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Abstract— Among the numerous risk factors associated to
work-related musculoskeletal disorders (WMSD), repetitive and
monotonous movements with light-weight tools are one of the
most frequently cited. Such tasks may indeed result in the
excessive accumulation of local muscle fatigue, causing severe
injuries in human joints. Accordingly, this paper proposes a
new whole-body fatigue model to evaluate the cumulative effect
of the overloading torque induced on the joints over time by
light payloads. The proposed model is then integrated into a
human-robot collaboration (HRC) framework to set the timing
of a body posture optimisation procedure guided by the robot
assistance, by the time fatigue overcomes a threshold in any
joint. Our overloading fatigue model is based on an estimation
method we developed in a previous work, to monitor joint
torque variations due to external forces in real-time. To account
for individuals’ different perception of fatigue, the fatigue ratio
parameter in the model is computed experimentally for each
subject. The proposed model is first studied on ten subjects by
means of an electromyography analysis. Next, its performance
is assessed in a painting task and finally evaluated within the
HRC framework, which is proved to be able to reduce the risk
of injuries caused by excessive fatigue accumulation.

I. INTRODUCTION

There is a growing awareness of the need to reduce work-
related musculoskeletal disorders (WMSDs) in industrial
countries, with the aim to decrease consequent substantial
costs and impacts on the quality of life [1]. In this direction,
several methods have been proposed to assess human expo-
sure to risk factors associated to WMSDs [2], with repetitive
and monotonous movements among the most frequently cited
in both experimental science and epidemiologic investiga-
tions [3]. In fact, repetitive motions with light-weight objects
may result in the accumulation of local muscle fatigue, which
can cause severe injuries [4], [5], similarly to the manual
handling of heavy loads in workspaces. Therefore, models
to estimate cumulative fatigue due to repetitive workload
and methods to mitigate its negative effects, are two major
requirements towards the prevention of WMSDs.

To predict an individual’s progression of fatigue over time,
several models have been proposed in literature. The ex-
amples include modelling of Ca2+ cross-bridge mechanism
[6], the force-pH relationship [7], and motor units voluntary
activation [8]. Such physiological models are among the most
precise tools to identify human fatigue levels, but maybe
too complex for occupational ergonomics, which demands
for practical (i.e., fewer subject-specific parameters) and
computationally light approaches.
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Fig. 1: In this work we propose a novel HRC framework to prevent excessive
progression of fatigue while performing a repetitive manufacturing task with
a light-weight tool.

On the other hand, it has been demonstrated that sig-
nificant biochemical and physiological changes in fatigued
muscles can be detected by analysing surface electromyo-
graphy (sEMG) signals [9], [10]. A large portion of these
works has focused on quantifying muscle fatigue in isometric
contractions, with the extension to dynamic cases only during
the last decade [11], [12]. Nevertheless, the use of sEMG
presents several drawbacks. Firstly, a correct placement of
the EMG sensors is not simple and a sEMG signal that orig-
inates in the muscle is inevitably affected by various noise
signals or artifacts [13]. Secondly, the relative movement of
the electrodes with respect to the measured muscle during
the sEMG measurements in dynamic conditions makes their
estimates questionable and may lead to incorrect conclusions
[14]. Moreover, if a person dynamically interacts with the
external environment, the frequency spectrum of the EMG
signal, which is a well-known tool to analyse muscle fatigue,
is strongly affected. Hence, the application of sEMG signals
in estimating fatigue in dynamic Human-Robot Collaboration
(HRC) tasks can be limited [15]. Finally, a direct estimation
of muscular fatigue can be obtained from the measurement
of the reduction of muscular strength or force output when
exerting against an external load for a period of time. The
reduction of the muscular strength, that is often associated to
the maximum voluntary contraction (MVC), can be estimated
by fitting a certain function, with exponential models among
the most common [16]–[18]. The application of this concept
in identifying a joint-level fatigue has been reported in [19].
Its extension to a larger number of joints (whole-body),
however, can be challenging due to the use of several subject-
specific parameters. In fact, most studies in this context
extract the required data from anatomic tables, making the
cross-subject accuracy of the method questionable.

Accordingly, the aim of this paper is to propose a whole-
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body and subject-specific model to identify an individual’s
fatigue progression over time while performing repetitive
tasks involving light payloads. The method is based on our
previous work [20], in which we presented a real-time model
to monitor human joint torque variations while holding heavy
objects. A principled simplification approach was used here
which neglects the gravity effect but reduces the number of
subject parameters to be identified, avoiding the use of stan-
dard data and, above all, it addresses real-time compatibility.
Such a model was integrated in a HRC control framework, by
which a collaborative robot continuously adjusted the human
counterpart’s postures to perform a heavy manipulation task
in an ergonomic way [21].

A direct application of our previous method would not
be suitable in the mitigation of risks associated to repeti-
tive light-weight tasks since the estimated overloading joint
torques are low/moderate and the associated risk of joint
injuries is not high. Consequently, the optimisation of the
body configuration is not necessary and, on the contrary,
could affect the efficiency of the workers in performing
their tasks1. On the other hand, even if the instantaneous
overloading torques are not significant, the building up of
their effect on the joints over a protracted period of time
could become hazardous. Hence, the focus of this work is to
develop a new fatigue model which takes into account such a
cumulative impact of the overloading joint torque throughout
time. The proposed overloading fatigue model is then used to
set an appropriate timing for the body posture optimisation
procedure, and to provide appropriate robotic assistance
as soon as the estimated fatigue overcomes a predefined
threshold (see Fig. 1). The presented fatigue model is first
validated on ten subjects and then the robot optimisation
framework is evaluated experimentally with one subject as a
proof of concept, to illustrate its potential to improve worker
ergonomics in performing their daily repetitive tasks, and to
impact their productivity and welfare.

II. OVERLOADING JOINT FATIGUE

This section introduces our new overloading fatigue
model. The proposed model estimates the progression of fa-
tigue by taking into account two major factors: the variability
of the overloading on the joints in presence of an external
force, and an individual’s subjective perception of fatigue.
Taking advantage of an estimation method we developed in
a previous work, our fatigue model reflects the variations
of overloading torques on the joints due to an external
payload (yet neglecting gravity effect) in any arbitrary body
configuration. Hence, different values of external forces or
payloads, or the changes of body configuration will result
in different joint overloadings and a different rate of fatigue
accumulation. In addition, since the perception of fatigue
is expected to be subject-specific, an index called fatigue
ratio K is considered in our model, which is computed

1To our knowledge, there is little research carried out on the implementa-
tion of practical strategies to help preventing the accumulation of excessive
fatigue, which are mostly based on work/rest schedules [11] or focused on
specific applications [19].

experimentally. The less the subjects can support a load, the
greater the fatigue ratio K and the quicker the accumulation
of joint fatigue.

The overloading joint torques2 can be obtained based on
the human whole-body centre of pressure (CoP) and ground
reaction forces (GRF) variations in the support plane (x-
y) which are computed between two conditions, i.e., with
and without the presence of external forces [20]. If the
external load is not known, a force-plate or sensor insoles are
required to compute the CoP values in the loading condition.
Otherwise, an extended algorithm was developed by our
team to calculate the effect of loading on CoP and GRF
variations, without the need for external (force-pressure)
sensory systems [22]. This approach is feasible when the
external loads are known in advance. Since a painting task
with a spray gun with a known mass and inertial properties
is considered in this paper, the algorithm developed in [22]
is used for the online estimation of the overloading torques.

A. Fatigue and Recovery model

The proposed overloading joint fatigue model is based
on the joint torque capacity and the overloading effect on
the given joints. Similarly to [19], the fatigue model can be
represented by an RC circuit with zero initial charge state,
which is mathematically modelled by a differential equation.
The overloading joint fatigue of the i-th joint τF

i at a time
instant t can be defined as:

τF
i (t) = τmax

i

(
1− e

∫
−Ki

τΔ
i (t)

τmax
i

dt
)
, (1)

where τmax
i is the maximum joint overloading for the i-th

joint, chosen from the biomechanical data, Ki is the fatigue
ratio for the i-th joint (see subsection II-B for details), and
τΔ

i (t) is the overloading torque for the i-th joint at a time in-
stant t, which is obtained by the generalised coordinates q of
a floating base human model: q =

[
xT

0 θθθ T
0 qT

h

]T ∈ R
6+n.

xT
0 , θθθ T

0 and qh ∈ R
n represent the position, the orientation

of the base frame w.r.t the inertial frame and the angular
position of n human joints, respectively.

Along with the overloading joint fatigue model, a recovery
model should also be modelled to describe how the force
generation capacity is recovered during rest periods. The
recovery model can be defined as:

τF
i (t) = τmax

i − (τmax
i − τF0

i )e−Rit , (2)

where τF0
i is the initial value of the overloading fatigue and

Ri is the recovery ratio for the i-th joint, which is set to 2.4Ki
in accordance with other works on recovery models found
in literature [8], [17].

In the new proposed overloading joint fatigue and recovery
models, we assume that the relationship between the models
is represented by the threshold τ th

i = 0.33τmax
i . The model

2The details of the method can be found in [20], and will not be repeated
here due to the page limits.
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can then be defined as:

τF
i (t) =

{
Fatigue model if τΔ

i (t)> τ th
i

Recovery model otherwise
.

B. Fatigue ratio identification

Since fatigue is strictly related to the subject’s physical
capacity and feelings, the fatigue ratio Ki must be subject-
specific and can be identified experimentally, for each i-
th joint. To obtain this ratio, we consider the overloading
fatigue model in static conditions, resulted from a constant
overloading joint torque in a fixed body configuration. A time
interval TF is defined, similarly to the maximum endurance
time (MET) presented in [23], by the period from the
beginning of the trial to the time instant at which joint
overloading fatigue reaches the current overloading torque
τ̄Δ

i at joint i. Hence:

τF
i (t) = τmax

i

(
1− e−Ki||τ̄Δ

i ||TF
)
= τ̄Δ

i , (3)

where ||τ̄Δ
i || is the normalised current overloading joint

torque, defined as τ̄Δ
i /τmax

i . Consequently, the fatigue ratio
Ki is obtained from the measured TF in (3) as

Ki =− ln
(
1−||τ̄Δ

i ||
)

||τ̄Δ
i ||TF

. (4)

The fatigue ratio Ki is computed for each i-th joint since
the strength exerted by each joint varies and thus the fatigue
occurs in different timings.

III. VERIFICATION OF THE METHOD

This section first describes the procedure for the iden-
tification of the fatigue ratio, Ki. Next, the results of the
overloading fatigue model are evaluated by means of a sEMG
signal analysis in static conditions. The capability of the
model to monitor the progression of fatigue in real-time
is then presented for ten subjects performing a painting
task with a light-weight tool. Finally, the proposed model
is integrated into the HRC framework we presented in [21]
to set the timing for the body configuration optimisation and
thus to trigger the collaborative robot assistance by the time
fatigue is accumulated excessively in some joint.

A. Model identification

Ten healthy volunteers, 7 males and 3 females, (age:
30.1 ± 3.8 years; mass: 65.5 ± 29.5 kg; height: 176.2
± 5.2 cm) were recruited in the experimental session. A
written informative consent was obtained after explaining
the experimental procedure. To identify Ki by means of (4),
the subjects had to keep a defined position until they were
able to support a load without changing even minimally the
body configuration. In this way, we could assume that the
overloading joint torque τ̄Δ

i , which is function of the body
configuration and external load, was constant throughout
the experiment. The time interval, defined as TF , since the
subjects started holding the load till when they were no
longer able to support it, i.e. when they reached a high level
of fatigue, was measured. We first compute the fatigue ratio

Ks for the shoulder joint, given the value of the correspondent
overloading joint torque τ̄Δ

s in the selected body configura-
tion. To this aim, the subjects were asked to stand and hold
a 1.5 kg weight (corresponding to the weight of the painting
tool) with the dominant hand, having the arm raised at a 90-
degrees angle with the torso and the elbow slightly bended,
the other arm by their side. The fatigue ratio for the other
joints Ki could then be obtained proportionally, on the basis
of the ratio between the maximum overloading joint torque
for the shoulder τmax

s and the maximum overloading joint
torque for the i-th joint τmax

i .
The evaluation of the proposed overloading fatigue model

was conducted by comparing its outcomes to physiological
fatigue expressed as the variations of the mean power fre-
quency (MPF) of some significant sEMG signals. In fact,
muscle fatigue during submaximal, i.e. isometric contrac-
tions, has been shown to be accompanied by decreases in
the MPF [24]. Six sEMG sensors were placed on the arm
of each subject, specifically on the following muscles: the
anterior deltoid (AD), the posterior deltoid (PD), the biceps
(BC), the triceps (TC), the brachioradialis (BR) and the ex-
ternsor carpi ulnaris (EC). To monitor the current overloading
torque, the subjects were asked to wear a MVN Biomech
suit (Xsens Tech) provided with seventeen inter-connected
inertial measurement unit (IMU) sensors to measure the
whole-body motion. Then, they were asked to assume the
same body configuration described above (for the fatigue
ratio identification experiment) and to perform three trials:
to hold the 1.5 kg weight without changing the defined
position for three different time interval, respectively 90, 60
and 30 seconds, with the necessary rest time in between.
During these trials, the sEMG signals were measured and
the overloading joint fatigue was estimated by means of
our algorithm. Prior to the analysis, the sEMG signals were
filtered (pass band: 1-500 Hz) to remove movement artifacts.
Linear regression was then used to extract from the sEMG
data the linear model for the MPF, in accordance with studies
for EMG-based fatigue analysis in literature [25], [26].
Both the MPF and the overloading fatigue time series were
compressed to correspond to the same number of samples for
the sake of comparison and the overloading fatigue values
were normalised between 0 and 1. It is important to point
out that MPF gives a fatigue estimation at the muscle level
while our overloading fatigue model is expressed at the
joint level. Since the joint motion is the result of several
muscles contributions, the effect of several MPF components
in the muscles acting on a specific joint must be considered
to account for the joint-level fatigue. For this reason, a
direct comparison between the two variables is not valid
but the assessment of their similarities in the percentage of
decrement/increment and in the trend could be a good way
to compare the two.

Fig. 2 shows the results for one selected subject. The first
line of graphs is related to the variables representative for the
shoulder, i.e. the MPF decrement in the AD and PD muscles
and the estimated normalised overloading fatigue ||τF

S || in
the shoulder joint. The second line of graphs, instead, is
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Fig. 2: Trend of the the MPF of the sEMG signals measured in the anterior
deltoid (AD), posterior deltoid (PD), biceps (BC) and triceps (TC) muscles
and trend of the overloading joint fatigue estimated in the shoulder and
in the elbow throughout 3 different trial lasting 90, 60 and 30 seconds
respectively, for one subject.

related to the variables representative for the elbow, i.e.
the MPF decrement in the BC and in the TC muscles and
the estimated normalised overloading fatigue ||τE

S || in the
elbow joint. The MPF trend in the BR and in the EC
muscles were in the end considered not significant for our
analysis. As we could expect, a longer trial corresponds to
a grater decrement of the sEMG signals MPF in all the
considered muscles and the overloading fatigue model is
able to reproduce the same trend but, clearly, in the opposite
way, since the progression of fatigue is described through an
increasing function in our method. Due to space restrictions,
we cannot show the results for all the ten subjects thus
we computed the mean and the standard deviation of the
decrement ratio for both the MPF and the overloading fatigue
between all the subjects in the three experimental conditions.
We performed a t-test and it resulted that all the analysed
data come from a normal distribution at the 1% significance
level, hence, we can consider the mean and the standard
deviation as good indicators for our analysis. The results for
the shoulder joint are presented in Table I while the results
for the elbow joint are presented in Table II. The overloading
fatigue model presents in all the subjects a increment trend
comparable to the decrement trend of the sEMG signals MPF

TABLE I: Mean and standard deviation computed between ten subjects of
the MPF of the sEMG signals measured in the anterior deltoid (AD) and
posterior deltoid (PD) muscles and of the overloading joint fatigue estimated
in the shoulder in 3 trials lasting 90, 60 and 30 seconds, respectively.

Period EMG % dec. Fatigue % inc.
AD PD Sho

90s 24.92±10.08 20.06±8.74 94.42 ± 10.38
60s 16.45±12.71 15.73±9.78 87.48±14.24
30s 6.90±9.65 4.02±9.02 65.32±14.56

TABLE II: Mean and standard deviation computed between ten subjects of
the MPF of the sEMG signals measured in the biceps (BC) and triceps (TC)
muscles and of the overloading joint fatigue estimated in the elbow for 3
trials lasting 90, 60 and 30 seconds, respectively.

Period EMG % dec. Fatigue % inc.
BC TC Elb

90s 8.27±7.50 19.48±5.20 57.03 ± 8.13
60s 4.47±9.80 14.81±7.58 46.43±8.45
30s -0.34±6.91 6.21±8.54 31.97±8.77

in the three experimental conditions. We tested our overload-
ing fatigue model performance by executing isometric, i.e.
constant length (static) muscle contractions because sEMG
measurements can be considered far more reliable in such
conditions and can be used for evaluations. Nevertheless, as
previously said, in dynamic conditions sEMG estimations
are questionable while our model has the potential to be
employed even in the dynamic case, i.e. when the subject
moves to perform a task or applies different forces at hand.

B. Overloading fatigue real-time monitoring

The objective of the overloading fatigue model is to
estimate the fatigue risk associated to repetitive light-weight
task in real-time and then to promote a mitigation of such
a risk in real-life environment. Hence, we have selected
a real-life scenario in the manufacturing industry: manual
spray painting, and proved the capability of the overloading
fatigue model to monitor the progression of fatigue in real-
time for different body configurations as well as the joints
overloading. Such a task which consists in a high rate of
repetitive work with a short cycle time and light-weight tool,
has resulted in a high incidence of WMSDs [27], hence it
could be a good candidate for the application of the proposed
HRC framework to prevent the accumulation of fatigue.

Accordingly, the subjects, wearing the MVN Biomech
suit, were asked to hold a 1.5 kg spray gun with their
dominant hand and stand in front of a car bumper (the
object which needed to be painted) placed approximately
at the height of their torso. Next, following a set of sound
signals which dictated a specific timing, they were asked
to simulate the painting action with a spray gun in eight
predefined points on the car bumper (i.e. P1, P2,· · · , P8),
in accordance with a specific order (see Fig. 3a). After the
starting signal, the subjects had to process each point for
approximately 15 second and, as soon as they heard another
sound signal, they were asked to change body configuration
to pass to the subsequent point as quickly as possible. The
overloading fatigue in the crucial human joints was estimated
throughout the experiment for all the subjects and its values
was normalised between 0 and 1. We focused on the human
body motion on the sagittal plane since it is the mainly
involved in the activity we analysed. In addition, given that
the movements of the leg were almost symmetric, we have
assumed the overloading torque on the joints of the legs to
be equal in the right and in the left one.

In Fig. 3b we show the normalised overloading torque
||τΔ|| (left side) and the normalised overloading fatigue ||τF ||
(right side) in the shoulder (S) and in the elbow (E) - the
joints more at risk for this specific task - for one subject.
These graphs show how the trend of the overloading fatigue
varied depending on the value of the overloading torque:
if ||τΔ|| was over the threshold, ||τF || increased while it
decreased under the threshold since the recovery mode was
initiated. It is worth noticing here the capability of the
overloading fatigue model to account for the cumulative
effect of the overloading torque throughout time. Considering
the elbow joint for example, the overloading torque value
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(a) (b)

(c)

Fig. 3: Overloading fatigue monitoring: (a) experimental setup; (b) overload-
ing joint torque (red line) and overloading joint fatigue (blue line) estimated
in the shoulder (S) and in the elbow (E) for one subjects; (c) mean and
standard deviation of the overloading joint torque (left side) and of the
overloading joint fatigue (right side) computed between ten subjects in the
main body joints: hip (H), knee (K), ankle (A), shoulder (S) and elbow (E).

remained moderate and almost constant over the entire
duration of the task thus it did not represent a potential source
of risk. On the other hand, the overloading fatigue took
into consideration its cumulative contribution and, after some
time, its value was increased significantly. Fig. 3c presents
the results of the joint overloading torque (left side) and of
the fatigue (right side) between the ten subjects. It is evident
that the trend of the overloading torque was very similar
between the subjects since the timing of the task was fixed
and the body configurations chosen by the subjects were very
similar. The overloading fatigue, instead, is more variable
since it depends even on the subject-specific fatigue ratio K.

C. Overloading fatigue mitigation through HRC

The overloading fatigue model was integrated in a HRC
framework to trigger the collaborative robot assistance. By
the time overloading fatigue exceeded a predefined threshold
in a joint, the robot reacted and guided the subject towards
a more ergonomic body configuration, to prevent further
accumulation of fatigue. To estimate such optimal body
configurations and consequently to set the robot trajectory,
we employed an optimisation procedure that we developed
in a previous work. Since fatigue accumulated due to the
overloading effects, the cost of the optimisation had to
consider the overloading joint torques with respect to body
configuration. Hence, we defined a cost function and min-
imised it, implementing the optimisation problem as:

min
qh

∥∥ΔτττT
WΔτττ

∥∥ , (5)

where Δτττ is the overloading joint torque vector Δτττ =[
τΔ

1 · · · τΔ
i
] ∈ R

n and W is a symmetric positive definite
weight matrix. Several constraints, such as joint limits of the
human, postural stability of the human, the position of the
object, etc. (a detailed explanation can be found in [21]),
were considered in the numerical optimisation process. As
a result, an optimal body configuration was computed and
robot trajectories were adjusted accordingly, to facilitate the
subject to achieve such ergonomic configurations.

One female subject (age: 27 years; mass: 57 kg; height:
171 cm) was recruited for the HRC experiment. She was
asked to wear the MVN Biomech suit, to hold a 1.5 kg
spray gun with her dominant hand and to paint a predefined
area on a car bumper. A KUKA Lightweight robot (LWR),
provided with an impedance controller to ensure safety in
HRC and equipped with a Pisa/IIT Softhand, was holding
the car bumper that needed to be processed. In Fig. 4 the
experimental setup is shown. Considering the painting area
which is highlighted in the picture (yellow area on the car
bumper), the subject was anticipated to adopt a wide range
of body postures to accomplish the task. For this reason, we
expected different joints to accumulate fatigue in different
phases of the task. Accordingly, the optimisation procedure
had to occur multiple times throughout the task, and to
focus selectively on the fatigued joint. As a support tool
to the optimisation procedure, the subject was provided with
a visual feedback we developed in a previous work [28],
showing the current body configuration and the current level
of the overloading fatigue on the main joints.

Fig.5a illustrates the four key moment of the experiment
(i.e. stage 1, 2, 3, and 4). Some color-coded indicators are
placed on the main joints of the subject to show the level of
the overloading fatigue at that instant: high (red), medium
(orange) and low (green) level. The trends of the normalised
overloading fatigue in the main joints are presented in Fig.
5b. Initially, the subject began to process a point on the top
of the car bumper by assuming a body configuration which
made the shoulder joint accumulate excessive fatigue, as
shown in the fourth line the graph in Fig. 5b. As soon as over-
loading fatigue overcame a threshold (stage 1), which is set
to 1/2 of the τmax

i , the optimisation procedure was triggered
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Fig. 4: Overloading fatigue mitigation through HRC: Experimental setup
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Fig. 5: Overloading fatigue mitigation through HRC: (a) Key moments of
the HRC experiment. (b) overloading fatigue and (c) overloading torque
in the hip(H), knee(K), ankle(A), shoulder(S) and elbow(E) joints for one
subject performing the HRC experiment. (d) collaborative robot trajectory:
the robot assistance promoted the recovery phase after fatigue in B and D.

and the subject was guided by the collaborative robot toward
a more ergonomic body configuration, which led to a lower
overloading torque in the shoulder and promoted the recovery
phase (stage 2). In this case the optimisation procedure was
more focused on the upper body and resulted in a decrement
of the overloading fatigue in the shoulder. In Fig. 5d the
trajectory of the collaborative robot end-effector is shown: to
made the subject reach the optimal body configuration the car
bumper is brought at a lower height at stage 2. Subsequently,
the subject started processing a point on the bottom of the car
bumper by assuming a body configuration which, this time,
made the lower body accumulate fatigue (stage 3), mainly in
the hip joint, as shown in the first line of the graph in Fig.
5b. Similarly, as soon as the overloading fatigue overcame
the threshold, the optimisation procedure was triggered and
the subject was guided by the collaborative robot toward a
body configuration which led to a minor overloading torque
in the lower body joints and initiate again the recovery mode
(stage 4). In this case the optimisation procedure was more
concentrated in the lower body and made the overloading
fatigue decrease in the hips, knees and ankles. To this aim,
the collaborative robot brought the car bumper at a higher

height at stage 4 (see Fig. 5d).
Fig. 5c presents the trends of the normalised overloading

torque in the main joints. It is worth noticing that the values
of the overloading torque remained moderate (around the
50% of their maximum value) in all the joints throughout
the entire duration of the experiment. In our previous work
[21], the optimisation procedure was performed when the
overloading torque reached a value close to the maximum
one, since heavy tools which generated high overloadings
were considered. In this work, we consider a light-weight
tool and the overlaoding torques it induces on the joints are
not so high. Hence, the optimisation procedure would not be
intitiated in our previous framework. In fact, as previously
mentioned, the risk of joint injuries while supporting light
payload is not related to the instantaneous loading they
induce, but rather on their prolonged and repeated use over
time. This is the reason why we developed an overloading
fatigue model which accounts for the cumulative effect of
the overloading torque throughout time and thus represents a
good criterion to set the timing of the optimisation procedure
when performing task with light-weight tool.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we developed a whole-body fatigue model
to account for the cumulative effect of the overloading
torque exerted on the joints over time by light payloads.
The proposed model is able to monitor in real-time the
progression of fatigue, whose trend varies on the basis of
the external load and body configuration. In comparison to
the EMG-based fatigue models that lack robustness due to
the external noise, our approach can effectively monitor the
progression of fatigue during dynamic interactions with the
external world. If the mass and the inertial properties of the
load are known, the sensory system required to account for
the whole-body fatigue is reduced to the tracking of human
motion and this substantially increases the applicability of
the proposed method in industrial settings. The insignificant
dependency of our model on the biomechanical tables and
its ability to provide subject-specific fatigue progression,
reflecting an individual’s perception of fatigue, are additional
strong points of the proposed method.

To implement a practical strategy for preventing joint
injuries caused by repetitive and prolonged tasks with light-
weight tools, we integrated the overloading fatigue model in
a HRC framework. By the time fatigue excessed a threshold
in any joint, a body posture optimisation was triggered,
guided by the collaborative robot assistance, and the accu-
mulation of further fatigue was avoided.

Future works will focus on an adaptive HRC framework
which can handle tasks performed with both light-weight
and heavy tools, taking into account the corresponding
risk factor, i.e. the fatigue accumulation or the excessive
mechanical overloading on the body joints, respectively.
Such a framework will be evaluated through quantitative
physiological measurements (i.e., oxygen consumption for
fatigue assessment) and questionnaires completed by the
subjects to improve its performance and feasibility.

1967
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