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1. Introduction

The problem of phase retrieval deals with reconstructing the phase of a complex signal from intensity
measurements, that is, measurements which give as an outcome only the modulus of the signal. This problem 
is encountered in a wide variety of practical circumstances such as microscopy and crystallography [1]. In 
the context of quantum mechanics, it can be traced back to W. Pauli, who noted in a footnote in [2] that 
the question whether or not the position distribution |ψ|2 and the momentum distribution |ψ̂|2 uniquely
determine the wave function ψ, “has still not been investigated in all its generality”. It was soon realized 
that the distributions |ψ|2 and |ψ̂|2 do not determine the wave function up to a phase [3], and therefore one
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is led to search for a larger class of measurements that would be sufficient for the task at hand (see e.g. [4,5]
for some more recent developments).

A natural direction for extending the original Pauli problem is given by the fractional Fourier transforms. 
The fractional Fourier transforms are a family of unitary operators Fθ, θ ∈ [0, 2π), on L2(R) which generalize
the usual Fourier transform in such a way that (i) F0 = I, (ii) Fπ/2 = F , the usual Fourier transform,
(iii) Fπ = Π, the parity operator, (iv) F3π/2 = F−1 and (v) Fθ1Fθ2 = Fθ1+θ2 where addition is understood
modulo 2π (see [6,7]). The problem then is to determine if the knowledge of the intensities |Fθψ|2 for some
suitable set of angles is sufficient for determining an arbitrary signal ψ ∈ L2(R) up to a constant phase.
In the recent article [8], Jaming carried out this line of approach and obtained several interesting results
in a number of cases where the signal is known to belong to some restricted class. In particular, in [8,
Theorem 5.5] he proved that if ψ belongs to the dense subset of finite linear combinations of Hermite
functions, then already two suitably chosen fractional Fourier transforms are sufficient. This immediately
raises the question if three angles would be enough for an arbitrary signal. Indeed, Jaming himself suggests
that “the fractional Fourier transform is a good candidate” for providing three unitary operators which
would guarantee the uniqueness of phase retrieval.

It is the purpose of this Letter to show that regardless of the choice of the angles, three fractional 
Fourier transforms are not enough to ensure the uniqueness in the phase retrieval problem for arbitrary 
signals. We prove this by first formulating the question in the context of quantum mechanics, in which case 
knowledge of the modulus of the fractional Fourier transform corresponds to a measurement of a rotated 
quadrature observable (see formula (3) below). The problem is then turned into the analysis of the operator 
systems generated by sets of quadrature observables, rather than directly dealing with the corresponding 
Fourier operators. In this way, its solution is much simpler, as it essentially boils down to the analysis of 
symplectic 2 × 2-matrices. We then close this Letter by showing that our method no longer works for four 
angles, and therefore the exhaustive answer to the question regarding the minimal number of fractional 
Fourier transforms for unique phase retrieval remains an open question. These results should be compared 
to similar ones in the finite-dimensional setting, where it is known that uniqueness for the phase retrieval 
can be achieved with four unitary operators [8,9], and at least for sufficiently high dimensions this is the 
minimal number [10–12].

2. Quantum mechanical formulation of the problem

In quantum mechanics, the description of a physical system is based on a complex separable Hilbert
space H. We use the notation 〈 · | · 〉 for the inner product on H which, following the convention of the 
physics literature, we assume to be linear in the second argument.

Let L(H) and T (H) denote the Banach spaces of bounded and trace class operators on H, respectively. 
The physical states of the system are represented by elements � ∈ T (H) satisfying positivity � ≥ 0 and 
normalization tr[�] = 1. The states form a convex set whose extreme points, called the pure states, are 
precisely the one dimensional projections |ϕ〉〈ϕ| : H → H, ‖ϕ‖ = 1, defined via |ϕ〉〈ϕ|ψ = 〈ϕ|ψ〉ϕ, with ϕ
and ψ in H. The observables are represented by normalized positive operator valued measures (POVMs) 
E : B(R) → L(H) where B(R) denotes the Borel σ-algebra of R [13,14]. More precisely, an observable
is a map E : B(R) → L(H) which satisfies (i) positivity E(X) ≥ 0 for all X ∈ B(R), (ii) normalization
E(R) = I, and (iii) σ-additivity tr[�E(

⋃
j Xj)] =

∑
j tr[�E(Xj)] for all states � ∈ T (H) and all sequences

(Xj)j of pairwise disjoint Borel sets. It follows that for any state �, the map �E : B(R) → [0, 1] defined
via �E(X) = tr[�E(X)] is a probability measure, and the number �E(X) is interpreted as the probability
that the measurement of E gives an outcome from the set X, when the system is initially prepared in the
state �. In this article we are mainly interested in projection valued observables, that is, ones which satisfy 
E(X)2 = E(X). By the spectral theorem [15, X.4.11], these are in one-to-one correspondence with selfadjoint
operators on H.



The problem of phase retrieval can now be formulated as a problem of determining an unknown pure 
state from measurement outcome statistics. This is one instance of quantum tomography, a field which 
focuses on the problem of state reconstruction. In general, when the object to be determined is an arbitrary 
state, i.e., pure or mixed, then one needs to measure a collection A of observables E : B(R) → L(H) which
is informationally complete [16] in the sense that for any two states �1 and �2, �E

1 = �E
2 for all E ∈ A implies

�1 = �2. If one is only interested in determining pure states, then the following weaker notion is relevant
(see, e.g., [12,17]).

Definition 1. Let A be a collection of observables E : B(R) → L(H). We say that A is informationally
complete with respect to pure states if for any two pure states �1 and �2, �E

1 = �E
2 for all E ∈ A implies

�1 = �2.

Obviously, informational completeness implies informational completeness with respect to pure states.
Moreover, it is clear that �E

1 = �E
2 if and only if 

∑
j cjtr[(�1 − �2)E(Xj)] = 0 for all (cj)j ⊂ C and

(Xj)j ⊂ B(R). Therefore, it is the linear span of the operators E(X) which is relevant for the purpose of
determining the unknown state.

For a collection A of observables E : B(R) → L(H), we denote by R(A) the weak∗-closure of the complex
linear span of the set {E(X) | E ∈ A, X ∈ B(R)}. It follows that R(A) is an operator system, that is, a linear
subspace of L(H) containing the identity I of H and satisfying R(A)∗ = R(A) (see [18, p. 9]). We say that 
R(A) is the operator system generated by A. We denote by R(A)⊥ the annihilator of R(A) in T (H), that 
is,

R(A)⊥ =
{
T ∈ T (H) | tr[TA] = 0 for all A ∈ R(A)

}
.

It is well known that a collection A is informationally complete if and only if R(A)⊥ = {0} [19]. Furthermore, 
a collection A is informationally complete with respect to pure states if and only if every nonzero selfadjoint 
operator in R(A)⊥ has rank 3 or more [20]. The following simple observation turns out to play a crucial 
role in our proofs.

Proposition 1. Let A and A′ be two collections of observables such that R(A′) = UR(A)U∗ for some unitary 
operator U . Then A′ is informationally complete with respect to pure states if and only if A is such.

Proof. Suppose that A is informationally complete with respect to pure states but A′ is not. Then there exist 
two distinct pure states �1 and �2 such that tr[�1E′(X)] = tr[�2E′(X)] for all X ∈ B(R) and E′ ∈ A′, hence
�1−�2 ∈ R(A′)⊥. We then have U∗(�1−�2)U ∈ R(A)⊥, which implies tr[U∗�1UE(X)] = tr[U∗�2UE(X)] for
all X ∈ B(R) and E ∈ A. That is, the two distinct pure states U∗�1U and U∗�2U are not distinguished by A,
which is a contradiction. Hence A′ is informationally complete with respect to pure states. Interchanging 
the roles of A and A′ we have the other implication. �
3. Rotated quadrature observables

We will now focus on the special case H = L2(R). Physically this can be viewed as representing a
single spinless particle confined to move in one spatial direction, or a single mode electromagnetic field. 
Let Q and P denote the standard position and momentum operators on H, so that (Qψ)(x) = xψ(x) and 
(Pψ)(x) = −iψ′(x). For any x = (q, p)T ∈ R2, define the corresponding Weyl operator

W (x) = ei
qp
2 e−iqPeipQ = e−iqP+ipQ. (1)

The map W : R2 → L(H) is then an irreducible projective unitary representation of R2 which satisfies the 
composition rule



W (x)W (y) = e−
i
2{x,y}W (x + y), x, y ∈ R2 (2)

where {(q, p)T , (u, v)T } = qv − pu is the symplectic form on R2. In particular, the commutation relation
W (x)W (y) = e−i{x,y}W (y)W (x) immediately follows. According to the Stone–von Neumann theorem [21, 
(1.50)], any irreducible projective unitary representation of R2 satisfying (2) is unitarily equivalent to the
standard one (1).

Now consider a symplectic matrix S ∈ SL(2, R), i.e., one that satisfies {Sx, Sy} = {x, y}. Then 
clearly the map x 	→ W (Sx) satisfies (2), and therefore there exists a unitary operator U(S) such that 
U(S)W (x)U(S)∗ = W (Sx) for all x ∈ R2 (see [21, Chapter 4.2]). In particular, for any rotation

Sθ =
(

cos θ − sin θ

sin θ cos θ

)

we obtain the corresponding unitary operator which, for the sake of clarity, we denote by R(θ). We can 
express this operator explicitly in terms of the orthonormal basis {hn | n = 0, 1, . . .} of H consisting of the
Hermite functions

hn(x) = 1√
2nn!

√
π
Hn(x)e−x2/2

where

Hn(x) = (−1)nex
2 dn

dxn
e−x2

is the nth Hermite polynomial. Indeed, up to a phase factor we have

R(θ) =
∞∑

n=0
eiθn|hn〉〈hn| = eiθN

where N =
∑∞

n=0 n|hn〉〈hn| is the number operator. We thus see that R actually is a representation of
the rotation group SO(2) in H. Adopting the convention of [8] for the definition of the fractional Fourier 
transform, we have that R(θ)∗ = R(−θ) = Fθ, so that the adjoint of the rotation operator coincides with
the fractional Fourier transform.

Now let Q, P : B(R) → L(H) be the position and momentum observables, namely, the projection valued
measures associated with the operators Q and P by the spectral theorem. In particular, [Q(X)ψ](x) =
1X(x)ψ(x), where 1X denotes the indicator function of the set X, and P(X) = F−1Q(X)F where F =
R(−π/2) is the unitary Fourier–Plancherel operator on H. For any θ ∈ [0, 2π) define the rotated quadrature 
observable Qθ : B(R) → L(H),

Qθ(X) = R(θ)Q(X)R(θ)∗.

The corresponding rotated quadrature operators Qθ are then the first moment operators of these observables,
that is, Qθ =

∫
xQθ(dx), and they may be expressed as Qθ = Q cos θ+P sin θ. For a system in a pure state

� = |ψ〉〈ψ|, the measurement outcome probabilities related to the quadratures are given by

�Qθ (X) =
〈
ψ
∣∣Qθ(X)ψ

〉
=

〈
R(θ)∗ψ

∣∣Q(X)R(θ)∗ψ
〉

=
∫
X

∣∣[Fθψ](x)
∣∣2 dx. (3)

This formula clarifies the aforementioned connection between quadrature observables and fractional Fourier 
transforms. Indeed, it shows that the probability density associated to a measurement of the observable Qθ



performed on the pure state |ψ〉〈ψ| is just the intensity |Fθψ|2. Note that the probabilities {�Qθ | θ ∈ [0, 2π)},
or, equivalently, the intensities {|Fθψ|2 | θ ∈ [0, 2π)} are also connected to the Wigner function W(|ψ〉〈ψ|)
of the state [22]. Namely, each density |Fθψ|2 coincides with the Radon transform of the Wigner function
along the direction θ (see [23], and also [24] for a more precise review and statement of this fact).

The essential observation now is that the Fourier transform of the observable Qθ is∫
e−iuxQθ(dx) = e−iuQθ = W (x) with x = (u sin θ,−u cos θ)T , (4)

where the integral is understood in the usual weak sense. In other words, it corresponds to the restriction 
of the Weyl map W to the one-dimensional subspace

Lθ =
{
(u sin θ,−u cos θ)T

∣∣ u ∈ R
}

(5)

of R2. With this observation, we can characterize the operator system generated by any set of rotated 
quadrature observables.

Proposition 2. Let I ⊂ [0, 2π). Then R({Qθ | θ ∈ I}) is the weak∗-closure of the linear span of⋃
θ∈I

{
W (x)

∣∣ x ∈ Lθ

}
.

Proof. By the bipolar theorem [15, V.1.8], it is enough to show that T ∈ R({Qθ | θ ∈ I})⊥ if and only if
tr[TW (x)] = 0 for all x ∈ Lθ, θ ∈ I. Let T ∈ R({Qθ | θ ∈ I})⊥. Then for any θ ∈ I the complex measure
X 	→ tr[TQθ(X)] is identically zero and by (4) we have tr[TW (x)] = 0 for all x ∈ Lθ. Conversely, by (4)
and the injectivity of the Fourier transform, the condition tr[TW (x)] = 0 for all x ∈ Lθ, θ ∈ I, implies that
tr[TQθ(X)] for all X ∈ B(R) and θ ∈ I so that T ∈ R({Qθ | θ ∈ I})⊥. �
4. Main results

We are now ready to prove the main results of this Letter. We begin by noting that, according to
Proposition 2, for all θ ∈ [0, π) the rotated quadratures Qθ and Qθ+π generate the same operator systems.
Hence, it is always sufficient to consider quadratures with θ ∈ [0, π). One of the consequences of Proposition 2
is that an arbitrary collection {Qθ | θ ∈ I} of rotated quadratures is informationally complete if and only
if I is dense in [0, π) (see, e.g., [25]). Therefore no finite collection is able to distinguish between all (i.e., 
pure or mixed) states. As the next proposition shows, even when restricting to pure states, there are certain 
collections which can be discarded.

Proposition 3. Let θ1, . . . , θn ∈ [0, π) be such that θi − θj ∈ Q π for all i, j = 1, . . . , n. Then the collection
{Qθ1 , . . . , Qθn} is not informationally complete with respect to pure states.

Proof. Without loss of generality we may assume that 0 = θ1 < θ2 < · · · < θn < π. Indeed, if θ1 �= 0, then
we can replace the observables Qθ1 , . . . , Qθn with the rotated ones R(θ1)∗Qθ1R(θ1), . . . , R(θ1)∗QθnR(θ1)
since the unitary transformation does not affect the property of informational completeness with respect to 
pure states by Proposition 1. Since R(θ1)∗QθjR(θ1) = Qθj−θ1 , by denoting θ′j = θj − θ1, we see that the
observables Qθ′

1
, . . . , Qθ′

n
satisfy θ′1 = 0.

For each j = 2, . . . , n there exist qj , pj ∈ N such that θj = qj
pj
π. By setting k = 2 · p2 · · · pn we have

that k θj = 0 (mod 2π) for all j = 1, . . . , n. In particular, R(θj)∗hk = e−ikθjhk = hk, so that by defining
ψ± = 1√ (h0 ± ihk) we have R(θj)∗ψ± = ψ±. The pure states |ψ+〉〈ψ+| and |ψ−〉〈ψ−| are distinct, but
2



〈
ψ±

∣∣Qθj (X)ψ±
〉

=
〈
ψ±

∣∣Q(X)ψ±
〉

=
∫
X

1
2
(∣∣h0(x)

∣∣2 ± ih0(x)hk(x) ∓ ihk(x)h0(x) +
∣∣hk(x)

∣∣2) dx

=
∫
X

1
2
(∣∣h0(x)

∣∣2 +
∣∣hk(x)

∣∣2) dx

since the Hermite functions are real valued. Hence, the pure states |ψ+〉〈ψ+| and |ψ−〉〈ψ−| cannot be
distinguished and therefore {Qθ1 , . . . , Qθn} is not informationally complete with respect to pure states. �

When n = 2 and θ1 − θ2 ∈ Q π, the fact that the collection of two observables {Qθ1, Qθ2} is not infor-
mationally complete with respect to pure states was already observed in [8, Remark 5.7]. It is worth noting 
that the assumption of finiteness for the collection of rotated quadratures is crucial in Proposition 3 above. 
Indeed, by going to infinitely many quadratures it is easy to give examples where the corresponding state-
ment is false. The most simple example is given by the collection {Qθ | θ ∈ Q π ∩ [0, π)}. Since Q π ∩ [0, π)
is dense in [0, π), this collection of observables is even informationally complete.

We now come to our main result.

Proposition 4. Let θ1, θ2, θ3 ∈ [0, π). The collection of observables {Qθ1 , Qθ2 , Qθ3} is not informationally
complete with respect to pure states.

Proof. We may assume that 0 ≤ θ1 < θ2 < θ3 < π. We will show that there exists a unitary operator
U such that UR(Qθ1 , Qθ2 , Qθ3)U∗ = R(Q0, Qπ/4, Qπ/2). It follows from Proposition 3 that the collection
{Q0, Qπ/4, Qπ/2} is not informationally complete with respect to pure states, and Proposition 1 implies the
same for {Qθ1 , Qθ2 , Qθ3}.

The proof of the unitary equivalence goes as follows. By Proposition 2 the operator system R(Qθ1 , Qθ2 ,

Qθ3) is the weak∗-closure of the linear span of the Weyl operators W (x) with x ∈
⋃3

j=1 Lθj , where Lθj are
the lines defined in (5). Given any symplectic matrix S ∈ SL(2, R), the Stone–von Neumann theorem [21, 
(1.50)] shows the existence of a unitary operator U(S) such that U(S)W (x)U(S)∗ = W (Sx) for all x ∈ R2.
Therefore,

U(S)
{
W (x)

∣∣ x ∈ Lθ1 ∪ Lθ2 ∪ Lθ3

}
U(S)∗ =

{
W (x)

∣∣ x ∈ Lθ′
1
∪ Lθ′

2
∪ Lθ′

3

}
with Lθ′

j
= SLθj .

By Proposition 2, we then have U(S)R(Qθ1 , Qθ2 , Qθ3)U(S)∗ = R(Qθ′
1
, Qθ′

2
, Qθ′

3
). Thus, we only need to find

a symplectic matrix S such that SLθ1 = L0, SLθ2 = Lπ/4 and SLθ3 = Lπ/2. It is easy to check that the
matrix

S = 1√
sin(θ3 − θ1)

⎛⎜⎝
√

sin(θ3−θ2)
sin(θ2−θ1) cos θ1

√
sin(θ3−θ2)
sin(θ2−θ1) sin θ1√

sin(θ2−θ1)
sin(θ3−θ2) cos θ3

√
sin(θ2−θ1)
sin(θ3−θ2) sin θ3

⎞⎟⎠
has the required property. Indeed, we have

S

(
sin θ1

− cos θ1

)
=

√
sin(θ3 − θ1) sin(θ2 − θ1)

sin(θ3 − θ2)

(
sin 0

− cos 0

)

S

(
sin θ2

− cos θ2

)
=

√
2 sin(θ3 − θ2) sin(θ2 − θ1)

sin(θ3 − θ1)

(
sin π

4
− cos π

)

4



S

(
sin θ3

− cos θ3

)
=

√
sin(θ3 − θ2) sin(θ3 − θ1)

sin(θ2 − θ1)

(
sin π

2
− cos π

2

)
. �

Note that if the result of Proposition 4 is regarded from the point of view of the Wigner transform 
W[ψ] = W(|ψ〉〈ψ|) of the signal ψ ∈ L2(R), then it implies that knowing the Radon transform of W[ψ]
along only three directions θ1, θ2 and θ3 is not enough to reconstruct ψ when ψ is arbitrary.

5. Discussion

Since our proof of the main result regarding the insufficiency of three rotated quadratures, or equivalently
fractional Fourier transforms, came down to finding a single suitable symplectic matrix, one might hope to 
use the same approach also for four quadratures. Indeed, four quadratures {Qθ1, Qθ2 , Qθ3 , Qθ4} are associated
to the corresponding lines Lθj , j = 1, . . . , 4, by Proposition 2, and we would then try to find a symplectic
matrix S which maps the lines in such a way that SLθj = Lθ′

j
where now θ′i− θ′j ∈ Q π for all i, j = 1, . . . , 4.

However, a moment’s thought reveals the fact that this is not always possible.
Indeed, suppose that we have θ1 = 0, θ2 = π/4, θ3 = π/2 and θ4 ∈ (π/2, π) is such that cot θ4 is a

transcendental number. By applying an extra rotation if necessary, we may assume that θ′1 = 0. Now the 
conditions SL0 = L0 and detS = 1 imply that

S =
(
a 0
b a−1

)

so that by looking at how the slope kθ = − cot θ of the line Lθ changes, we obtain the equations

cot θ′j = a−1 cos θj − b sin θj
a sin θj

for j = 2, 3, 4. In particular, it follows from the cases j = 2 and j = 3 that

a2 = 1
cot θ′2 − cot θ′3

and b = −a cot θ′3

so that both a and b must be algebraic numbers [26]. But the remaining case j = 4 now gives

cot θ4 = a2 cot θ′4 + ab

which is a contradiction since the right-hand side is an algebraic number, but the left-hand side is transcen-
dental by assumption.

Coming back to the quadratures {Qθ1 , Qθ2 , Qθ3 , Qθ4}, we may now conclude that our method fails to
prove or disprove their informational completeness with respect to pure states when the four angles θ1,
θ2, θ3, θ4 are chosen as above. Indeed, picking an arbitrary S ∈ SL(2, R), we still obtain the equality
U(S)R(Q0, Qπ/4, Qπ/2, Qθ4)U(S)∗ = R(Qθ′

1
, Qθ′

2
, Qθ′

3
, Qθ′

4
). However, by the previous discussion it is not

possible to make all the differences θ′i − θ′j rational multiples of π, thus Proposition 3 can no longer be
invoked to conclude that the collection {Qθ′

1
, Qθ′

2
, Qθ′

3
, Qθ′

4
} is not informationally complete with respect to

pure states. Therefore, the sufficiency of the four quadratures {Q0, Qπ/4, Qπ/2, Qθ4} to determine all pure
states still remains an open question when cot θ4 is a transcendental number.
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