification algorithm and for setting its parameters optimally. However,

when using the classifier for fault diagnostics based on a specific pattern of monitored data, the pattern could

lie in a region in the input space which has not been sufficiently densely covered in the training dataset, or

it could even be an outlier in the input space. In these cases, even though the average performance of the

algorithm may have been validated as high, the classification algorithm may still perform poorly. In practice,

then, the measure on the average performance of a fault classifier may not be sufficiently informative for

the maintenance decision maker. Therefore, reliability measures for individual classifications are required

to support the decision maker and prevent that decisions are based on unreliable classifications.

There can be several reasons for poor classification results. One reason can be that the incoming pattern

is drawn either from a region in the input space which has not been sufficiently covered by patterns during

training of the classification algorithm or from a region which is close to the separating hyperplane of

the discriminant function built by the algorithm, where the patterns of different classes are very similar

and cannot be easily distinguished by the algorithm. Another reason of poor classification performance

can be due to the characteristics and structure of the algorithm itself, that may not be capable of learning

the patterns of the training dataset adequately. Yet another reason of poor performance could be that the

incoming pattern is an outlier, dissimilar to all the patterns of the training dataset.

While for regression tasks, confidence intervals can be assigned to each of the predicted values, the

confidence of a classifier is more difficult to assign because of the discrete character of the classification

task, whereby the output of the classification algorithm can be either correct or not. Various approaches have

been proposed in the literature to quantify the confidence in individual pattern classifications. Most have

been designed for a specific classifier. For example, the degree of agreement, respectively the disagreement,

of individual neural networks within an ensemble classifier can be used as indicator of the confidence in the

individual classifications [11].

The concept of typicalness of patterns has been proposed by Vovk et al. [31] to assign a confidence and

a credibility measure to an individual classification. In addition to the specific approach of support vector

machines, the design of a nearest-neighbor classifier based on the typicalness of the specific pattern has

been proposed by Gammerman and Vovk [8].

Smirnov et al. [29] extends the typicalness approach so that it can be applied to assess the performance

of an arbitrary classifier. The proposed meta approach comprises an arbitrary classifier that performs the

main classification task and a meta classifier that predicts the reliability of each single classification. The

output of the first classifier is used to train the meta classifier.

Even though Barbara et al. [3] do not use the typicalness approach to assign confidence, respectively

reliability values to patterns, they use the approach to construct an outlier detector by unsupervised learning.

In this paper, an approach is proposed that extends and combines the previously proposed approaches

based on typicalness. A two-step meta classifier is proposed. The classifier based on the typicalness of

the neighboring patterns, proposed by Gammerman and Vovk [8], is used solely to quantify the reliability

of the primary classifier, which is applied for the actual classification task. The typicalness values based

on the distance to the nearest-neighbors are thereby not used as the sole input to the classifier but are

complemented by the typicalness value defining the outlier character of the pattern, similar to the one

proposed by Barbara et al. [3]. Additionally, also the “confidence” of the primary classifier in the performed

prediction is used as input to the meta classifier. The meta approach enables the usage of the best performing

classifier for the main classification task and the quantification of the reliability of that classifier based on

aggregated information of the input space and on the performance of the main classifier conditional on the

presented input patterns. Contrary to this approach, the meta classifier approach proposed by Smirnov et al.

[29] uses the original input as input to the meta classifier. The approach proposed in this paper improves

the generalization ability and the accuracy by integrating several indicators of typicalness. The proposed

approach is applied to a degradation classification problem from a railway turnout system. The diagnostic

classification task is performed by two different algorithms: extreme learning machines and echo state

networks. Subsequently, the results of quantifying the reliability of the two classifiers are compared.

The remainder of the paper is organized as follows. The next Section of this paper first defines the terms

applied within the proposed framework and differentiates them from those applied in some other studies.
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Subsequently, the background of the typicalness framework is presented and the proposed framework, the

applied typicalness values and the proposed procedures are introduced. In Section 3, the proposed approach

is applied to the case study of a railway turnout system. In Section 4, the obtained results are discussed.

Finally, Section 5 presents the conclusions of this research.

2. Meta approach to quantify the reliability of classification

2.1. Terminology

Before the proposed approach and the underlying theory are presented, some key terms used in this

paper are introduced and differentiated from those applied in some other studies.

The term reliability of a classifier has been used in several studies [29], [5]. Partly, the term has been

used as a superordinate qualitative performance property, comprising different aspects of performance as-

sessment indicators, such as accuracy, confidence or credibility [5]. The term reliability estimate was used

to quantify different aspects of reliability. In other studies, the term reliability has been used quantitatively

to express the probability that the classifier performs the prediction correctly [29]. In this study, the term

reliability is used according to this latter interpretation.

There are several other performance indicators. Gammerman and Vovk [8] introduced the indicators of

confidence and credibility, related to the typicalness approach. The confidence in this context is defined as

one minus the second largest randomness level. This describes the probability that the pattern has not been

classified as the second typical class but as the most typical class. The higher the value of confidence, the

higher the untypicalness of the specific pattern with respect to other patterns in the second typical class and

the more certain therefore the mapping to the most typical class.

The credibility is defined as the randomness level of the output prediction. Therefore, the accuracy

of a prediction is determined by the combination of the two indicators: the higher the credibility and the

confidence, the higher the accuracy of a classification. One of the indicators is in this case not sufficient to

represent the accuracy.

The term confidence has been, partly, used differently, in other studies. Baraldi et al. [2] have defined

the level of confidence as the probability that the assigned class is correct, given the specific pattern.

In our work based on the typicalness approach, we adopt the definitions of confidence and credibility

introduced by Gammerman and Vovk [8]. The term reliability is used to quantify the probability that the

performed classification is correct.

2.2. Basics of the typicalness approach

The proposed meta approach comprises two classifiers: a main (primary) classifier and a meta classifier.

While the main classifier is trained to generalize the patterns of the original input space, the meta classifier

is trained to recognize the levels of reliability of the main classifier based on three different typicalness

values.

The idea of using the typicalness to quantify the classifier reliability is based on the consideration that

if the considered pattern is typical compared to the patterns that have already been classified correctly by

the algorithm during the training process, it is expected that the performed prediction would be reliable.

However, if the pattern is very untypical then the performed prediction is expected not to be reliable.

The typicalness of a pattern can be defined with respect to several aspects. The definition at the basis of

our approach uses Kolmogorov’s concept of randomness [21]. A sequence is considered random if it cannot

be compressed (if there are no repeating patterns). Kolmogorov complexity provides a universal random-

ness test but it is not computable [21]. It has been extended by Martin-Löf [25] for practical applications.

Generally, finite sequences are not solely random or non-random but have different degrees of randomness.

To measure this, a concept of randomness deficiency is introduced based on the iid assumption (identically

and independently distributed) [21].

Given Z, the set of all possible labelled examples and Z∗, the set of all finite sequences of labelled

examples, a function f : Z∗ → [0,∞) is a randomness test if:

(1) for all r ≥ 0, all n ∈ {1, 2, . . .} and all probability distributions P in Z, Pn{z ∈ Zn : f (z) ≤ r} ≤ r;

(2) f is upper semicomputable.
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The first condition defines that the randomness test is required to be valid while the second condition

defines that the test should be computable, in some weak sense.

Even though the randomness level is not computable, it can be approximated by various approaches.

For example the Lagrange multipliers of the optimization problem in support vector machines can be used

to express the “strangeness” of a solution [8]. Generally, the level of randomness can take values between

0 and 1, with a 0-level of randomness being absolutely untypical and a level of 1 being very typical.

In addition to the use of Lagrange multipliers, the approximation of the strangeness values αi can also

be obtained by a nearest-neighbor algorithm [8]:

αnn
i :=

∑k
j=1 d+

i j∑k
j=1 d−

i j

, (1)

with αnn
i
∈ R, where d+

i j
is the shortest distance from xi to the jth nearest neighbor classified in the same

class as xi, d−
i j

is the shortest distance from xi to the jth nearest neighbor classified differently from xi, and

k is the number of nearest neighbors.

The rationale behind definition (1) is that the shorter the distance to the patterns from the same class

and the larger the distance from the patterns classified differently, the smaller is the value of αnn
i

and con-

sequently, the less strange is the pattern with respect to its neighbors. However, if the pattern is classified

differently than its neighbors, then, its distance to the patterns of the same class is larger than the distance

from the patterns of other classes and αnn
i

will be larger than 1.

With the computed strangeness values, the typicalness value, p, can be computed:

p(yn+1) =
#{i : αi ≥ αn+1}

n + 1
, (2)

with p(yn+1) ∈ Q.

Equation 2 expresses the proportion of αi which are at least as large as the last αn+1, with n being the

number of training patterns. Therefore, always the strangeness value of one pattern at a time is compared to

the strangeness values of the patterns used to train the classification algorithm. The larger the strangeness

value of the considered pattern yn+1 is, the fewer strangeness values from the training dataset will be larger

than that of the considered pattern and consequently, the less typical the pattern will be with respect to those

contained in the training dataset.

Because the typicalness approach is solely based on the iid assumption it is flexibly applicable to arbi-

trary input distributions.

2.3. Definition of typicalness values

There are different parameters with respect to which the typicalness of a pattern can be described. For

the proposed meta approach, three different typicalness measures are taken as inputs, each of them based

on a source of potential misclassifications. For each of these potential sources a strangeness measure αi

and a pertinent typicalness value pi are assigned. The different typicalness inputs are required to enable the

algorithm to integrate different typicalness aspects of one pattern and to classify it accordingly. Furthermore,

if considered separately, single typicalness values would result in many false positives, respectively false

negatives. The combination of several typicalness characteristics enables the meta classifier to discriminate

the poorly classified patterns based on several aspects.

For the typicalness of the input patterns, the approach based on nearest-neighbors is selected. First,

the strangeness, αnn
i

, is computed based on Equation 1. Subsequently, the typicalness of the patterns is

computed based on Equation 2. The strangeness expresses the ratio of the distances of the specific pattern to

the nearest neighbors from the class to which it has been classified, to the distances to the nearest neighbors

of all other classes. The strangeness is the smaller the nearer the pattern is to the patterns from the same

class and the more distant it is to the patterns of other classes. If the pattern is in the region of the separating

hyperplane between several classes, the strangeness value approaches 1 as the pattern is similarly distant to

the same class patterns as to the patterns from other classes.

To characterize the outlier property of a pattern, a further strangeness approach is introduced, similar

to the one introduced by Barbara et al. [3]. At first sight, the strangeness based on the nearest-neighbors

approach appears to cover also the outlier character of the pattern as the distance to the nearest neighbors

is measured and the distance increases with the outlier character of the pattern. However, Equation 1
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represents the ratio of the distance to the nearest neighbors within the same class, to the nearest neighbors of

all the other classes. If a pattern is an outlier, its distance both to the class to which it has been classified and

to all other classes is large. The ratio between these two numbers can be one, and in this case the patterns are

similarly distant from all the classes; or it can be smaller than one, in which case, even though the distances

are large, the ratio between them becomes a number that is comparable to other levels of randomness;

or it can be bigger than one, in which case the distances between the pattern class and other classes are

not similar. Therefore, the strangeness indicator αnn
i

is not always able to reflect the outlier character of

a pattern and can have a similar degree of randomness as patterns that do not have an outlier character.

Consequently, an additional indicator, αout
i

, is introduced to express the randomness of the patterns with

respect to the outlier character, (Equation 3). In this case, only the distance to nearest neighbors of the same

class is considered.

αout
i :=

k∑

j=1

d+i j, (3)

with αout
i
∈ R.

αout
i

complements the randomness indicator αnn
i

, which is based on the ratio between the distances to

the same class and the distances to all other classes (Equation 1).

For this strangeness indicator, the rationale is that the larger the distance is from the considered pattern

to those from the same class, the larger the strangeness is of the considered pattern. Consequently, the more

similar the pattern is to those from the same class, the smaller the distance is to these patterns and the less

strange the pattern is.

If, for example, αout
i

is large and αnn
i

is approximately one, it can be concluded that the pattern has an

outlier character and is equally distant to the patterns in all the classes.

To characterize the typicalness of the output, a different indicator is introduced. There are, generally,

several approaches to design classifiers. One approach is to make the output one-dimensional so that the

output can be either binary for a two-class classifier or discrete for multi-class classifiers. For scoring

classifiers it is also possible to define a cutoff value and to define the classification decision rules in this

way. The cutoff values can be varied based on the performance of the classifier on the critical classes.

Another approach is to set the output dimension to the number of possible classes and to represent the

membership of the class by a binary number. However, if the output variable is not binary but continuous,

then for a selected pattern the membership to a class is defined by the maximum score of all possible classes.

By this approach, a continuous variable is converted to a binary variable. Thereby, the information is lost

about how “certain” the classification algorithm was of the specific classification. Therefore, even though

the assigned class might have had the maximum value out of the outputs of all the classes, the difference to

the output values of other classes, nevertheless, might have been small. Consequently the output would be

less certain in comparison to the case in which the output of the assigned class is equal to one and that of

all the other classes equal to zero, respectively −1.

Based on these considerations, the output can be directly used to define the strangeness of the algo-

rithm performance within the typicalness framework. Consequently, one minus the maximum output of the

algorithm for each pattern is directly defined as the strangeness value, α
alg

i
:

α
alg

i
:= 1 − max(̂yi1, . . . , ŷi j), (4)

where ŷi j is the output of the algorithm for the class j for the ith pattern. In case of a binary classifier, the

maximum value of only two outputs ŷi1 and ŷi2 is taken. The smaller the maximum output value ŷi, the

more “uncertain” the classifier is about the computed output and more untypical is the value. Considering

a binary classifier, in the ideal case the maximum value ŷi will be equal to 1 and the resulting strangeness

value will be 0. In the worst case, the algorithm will not be able to distinctly distinguish between the two

classes and the maximum value of ŷi will approach 0.5 and the strangeness value, consequently, will also

approach 0.5.

To define the typicalness values p
alg

i
, again, Equation 2 is applied.

2.4. General meta approach

The proposed meta approach is composed of two classifiers: a main classifier and a meta classifier. The

first classifier performs the main classification task. The second classifier predicts the level of reliability
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of the classification performed by the main classifier. The main classifier is based on the original input

space whereas the meta classifier uses typicalness values of the original input and the output of the main

classifier to learn to predict the misclassified patterns without having the information on the target label of

the specific pattern. The specific algorithms used within the single classifiers can be selected according to

the classification task and the specific requirements.

In the first step, an arbitrary classifier is applied to perform the general classification task. Holdout

technique with a training and a testing datasets is applied to validate the performance of the classifier.

Subsequently, randomness values, αnn
i

, αout
i

, α
alg

i
, and the pertinent typicalness values, pnn

i
, pout

i
, p

alg

i
, are

computed. Additionally, target output, ymeta for the binary meta classifier is computed based on the ac-

curacy of the main classifier on the training dataset: if the pattern has been correctly classified, class 1 is

assigned, otherwise class 2 is assigned. Next, the meta classifier is trained to distinguish between the pat-

terns classified correctly and incorrectly by the main classifier. Subsequently, the strangeness values αmeta
i

and the typicalness values pmeta
i

are computed similarly to α
alg

i
and p

alg

i
based on the typicalness values and

the target output. The typicalness of the output of the meta classifier can be defined as the reliability of

the classification and defines the probability that the predicted class is correct. The threshold for unreliable

classifications is defined as the maximum pmeta
i

value. With this threshold, the patterns are determined for

which the classification is expected to be unreliable. The different steps of the proposed framework are

displayed in Figure 1.

1. step: Train the main classifier

2. step: Compute αnn , αout, αalg and the pertinent p-values:

     pnn , pout, palg 

3. step: Compute the target output for the meta classifier ymeta: 

    class 1: pattern correctly classified by the main classifier

    class 2: pattern incorrectly classified by the main classifier

4. step: Train the meta classifier with pnn , pout, palg  as input and 

     ymeta as target output

6. step:  Validate the meta classifier and define the threshold  for

   for unreliable classifications

 

5. step:  Compute the typicalness values of the output of 

    the meta classifier

7. step:  Apply the meta approach

Figure 1: Framework of the meta approach

3. A case study of classification of faults of railway turnout systems

3.1. Applied procedure and algorithms

The proposed approach is applied to a case study of railway turnout systems fault diagnosis, which is

defined as a classification task. All the steps of the proposed framework (Figure 1) are applied to a real

dataset.
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For quantifying the randomness values for which a determination of nearest neighbors is required, the

balltree data structures are used to enable efficient searches in high-dimensional spaces [27]. The distances

between the patterns are computed as Euclidean distances.

For the main classifier, two different classifiers were tested: extreme learning machines (ELM) and echo

state networks (ESN). For the meta classifier, ELM were used.

These algorithms have been selected due to their good performance on several benchmark studies [15],

[16], the simplicity of their parameter setting and their flexibility.

The ELM is a feedforward neural network with a single hidden layer and flexible processing units [14].

ELM combines the strengths of several machine learning techniques, such as support vector machines with

kernels, but also feedforward neural networks with different activation functions, such as linear, sigmoidal,

polynomial and radial-basis functions [13]. The learning algorithm of ELM not only combines these ac-

tivation functions within the hidden processing units, but also enhances the state-of-the-art approaches by

speeding up the learning process of the algorithms and by avoiding local minima, which is one of the major

drawbacks of gradient-based learning algorithms [15]. Several extensions to ELM have been introduced

[20], [6], [26].

The parameters of the ELM do not have to be set and tuned manually, but are either set randomly or

determined within the learning procedure.

ESN are a specific type of recurrent neural networks [24]. Similar to other recurrent neural networks,

ESN are able to exhibit dynamic temporal behavior and have a memory [16]. ESN are typically applied for

modeling complex dynamic systems.

The main advantages of ESN are their efficient learning, the dynamics and the memory, and particularly,

the flexibility with respect to the application and the possible combination with other powerful algorithms.

Contrary to other neural networks in which the neurons are organized in layered structures, ESN comprise

a reservoir as the main structural element, in which the neurons are randomly and sparsely connected

[10]. The weights between the connected neurons within the reservoir are fixed and are not trained during

the training process. Only the weights between the reservoir and the output are determined by (ridge)

regression, which is computationally inexpensive compared to the backpropagation learning procedure [22].

The parameters of the ESN algorithm were set by hyperparameter optimization performed [4].

Ridge regression [12] with a regularization term of 0.01, which imposes rigidity, was applied in all the

classifiers.

3.2. Analysed system and applied data

Turnouts are critical components within the railway network. They enable trains to be guided from one

track to another and consist of several parts including turnout blades, stock rails, the so called “frog” and

the turnout actuator which positions the moveable parts of the turnout (Figure 2).

Figure 2: Parts of the turnout system

As with all physical infrastructure systems, turnout systems are subject to degradation. The turnout

degradation process depends on several parameters, including axle loads, train speeds, conditions of the

train wheels, and environmental conditions.

Sensors and other devices are increasingly used to monitor the condition and performance of railways

infrastructure and operations. This is especially true for components like turnouts and particularly for those

in critical locations, which have high capacity utilization rates. By anticipating component failures, the

monitoring devices help railway operators plan and implement cost effective maintenance regimes.

The data used in this case study were collected from six force measurement devices installed along the

turnout blades and the frog components of a turnout system installed in a railway tunnel portal. The force
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measurement is activated when the positioning process starts and the system records the forces applied for

each positioning at several locations along the turnout. The system measures the applied forces for each

millisecond of the positioning process. In the post-processing of the data, the system also computes the

work performed by the actuator system and stores this information for each of the measurement locations

separately. The performed work corresponds to the integral of the force curve. Since the turnout is posi-

tioned in different directions, the applied forces can vary. For this case study, positioning processes for only

one direction were considered. The total observation period considered in this research was about 3.5 years.

3.3. Classification

For the classification task, two levels of aggregation were considered. On the disaggregated level,

distinct force-curves for one single selected movement mechanism were evaluated. To classify these distinct

force-curves, the aggregated work performed by all the six monitoring points along the turnout was applied.

Two classes were defined: force-curves with an overall high (“high-class”) or low level of performed work

(“low-class”). The classification task aimed to demonstrate that the features of the shapes of force-time

curves are sufficiently distinguishable between the patterns with an overall high level and low level of

performed work, without taking the absolute value range in consideration. Therefore, each force-curve was

normalized in the interval [0, 1] with the distinct value range of each curve.

In total there were 11, 966 patterns in the dataset, 6, 159 of which belonged to the high-class and 5, 809 to

the low-class. In the first step, random re-sampling without replacement [17], with apportionments between

10% and 90% of the dataset between training and testing, was used to validate the performance of the ELM

algorithm and the robustness to variations in different input datasets. The dataset was randomly partitioned

into training and testing datasets, according to the defined percentage of data allocated for training. Contrary

to alternative cross-validation approaches, such as leave-one-out or k-fold cross-validation, random re-

sampling does not guarantee that each of the samples will be selected for the testing dataset. However,

this approach is more flexible with respect to different apportionments of the training and testing data. The

re-sampling was repeated 100 times for each of the defined apportionments of data allocated for training

and the average classification accuracy of the algorithm on the testing datasets was computed. The results

are shown in Figure 3. It is shown that going from using 90% of data for training to only 10% resulted

in a performance drop of only about 0.7% in the average classification accuracy on the testing data. The

classification performance also showed to be robust to variations in different input datasets.

The increasing variance of the performance on datasets with increasing apportionments to the training

dataset can be explained by the decreasing sample size of the testing dataset and the increasing influence

of single misclassifications on the performance of the algorithm. For example in case of the 90%-training

dataset, 8.4 patterns are misclassified on average and one single additional misclassified pattern influences

the performance by 0.08%.

For further considerations, the holdout technique was applied to validate the average performance of the

algorithm. The training dataset contained 90% of the entire available dataset and the testing dataset the rest

of it (10, 769 patterns were used for training and 1, 197 for testing).

The ELM algorithm classified 99.70% of the training data patterns and 99.33% of the testing data

patterns correctly. In the testing dataset, eight patterns in total, out of 1, 197, were misclassified. There

was a very small discrepancy between the training and testing error, which is an indication of a very good

generalization ability of the algorithm. A similar classification accuracy for both classes was observed,

with 99.49% of the patterns from the high-class and 99.17% of the low-class being classified correctly.

This corresponds to 3 patterns from the high-class and 5 patterns from the low-class being misclassified,

out of 8 misclassified patterns in the testing dataset in total.

The ESN algorithm showed a slightly worse performance classifying correctly 99.43% of the training

patterns; on the testing dataset, a similar performance was obtained, with only one additional pattern in-

correctly classified (which is equivalent to 99.25% of the patterns classified correctly). Similarly to the

classification performance of ELM within the single classes, ESN algorithm also showed a similar clas-

sification accuracy for both classes and was not biased towards either of the classes, with 99.32% of the

patterns from the high-class and 99.17% of the low-class being classified correctly. This corresponds to 4

patterns from the high-class and 5 patterns from the low-class being misclassified, out of 9 misclassified

patterns in the testing dataset in total.
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Figure 3: Average classification accuracy (+/ − σ) of the ELM algorithm on different apportionments

between training and testing data

3.4. Results of the case study

The input data for the meta classifiers, pnn
i

, pout
i

and p
alg

i
, for both the training and testing datasets, were

computed based on the strangeness values αnn
i

, αout
i

and α
alg

i
. The number of nearest neighbors, k, used

to compute αnn
i

and αout
i

was set to 10 by trial and error (selecting from the tested data range of [5,100]).

Furthermore, the target output ymeta
i

was computed. After the training phase, the meta algorithm was tested

on the testing dataset for both main classifiers.

The outputs of the meta classifier were taken as strangeness values, αmeta
i

, and the typicalness values

pmeta
i

were computed based on Equation 2.

For the ELM main classifier, the pmeta
i

for the eight patterns misclassified by the main classification

algorithm showed a high degree of untypicalness. The exact values were in the interval [0.0, 0.009]. The

typicalness value of 0 means that in the training dataset there were no other patterns with the same degree

of randomness.

The upper bound of the interval was taken as the threshold of low reliability of the classification out-

put. Consequently, if the typicalness value of a classified pattern is below 0.009, the classification of the

main algorithm is considered as unreliable. In the testing dataset there were three additional patterns with

typicalness values below the defined threshold. Therefore, even though these patterns have been classified

correctly by the classification algorithm, their classifications are not reliable and in real-world applications

decision makers would not trust them.

A similar behavior of the meta classifier was observed for the ESN main classifier. Indeed, as for the

ELM classifier, all of the missclassified patterns showed a high degree of untypicalness. For ESN, the

interval of typicalness values was slightly wider [0.0, 0.012]. Taking the upper bound of the interval as

the threshold for unreliably classified patterns, results in five additional patterns showing a high degree of

untypicalness to those already misclassified by the algorithm.

4. Discussion

In the case study of fault diagnosis in railway turnout systems, the meta classifier was applied to evaluate

the reliability of two different main classifiers. The meta classifier was able to detect the difference in the

confidence of the two classifiers with a different number of patterns being unreliably classified by the two

main classifiers.

Table 1 resumes the main results.
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Table 1: Performance of the meta classifier on the output of the two main classifiers

Main

algo-

rithm

Number of

misclassified

patterns in the

training dataset

Number of

misclassi-fied

patterns in the

testing dataset

Value range

of

untypicalness

values

Threshold for

reliably

classified

patterns

Number of

unreliably

classified

patterns

ELM 32 8 [0,0.009] 0.009 11

ESN 61 9 [0,0.012] 0.012 14

In the case of the ESN classifier, more patterns were missclassified in the training dataset (61 patterns

compared to 32 missclassified by ELM), so that the meta classifier had more negative patterns to generalize.

The value range of the untypicalness values for the ESN classifier is wider than that of the ELM classifier

and the meta classifier predicts that more patterns are unreliably classified by the ESN classifier than by the

ELM classifier (14 compared to 11).

Even though in the considered case study, the meta classifier showed a good performance, it should

be mentioned that the meta classifier may also not be able to recognize unreliably classified patterns. If

required, the parameters of the algorithm should be adjusted or a different algorithm should be selected.

Furthermore, bootstrapping could be applied to more frequently present the patterns misclassified by the

main classifier to the meta classifier.

The definition of the threshold is pivotal within the entire evaluation process because a threshold that is

too small would miss misclassified patterns and a too large threshold would result in too many false positive

patterns, and this could also be critical in some applications. In this research, the threshold was defined by

the upper bound of the untypicalness values of the missclassified patterns by the main classifier. However,

alternative approaches can be applied to define the threshold value. Depending on the consequences of

false negatives, respectively false positives, the threshold can be adjusted according to the criticality of the

application.

The typicalness approach is based on the iid assumption, which is a comparably weak assumption. For

other approaches, such as, for example, the Bayesian approach, more assumptions are, usually, required.

However, the proposed approach is not applicable if this assumption does not hold.

Typicalness values are relative values, which makes the approach flexibly applicable and the results

comparable. However, for datasets with a very small value range and small deviations between the val-

ues, the typicalness values may result in misleading conclusions. Therefore in these cases, not only the

typicalness values have to be assessed but also the strangeness values, which can provide complimentary

information.

5. Conclusions

This paper proposes a meta approach to quantify the reliability of classifiers of individual patterns of

data collected for fault diagnostics purposes. The approach comprises two classification steps: a classifier

performing the main classification task and a meta classifier. The meta classifier uses typicalness values

as input derived from the input and the output of the main classifier. The reliability evaluation of the main

classifier is based on the typicalness values computed based on the output of the meta classifier. With this,

a threshold for unreliable classifications is defined to identify patterns that have been unreliably classified

by the main algorithm.

The proposed approach was applied to fault diagnosis in railway turnout systems, showing good per-

formance in quantifying the reliability of two main classifiers (echo state networks and extreme learning

machines). Further research will be required to validate the proposed approach more thoroughly and to

demonstrate its specific advantages and limitations by comparison to other methods of classification. For

this validation, either a dataset covering all the specific characteristics, such as the inclusion of novel pat-

terns, will be required or specifically designed synthetic datasets will be constructed.
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