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Abstract. I4.0 revolution is permeating every technical sector, by promoting deployment of 

enabling technologies (ETs), also in the facility management (FM) discipline. As FM regards 

the integration of processes within an organization to support activities, it is clear how ETs can 

trigger, in the FM area, significant innovations like a better failure knowledge management and 

a sustainable use of resources. More specifically, the implementation in building maintenance of 

dynamic systems, linked to sensors networks, can allow changes into knowledge management 

and FM decision-making processes. Starting from these premises, the paper deals with an 

ongoing research, whose aim is to investigate how ETs may innovate the traditional maintenance 

strategies with new approaches in corrective, condition-based and predetermined maintenance.  

According to the above, building maintenance, which is traditionally reactive, may actually 

become proactive if failure management policy is set. The aim of this paper is to demonstrate 

how ETs adoption may promote innovation in FM processes focusing on maintenance in service 

equipment field. More specifically, an operative and methodological framework for reaching 

proactive maintenance is described through the support of a case study concerning two major 

healthcare infrastructures in Italy, managed by a major FM company. 

1.  Introduction 

The importance of enabling technologies (ETs), initiated by Industry 4.0 (I4.0) advent, has been 

advocated in scientific discipline and applications by many practitioners. In different fields (i.e. 

manufacturing, logistic, inventory, and others), benefits through ETs become real if proactive strategies 

are put in place to achieve efficiency and effectiveness of processes.  
Maintenance service, seen as a facility management (FM) application field, has recently started to be 

invested with ETs, in order to support service provision in an innovative way (i.e. information value, 

dynamic services evaluation, data elaboration and new O&M tools).  

However, in current FM experiences, proactive approaches for fault detection still discloses an 

average maturity degree, even if some proactive strategies have already been used in industrial practices, 

such as fault pattern discovery and RULs (remaining useful life) estimation. What FM maintenance 

service has gained and used, thanks to ETs deployment, is a high-technology information management, 

made possible through new contents for data analytics and data storage, which enhances value from 

data.  
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FM proactive maintenance framework can be empowered by new inputs from other fields, by 

adopting new groundbreaking maintenance tools and methodologies, which may result in sustainability 

of FM maintenance processes especially if an initial proactive failure management strategy is proper set. 

This is further showed in the following case study. 

Bringing these themes together, the aim of this paper is to develop a proactive maintenance 

framework which may set a promptly service equipment failure management strategy. So far, 

sustainability in O&M activities of complex infrastructure may be reached in terms of economic 

resources thanks to failure information management in maintenance service. 

The contribution of this paper is double. On one hand this paper wants to switch tradition FM 

maintenance from cost-based to performance-based service with sustainability of processes, in the other 

hand to provide an overview of existing and forefront proactive maintenance practices which better used 

ETs. The following paper is organized as follow. Section 2 describes what proactive maintenance is 

intended for. Section 3 highlights the current outcomes derived from proactive approaches. Section 4 

outlines a case study in which a maintenance proactive strategy is performed. Section 5 summarizes 

impacts of this ongoing-research and topic introduced above. 

2.  From traditional maintenance to I4.0 ETs support-base proactive maintenance 

Proactive maintenance (ProM) is an attitude reported among different authors ([1], [6], [14], [27], [32]), 

who strengthen maintenance approaches with technological strategies to promptly foresee the future 

behaviors of their assets.  

In such a way, as it has been highlighted by industrial practices, ProM framework may be currently 

discerned in two pervasive maintenance strategy trends: Predictive Maintenance (PM) and Prognostic 

Maintenance (ProgM).  

PM allows to monitor asset health status through the inclusion of IoT structures within a network of 

stakeholder, data storage, communication architecture and data elaboration.  

ProgM enhances asset life assessment through punctual fault detection and RULs estimation, by 

taking advantages of I4.0 analytics tools whose purpose deals with a precise virtual representation of a 

real object. This is made by digital twin (DT), whose realization, within ProfM models, may be reached 

according different strategy: reliability-based model (benchmark and parameter domain), physical-

based model (physical law domain), data-driven model (data collection domain) and hybrid model 

(physical law and data collection domain). 

In particular, ProgM includes a diagnostic maintenance (DM) part, whose aim is to explore past 

health status, which caused failure, in order to further plan future actions on similar events. This ProgM 

approach strives to promote sustainability in processes which involve RULs determination of assets to 

reduce equipment breakdowns. 

This fully reflects Gartner’s “Analytic value escalator” picture, achieved through big data analytics 

decision-making, which tries to answer the following questions: “what happened”, for diagnostic, “what 

will happen”, for predictive and “what should I do (having regard with the past history data trend)”, for 

prescriptive (prognostic).  

Common point between PM and ProgM is represented by decision-making built on big data, reached 

through raw data collection, data processing, data feature extraction, data evaluation and training dataset 

to upload model.  In such a way, data elaboration techniques can be various, but ProM framework (PM 

and ProgM) always favors data value-chain achieved through new awareness of I4.0 technologies.  

In this scenario, I4.0 enabling technologies (ETs) are proactive tools useful to achieve sustainable 

maintenance processes within ProM framework.  

Even if many ETs have been used by practitioners and industries since Hannover Messe 2011, Piano 

Nazionale Industria 4.0 [38], proposed by MISE (Ministero dello sviluppo economico) in Italy, has 

organically listed and specified what ETs are (Collaborative robots, 3D printer, augmented reality tool, 

simulation process, horizontal/vertical integration, Industrial internet, Cloud computing, Cyber security 

and Big data Analytics).  
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Withstanding with this, ProM purpose seeks to improve asset performance through a ETs use, and 

profitability, through a better resource distribution. This result in estimating behaviors (fault/failure and 

performance) and condition states (RULs) over time. Here an overview of current maintenance attitudes 

is provided in Table 1. 
Table 1. Current maintenance purposes. 

Discipline Purpose Objectives Weaknesses Advantages 

FM maintenance 

Combination of all 

[…] actions […] to 

take an item to a 

state in which it can 

perform the required 

function; [34] 

 

Set of FM 

maintenance policy 

and actions to 

restore assets 

maintainability 

levels and to 

minimize 

maintenance costs; 

Lack of analytics to 

actively exploit data 

from asset life 

cycle; 

Data and information 

recovery from 

historic O&M 

supported by ICT and 

IoT; 

Industrial 

maintenance 

Method to identify 

and select failure 

management 

policies to […] 

achieve the safety, 

availability and 

economy of 

operation; [36] 

Method to 

guarantee 

availability of 

production without 

a loss of production 

value and with a 

prompt failures 

detection; 

 

Lack of platforms to 

collect and analyze 

data from operation 

stage; 

 

Early stage in IoT 

deployment; 

Use of I4.0 analytic 

techniques to detect 

fault and predict 

component RUL; 

Proactive 

maintenance 

Method to control 

current and future 

asset possible 

behaviors, supported 

by I4.0 tools 

/ Possible lack of 

company’s degree 

of maturity in 

understanding 

initial strategies to 

undertake proactive 

approaches; 

Possible integration 

between I4.0 

analytics and storage 

ETs to assess 

components faults 

and RUL, supported 

by platforms; 

3.  Four proactive maintenance approach: from knowing to sharing 

A proactive framework in FM maintenance is set thanks big data value-chain which allows to full 

balance maintenance breakdown through a better management of failure information.  

Support-based I4.0 proactive approach may innovative traditional maintenance strategy through 

more dynamic fault diagnosis (definition from 13306) [34], according four innovative schemes (Talamo 

et al., (2016) [24]) which currently are practiced in many forms by different I4.0 maintenance 

practitioners, as has been displayed in the following literature review: sensing & responding (S&R), 

sensing & knowing (S&K), sensing & learning (S&L) and sensing & sharing (S&S). 

Corrective maintenance, traditionally performed after fault recognition, can reduce equipment 

breakdown in terms of asset availability through S&R approach. S&R architecture is enabled through 

sensors and BMS/SCADA connection.  

Betti et al., (2019) [6] presented their S&R solution for a flexible fault prediction based on gathered 

data from SCADA system, then implemented with a fault recognition neural network. Their model has 

been assessed on six photovoltaic plants, by foreseeing latent fault 7 days in advance with 95% 

sensitivity through historical SCADA and fault data, fault taxonomy and inverter datasheet. Leahy et 

al., (2017) [15] proved how prognostic capabilities may be achieved, using 10-minutes wind turbine 

SCADA data for fault prediction. Each turbine down-time is associated to a sub-system failure, a routine 

maintenance activity or a grid-related event. Automated labelling process helps here to promptly 

identifies faults and may be implemented for other equipment SCADA-based prediction. Bangalore and 

Patriksson (2017) [3] showed a S&R approach with the use of many data sources for optimal 

maintenance planning. A smart analysis of historical SCADA dataset, based on threshold value for 
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anomaly detection and mathematical cluster rules, may indicate some latent fault in critical components 

with many months in advance. Later inspection can be performed to determine the effectiveness of the 

diagnosis from the condition monitoring system, whereas maintenance reports can update SCADA 

monitoring to improve the probabilistic failure model. 

In S&K paradigm, condition-based maintenance may benefit from I4.0 ETs to promptly detect failure 

patterns before critical thresholds or fault condition achievement. Actually, S&K keeps tabs on 

equipment thresholds thanks real-time data mining (DM) techniques and I4.0 database, where data value 

is widely employed in maintenance service. Here fault phenomena are controlled by service provider 

continuous knowledge expansion. 

S&K is enacted when DM analysis techniques are used to discover interesting patterns through big 

data collecting-and-storing ETs. 

DM tools represent a process of transforming low-level data into valuable knowledge, by applying 

mathematical models to database. Commonly three DM practices can be distinguished in regression, , 

classification and clustering. 

S&K-based predictions analyzes technical time series through a control interface, which acquires 

and stores incoming data for machine failure detection. 

At this regard, Accorsi et al., (2017) [1] proposed a S&K method for maintenance decision-making 

which associates fault patterns to incoming failure events. In their analysis, stored dataset has been 

represented by equipment historical failure data provided by equipment suppliers. Data sources are 

parameter logs and message logs. Clustering, association rules and classification models have been 

analyzed and compared to assess the more accurate DM for real-time fault detection. Random forest, as 

classification model, represent that with higher precision on predicting stops. Rezig et al., (2018) [21] 

presented a list of sequential maintenance activities based on the records of maintenance data. Their 

sequential mining provides a method of analyzing large volume of maintenance data to suggest 

maintenance activities. In addition, in their S&K model, past preventive maintenance records of 

component are analyzed to determine the future sequential activities, with fault data and timestamp 

information. Phillips et al., (2015) [19] highlighted interesting classification method based on oil 

analysis dataset, coming from engines on mining truck, to assess equipment health status. Total accuracy 

of classification is evaluated through LR (logistic regression), CCNN (cascade-correlation neural 

network) and SVM (support vector machines). LR outperformed both the CCNN and SVM models in 

terms of predictive performance, by considering importance of past history on future classification of 

new data. LR benefit is to manage the modelling by personnel in-house. Bergmann (2012) [5] showed 

ProM benefits when accurate data are collected through vibration sensors. DM automated analysis 

techniques are crucial to add new knowledge, by reducing and analyzing data both at healthy and faulty 

status. By doing so, vibration time series are here used to classify possible saw-cutting-machine failures, 

after a cleaning and feature extraction phase with Fourier Transform and discrete Wavelet Transform. 

Transformer has been analyzed by Qiu et al., (2015) [20] through a nonparametric regression model in 

regards with the aged-based failures. They used a large equipment life cycle dataset, composed by 

service age and health index, in order to output health condition and risk factors analysis for planning. 

Nonparametric regression model can mine lifecycle data acquisition from asset management system. 

Djelloul et al., (2018) [9] investigated fault patterns to support diagnosis decision-making process for 

ProgM, through regression technique of failure data (bad warming and bad cooling). The performance 

of their approach is evaluated through mean square error and classification accuracy. Kovalev et al., 

(2018) [13] structured their S&K approach for a further IoT implementation. In their study, useful data 

to enact S&K are represented by time before next failure, mean time between failures, number of 

correctly predicted failures and number of non-predicted failures. Nagasaka et al., (2018) [17] have 

applied their S&K paradigm to plan prediction-based maintenance for elevators, basing on text mining. 

Here TM is used to recover useful data to build a statistical survival model for elevator components 

from KPI, maintenance records, equipment master data, troubleshooting and regular operation data. 

Bayes Network is used here to update survival model with collecting real time information, whereas 

simulations have been run to estimate maintenance costs. Wang et al., (2017) [26] have proposed a bi-
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level feature extraction-based text mining method, from railway maintenance dataset collected from 

2008 to 2014. They first adjusted feature weights of few fault classes based on statistical distributions. 

Then they reselected the common features according their relevance and Hellinger distance, at the syntax 

level. Lastly, they extracted semantic features to assess fault diagnosis. Bin et al., (2017) [7] have used 

onboard system fault recording files to recover fault information described in maintainers short-text, by 

using TM through the construction of fault text dictionary for word segmentation and fault text chain 

for processing data. Text-chain tool, based on closest matching method, allowed to turn human 

handwriting into structural data and to further build a faults distribution. Yuan et al., (2018) [31] have 

proposed a TM approach for S&K in fault text records of a certain aircraft as experimental data. Their 

method consists in measuring of similarity of fault text data and classified similar faults into one class 

for further proposing a new text similarity measurement model based on the word embedding distance. 

Then, on the basis of classification, a text mining algorithm with an event window is proposed. New 

knowledge is later available to build predictive model. Gunay et al., (2019) [10] presented their method 

to achieve knowledge from HVAC work order. Their approach allows to convert work orders 

descriptions into a mathematical form. Association rule-mining identifies here the coexistence fault 

patterns among the terms of clusters. Their outcomes displayed insights on equipment breakdown 

history.  

Predetermined maintenance, established by intervals of time, may take advantages of forecasting 

ability on asset behavior and its RUL, reached through S&L, which regard large big data collection 

technologies (cloud, edge, dew, fog storage), and machine learning (ML). Value here is built on virtual 

learning model with failure and energy data.  

Langone et al., (2015) [14] presented support vector machine (SVM) technique for real-time 

condition monitoring of a packing equipment. Their approach takes advantages of data collected by 

accelerometers positioned on some jaws, in which degradation process of the equipment has been 

deduced. Data from a thermal camera provided the input for time-series analysis with a nonlinear auto-

regression, which assesses dirt accumulation on component.  

Janssens et al., (2016) [11] proposed a convolutional neural network model (CNN), fed by raw 

amplitudes of the vibration data frequency spectrum data. CNN allows to learn transformations on data 

that result in useful representation for fault classification (i.e. different levels of lubricant degradation). 

In particular, CNN advantages consist in a less required domain expertise for feature learning. Yang et 

al., (2019) [29] highlighted a ML reconstruction approach for fault detection framework in a wind 

turbine system, by creating several fault indicators and components health index (HI). Useful data here 

are those regarding temperature failure data acquired with SCADA system under 200 different signals 

forms. Model reconstruction is achieved through SVR (Support vector regression). Bangalore and 

Tjernberg (2015) [4] proposed condition maintenance approach based on an artificial neural network 

(ANN) for gearbox bearings of wind turbine. Fault events are derived from SCADA. Their ANN 

approach is able to indicate damage in component almost a week before the reached fault threshold. 

Here fault decision-making based on faults may be crucial for optimal maintenance policy with a 

possible reduction of the overall replacement cost. Wu et al., (2016) [27] presented Random Forest 

algorithm for fault classification aided by a Cloud storage solution, taking advantages from two different 

data sets extracted by cutting forces, vibrations, acoustic emissions electrical current, acoustic emissions 

and spindle. They showed how collecting large volumes of streaming data from equipment can empower 

learning capabilities of ML in cloud system. 

Smart maintenance, triggered by IoT vertical structure to digitalize maintenance (warehouse, spare 

parts, assets performance and assets RULs) needs, may further obtain additional value through S&S 

ETs. This can be achieved through platform, which includes analytics for maintenance needs and enables 

future buying and selling data in an integrated cluster-platform ecosystem. 

S&S paradigm in ProM arises from “collaboration” principle, described as partnerships of actors 

who work together to create value (Yu et al. 2016) [30].  

Mazak corporation, a machine tool builder company teaming up with MEMEX Inc., a manufacturing 

communications platform provider, and Cisco systems to deliver “Overall Equipment Effectiveness” 
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(OEE) solutions. Trenitalia, SAP and AlmavivA join together to deliver Dynamic Maintenance 

Management System solution. Due to the complex nature of maintenance challenges, proactive IoT 

solutions require a set different specialized firms to partner and specify a unique solution for a given 

customer [37].  

In this light, in ProM approaches platform support can add value for all stakeholder, even if this 

actually is not a widespread reality in most maintenance practices. 

Taie et al., (2019) [23] presented remote diagnosis and maintenance approach aimed to RULs and 

failure prediction for critical sensored-components, supported by database and analysis servers through 

different MLs. Use training data set is built from actual records reported remotely by RDMP (Prognosis 

Analysis and Self-Learning System). However, initial dataset can be created from laboratory tests, 

simulation and theoretical analytical methods. Wan et al., (2017) [25] stated the need to shift to more 

collaborative forms between different maintenance stakeholders, focusing on knowledge management, 

communication and the decision-making processes. They proposed a collaborative maintenance 

planning system, by indicating improvement which may be achieved with product lifecycle data and 

platform integrations. Balogh et al., (2018) [2] theorized a reference IoT cloud-based collaborative 

maintenance services platform for the collection of available equipment data to be analyzed and 

assembled for forecasting system health status. The scheduling of predictive maintenance needs may be 

supported by the existing company maintenance planning tools. Actually shared data come from 

numerous machinery suppliers and IoT platform may act as an open market where specialized 

maintenance services and data value can be evaluated by companies. Their architecture is composed by 

three levels represented by physical resources layer, equipment data layer, and services or processes 

layer, interconnected with APIs.  Katipamula et al., (2017) [12] proposed a ProM framework supported 

by an open-source platform which exploits distributed sensing and supports energy and maintenance 

needs, with BMS and CMMS integration. Platform allows to link devices and external signals to the 

Cloud. Zargar et al., (2011) proposed collaborative platform with regards to collaborative and data-

driven intrusion detection system. Their framework is composed by three levels: infrastructural level, 

comprised of network, host and global layers, platform level, made of logically-separated layers for one 

cloud provider, and software level. Collaboration is at the center of their framework and database, used 

for detection and prevention by all contributing cloud providers.  

A new ProM service among S&S paradigm may enabled by a multi-tenant distributed simulation 

cloud environment suggested by Peng et al., (2018) [18]. Here a neural network is used to transform 

simulation tasks in specific resource requirements in terms of their quantities and qualities. Complex 

resource allocation in a multi-tenant computing environment may be supported by multi-objective 

analytical model. This may be based on K-means approaches which considers tenants satisfaction, total 

computational costs and multi-level load balance. Mourtzis et al., (2016) [16] provided a ProM method 

to support enterprise sustainability by reducing costs through collaborative information on mean time 

between failures, achieved with equipment sensors output and the maintenance division expertise and 

knowledge. Das et al., (2015) [8] hypothesized benefits from local and global Clouds collaboration 

model, exploiting ML techniques to foresee resource requirements for different users. Salza et al., (2017) 

[22] presented a collaborative Cloud platform architecture which takes advantages of a ML classification 

algorithm to monitor system performance.  

Yamato and Kumuzaki (2017) [28] presented a maintenance lambda platform where edge nodes 

analyze sensors data and extract promptly a new detection rule for Cloud maintenance orders. Their 

analysis reported the detected fan failures through sound sensors and sequentially stream data, which 

are elaborated in a ML. Edges of system, where local database have been placed, are represented by 

different factories which may benefit from prediction of failures on collected data. In Table 2 is provided 

an overview of the current practiced maintenance categories. 
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Table 2. I4.0 practised maintenance paradigm categories. 

Authors 

S
&

R
 

S
&

K
 

S
&

L
 

S
&

S
 Data Techniques Monitor 

Betti et al., 

(2019) [6] 
✔    Failure data, Electrical 

parameter 
SCADA +Algorithm Inverter 

Leahy et al., 

(2017) [15]  
✔    Alarm data, Maintenance logs 

SCADA + 

Algorithm 
Turbine 

Bangalore and 

Patriksson [3] 

(2017) 

✔    
Operation data, Inspection 

reports  

SCADA + 

Algorithm 
Gearbox 

Accorsi et al., 

(2017) [1]  ✔   
Expertise knowledge, Sensor 

data 
Random forest Systems 

Rezig et al., 

(2018) [21]  ✔   
Maintenance logs, Sensor 

data 
Classification  Belt conveyor 

Phillips et al., 

(2015) [19]  ✔   
Oil analysis dataset, Sensor 

data 
LR, SVM, CCNN 

Mining truck 

engine 

Bergmann 

(2012) [5]   
 ✔   Vibration sensor data Classification 

Saw-cutting-

machine 

Qiu et al., 

(2015) [20]  ✔   
Service age, Health index, 

Sensor data 

Nonparametric 

regression 

Electrical 

component 

Djelloul et al., 

(2018) [9]  ✔   Operation status data 
Regression + Neural 

network 

Industrial 

machine 

Kovalev et al., 

(2018) [13]  
 ✔   Failure rates, Sensor data Multicriteria Systems 

Nagasaka et al., 

(2018) [17]  ✔   

Maintenance logs, KPI, 

Sensor data, Troubleshooting 

data  

Text mining + Bayes 

model 
Elevator 

Wang et al., 

(2017) [26]  ✔   
Maintenance logs, Sensor 

data 

Bi-level feature 

extraction-based text 

mining 

Railway 

Bin et al., (2017) 

[7]   
 ✔   

Maintenance logs, Sensor 

data 
Text-mining 

High-speed 

train 

Yuan et al., 

(2018) [31]  
 ✔   Test-bed data, Sensor data 

Sequential Pattern 

Mining 
Aircraft 

Gunay  et al., 

(2019) [10]  
 ✔   Maintenance logs,  

Association rule-

mining 
HVAC 

Langone et al., 

(2015) [14]   ✔  
Accelorometr sensor data, 

Thermal camera sensor data 
LS-SVM 

Jaws 

component 

Janssens et al., 

(2016) [11]   ✔  Vibration sensor data CNN 
Rotating 

machinery 

Yang et al., 

(2019) [29]  
  ✔  Tmperature sensor data 

SCADA + Fault 

indicator + ML 

reconstruction 

Turbine 

Bangalore and 

Tjernberg 

(2015) [34] 

  ✔  Sensor data ANN 
Gearbox 

bearings 

Wu et al., (2016) 

[27]   ✔  Multi-Sensor data 
Random forest + 

Cloud 

Milling 

machine 
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Authors 

S
&

R
 

S
&

K
 

S
&

L
 

S
&

S
 

Data Techniques Monitor 

Taie et al., 

(2019) [23]    ✔ Sensor data KNN, SVM, ANN System 

Balogh et al., 

(2018) [2]    ✔ Sensor data 
Collaborative 

Predictive Platform 

Manufacturing 

system 

Katipamula et 

al., (2017) [12]    ✔ Sensor data 
Open-source 

automated platform 

Building 

system 

Zargar et al., 

(2011) [32]    ✔ Sensor data 
Collaborative 

Predictive Platform 
System 

Peng et al., 

(2018) [18]    ✔ Sensor data 

Collaborative 

Predictive Platform 

+ NN 

System 

Mourtzis et al., 

(2016) [16]    ✔ 
Expertise knowledge, Sensor 

data 

Collaborative 

Predictive Platform 
System 

Yamato and 

Kumuzaki 

(2017) [28] 

   ✔ Sensor data 
Maintenance lambda 

platform 

Manufacturing 

system 

4.  Proactive maintenance methodology: A case study for hospital building service equipment 

The following methodology has been applied to an on-going research, whose aim is to fully enact ProM 

framework for further IoT implementation. However, before proceeding with an ETs based-ProM 

framework, an initial failure management policy should be set up. This starting strategy allows to reach 

a systematic process for moving-company to digitalization and efficient sensored-maintenance. This 

research’s promoter is an Italian specialized FM maintenance service provider, which strives to exploit 

its valuable data storage, collected over 4-year assets monitoring process within healthcare 

infrastructures. Assets taken into account are represented by hospital buildings SE (service equipment), 

such as HVAC, electrical, waterworks, fire system and ICT and civil works (Enclosures and furniture).  

As described in the following section, methodology to prepare real ProM strategy is displayed through: 

Inventory process, Registry structure, Database creation, Sensor registry, FMECA/FTA, New FM 

maintenance model and IoT implementation. 

At its early stage of this research, in order to support information and data collection to better 

represent assets behaviors, an inventory process has been initiated (figure 1).  

Inventory information, through gradual information acquisition principle and continuous process of 

retrieval, selection, validation, acquisition and updating of information, has involved following 

documents: As built, technical drawings, SE technical sheets, maintenance manuals, surveys, contracts 

between maintenance provider and infrastructure owner. Registry, as hierarchical structure in which 

information is collected and connected, is the core framework for SE breakdown structure, useful in 

classification and coding of apparatus. In its practical representation classification have been analyzed 

among different systems, such as: UNI 8290, UNIFORMAT II and OMNICLASS schemes.  

Due to the complexity of entire SE systems and to future further SE integrated-BIM implementation 

for maintenance simulation, OMNICLASS 22 Work Results [35] has been employed. Here, through a 

representation in hierarchical tables, relevant elements involved in maintenance process are classified. 

However, OMINCLASS 22 is an open system which may include additional components to further 

expand the classification. 

After the registry setting phase, which is continuously sustained by information coming from 

inventory process, the purpose of registry system is achieved through the creation of a database, which 

synthesizes key functions of information system in relation to maintenance requirements.  
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Figure 1. Cogenerator functioning scheme and process to enable failure assessment. 

 

As this database arises from the purpose to enact ProM, useful information headings are those which 

regard: Estimated RULs [years], Maintenance Operators Expected RULs, Adopted maintenance 

strategy, Critical parameter(s), Benchmarks, Modalities & Measurement instruments, Controlling driver 

(Algorithm), Fault modalities, Fault rate [fault rate/year], Sensor detection [Yes/Not], Proposed adding-

sensors, Component economical value (Cost per unit [Euro], Labour cost [Euro/h] and Decomissioning 

costs [Euro] and Component quantities [pieces]).  

Moreover, in order to provide an insight of timing indication and maintenance expected cost, a 

maintenance schedule of 20 years has been added to the database, in order to allocate future replacement 

cost for SE. 

Critical part of this database creation regards RULs definition. As part of this ProM strategy for 

hospital building SE focuses on the prevision of further dynamic RULs estimation, at this early research 

stage RUL value have been defined on a statistical basis, by considering components which would have 

similar operating and exposure conditions. Sources of this RULs estimation have included: Service Life 

and Maintenance Cost ASHRAEE Database [39], supplier’s survey and other scientific databases. 

Then, in order to refine RULs estimations to approximable-real values, surveys and questionnaires 

for on-site maintenance personnel have been performed for two hospital buildings which, for their 

geographical location, environmental exposure class and entry-to-service time, provide different RULs 

values with regard to the same component.  RULs definition allows to allocate maintenance costs in 20-

years maintenance schedule so that expected Operating Expense may be planned for the whole 

concession period. As real RULs estimation for component in ProM practice is desired, understanding 

of current sensors solution is required to know which signals are registered and which adding-sensors 

need to be implemented. A dedicated database of registered signals is required to realize if existing 

monitored-values may be used to potentially build a particular system data-driven model, which allows 

to investigate latent fault and RULs.  
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Consequently, a sensor registry is built by including all the sensors which have been used on 

components, thanks BMS recording of analogical (on-off) and digital (precise value) Input-Output.  

With regards of previous database creation, sensor registry headings take into account: Component, 

Sensor, Recorded variable, Actual component working-range (benchmark), Implementing-Component 

variable, Proposed adding-sensors, Commercial proposed adding-sensors. 

This assessment allows to start the proposal part of this on-going research. 

Continuous activated-inventory allows to gather value from information to find out which is the 

critical component determining the most frequent consequent-system failure and the most relevant 

operative maintenance costs. This analysis is performed through FMEA and FTA process activation.  

FMECA process (BS EN IEC 60812:2018) [33], feeding by maintenance manual troubleshooting 

and maintenance operator information, provide the structure for bottom-up approach data slotting, so 

that Fault/Failure registry may be set up, by breaking down into elements and, for each element in turn, 

failure modes and effects are identified and analyzed. This is to identify any required improvements by 

reducing adverse effects. The purpose of based-FMEA analysis is to enable prioritization of the failure 

modes.  Qualitative criticality analysis method evaluates risk and prioritize corrective actions, by rating 

the severity of the potential effects of failure and rating the likelihood of occurrence for each potential 

failure mode. Failure modes have been compared via a Criticality Matrix, which identifies severity on 

the horizontal axis and occurrence on the vertical axis. 

Consequence-of-failure (CoF) and Probability-of-failure (PoF) are the outcomes of this process. 

Having registered components failures and classified critical item, FTA process has been undertaken 

to assess components criticalities of the same apparatus (i.e. Cogenerator) in order to weight which 

component determines the Top Event, based on its reliability (figure 2) . Construction of SE fault trees 

may be useful to recognize which are critical parameters to be monitored with new sensors. 

 

Figure 2. Example of fault tree for cogenerator and transfer gate. Critical elements are in green. 
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Estimation of critical components here goes through four consequential moments: Structural 

measure of importance, for assessing leaves elements which determine probable failures given the 

Boolean gates set, Birnbaum measure of importance, for deepening component importance analysis by 

using provided fault rate in a stochastic process, Criticality measure of importance, for detecting 

minimum cut sets for the entire apparatus, and Fussel-Vessely measure of importance. 

New FM maintenance model, at this stage, represents the future step. New FM model for ProM, 

indeed, may take advantage of formal and informal knowledge, respectively from sensors and 

maintenance personnel/expertise, to build an useful asset data-driven model for monitoring latent faults 

and RULs. This approach may implement the one assumed in previous surveys and statistical approach 

for RULs estimation. Having traced failure modes of SE through FTA, new sensors may be deployed 

on critical components. This, however, should be part of an IoT-supported maintenance strategy which 

identifies an integrated architecture of sensing layer, network layer and service layer. The use of a 

platform may be useful to connect service provider hospital buildings which require a ProM strategy, in 

order to further export this model to new contracts of hospital buildings for the same service provider 

adopting this technique. Collected real-time data can be exploited jointly with BMS to extrapolate trends 

for RULs assessment and failure prevision of SE, resulting in dynamic maintenance plans which reduces 

corrective maintenance. Sustainability here may be estimated by measuring benefits of ProM 

maintenance in terms of failure decreasing which corresponds to less energy demand for SE turn on and 

off. An aware data collection may be useful to create value and to further sell this value in a future 

digitalized worldwide service market. 

5.  Conclusion 

Proactive maintenance approaches in building sector may benefit from roll out of maintenance practices 

in industrialized sectors which is using I4.0 ETs. Facility management may now change its traditional 

reactive/preventive paradigms toward more proactive maintenance forms which exploit value of data. 

Moreover, through the deployment of a platform whose aim is reaching sustainability in failure 

management policy, transformation process of data in information and, then, to knowledge may be 

possible. This can easily result in a new dynamic and real-time SLA and KPI definition also in 

maintenance contracts, in new analysis for faults management, and in more appropriate SCADA/BMS 

system configurations to manage equipment services. IoT, in this sense, can support proactive FM 

maintenance practice thanks its heterogeneity, by exploiting big data features (5V). Under this premise, 

a specialized maintenance company, which moves its first steps toward digitalization of services, may 

innovate sustainability of processes with proactive strategies and new failure management policy when 

internal knowledge are successful used jointly with big data.  
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