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1. Introduction
One of the main objectives of Structural Vibration Control (SVC) 
vibrational response of the individual buildings.

An attempt of setting a more comprehensive formulation of the 

for large structures is to mitigate the vibrational response induced 
by external natural disturbances, such as wind gusts, earthquakes, 
or ocean waves. For multi-structure systems, the overall response 
must include not only the vibrational response of individual sub-
structures, but also the possible interactions between adjacent 
substructures.

The seismic protection of closely adjacent buildings is an excel-
lent example of SVC for multi-structure systems. In this case, the 
action of seismic excitations can produce interbuilding collisions 
(pounding), which can cause severe structural damage. Moreover, 
the large acceleration pulses generated in the quick and massive 
pounding impacts can also produce a serious damage in the build-
ings’ content [1–5]. Consequently, a twofold objective must be con-
sidered in SVC designs for this kind of multi-structure systems: (1) 
mitigating the structural vibrational response of the individual 
buildings and (2) providing protection against pounding events.

The Connected Control Method (CCM) consists in linking to-
gether adjacent buildings by coupling devices to produce appropri-
ate reaction control forces. Over the last years, a number of passive, 
active, and semiactive control strategies based on the CCM ap-
proach have been proposed for seismic protection of adjacent 
buildings with positive results (see for example [6–15]). It should
problem can be found in [16,17], where two different kinds of out-
put variables are considered. In these papers, together with the 
interstory drifts typically used to describe the relative displacement 
of adjacent stories in the same building, the interbuilding ap-
proaches are introduced to describe the approaching between sto-
ries placed at the same level in adjacent buildings.

In contrast with previous works, the present paper is principally 
focused on the interactions between adjacent buildings. More pre-
cisely, the main goal is to design a control system to provide a suit-
able protection against negative interbuilding interactions 
produced by seismic excitations. This should also be done without 
introducing negative side effects in the structural vibration re-
sponse of the individual buildings. Moreover, the control system 
should be as simple as possible to facilitate its practical implemen-
tation. In terms of the output variables, these controller design 
objectives can be formulated as follows: (1) to produce a signifi-
cant reduction of the interbuilding approach peak values, while (2) 
helping to keep the peak values of the interstory drifts in the 
individual buildings within acceptable levels. Additionally, the 
simplicity constraint is a broad concept which may involve a vari-
ety of different design elements, such as partial state information 
requirements, reduced information exchange, or low power 
consumption.

Decentralized velocity-feedback controllers can be efficiently 
designed using recent developments on static output–feedback 
control presented in [18]. This approach has been successfully ap-
plied to design decentralized velocity-feedback controllers and
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optimal passive-damping systems for seismic protection of single 
buildings [19,20]. In the present work, these new ideas are applied 
to design a local velocity-feedback energy-to-peak controller which 
satisfies the proposed design objectives.

For clarity and brevity, a particular two-building system formed 
by a four-story building adjacent to a five-story building has been 
selected to present the main ideas. A minimal actuation system has 
also been chosen, which consists in a single actuation device 
linking both buildings at the fourth story level, as sche-matically 
depicted in Fig. 1. For this two-building system, a veloc-ity-
feedback controller that only uses the relative velocity of the fourth 
stories as feedback information is designed. This controller attains 
a remarkable reduction of the interbuilding approach peak values 
and, also, a moderate attenuation of the interstory drift peak values 
in both buildings. Moreover, it can be imple-mented in practice 
using a linear passive damper, that is, without sensors, no 
communication system, and null power consumption. A state-
feedback LQR controller and a state-feedback energy-to-peak 
controller, which require the complete two-building state as 
feedback information, are also computed and used as a reference.

To assess the effectiveness of the proposed controllers, numer-
ical simulations are conducted using the full scale North–South El 
Centro 1940 seismic record as ground acceleration disturbance. To 
avoid the computational complexity associated to the pounding 
impacts, the numerical simulations are carried out under the 
assumption that the interbuilding separation is large enough to 
avoid collisions. In this case, the maximum values of the inter-
building approaches can be understood as lower bounds of safe 
interbuilding separation.

The paper is organized as follows: In Section 2, a second-order 
model and a first-order state-space model for the two-building 
system are provided. In Section 3, the theoretical results on static 
output–feedback control presented in [18] are applied to derive an 
effective computational strategy to design static output–feed-back 
energy-to-peak controllers. In Section 4, the different control-lers 
are computed and numerical simulations are conducted to compare 
their effectiveness. Finally, some conclusions and future research 
directions are presented in Section 5.
Fig. 1. Two-building system with interbuilding actuation device.
2. Two-building mathematical model

2.1. Second-order model

Let us consider the two-building system schematically 
dis-played in Fig. 1. The buildings motion can be described by the 
sec-ond-order model

M€qðtÞ þ C _qðtÞ þ KqðtÞ ¼ TuuðtÞ þ TwwðtÞ; ð1Þ

where M is the mass matrix, C is the damping matrix, and K is the
stiffness matrix. The vector of story displacements with respect to
the ground is

qðtÞ ¼ qð1ÞðtÞ
qð2ÞðtÞ

" #
; ð2Þ

where

qð1ÞðtÞ ¼ q1
1ðtÞ; q1

2ðtÞ; q1
3ðtÞ; q1

4ðtÞ
� �T

; ð3Þ

qð2ÞðtÞ ¼ q2
1ðtÞ; q2

2ðtÞ; q2
3ðtÞ; q2

4ðtÞ; q2
5ðtÞ

� �T
; ð4Þ

and qi
jðtÞ represents the displacement of the ith story in the jth 

building corresponding to the time t. We assume that an active con-
trol device D has been implemented between the fourth stories of 
both structures. The control force u(t) delivered by D produces a 
pair of opposite forces as indicated in Fig.1. This actuation scheme 
is modeled by means of the control location matrix Tu. Finally, the 
ground acceleration disturbance is denoted by w(t), and Tw is the 
disturbance input matrix. The mass matrix M has the following 
block diagonal structure:

M ¼
Mð1Þ ½0�4�5

½0�5�4 Mð2Þ

" #
; ð5Þ

where [0]r�s is a zero matrix of dimensions r � s,

Mð1Þ ¼

m1
1 0 0 0

0 m1
2 0 0

0 0 m1
3 0

0 0 0 m1
4

26664
37775; ð6Þ

Mð2Þ ¼

m2
1 0 0 0 0

0 m2
2 0 0 0

0 0 m2
3 0 0

0 0 0 m2
4 0

0 0 0 0 m2
5

26666664

37777775; ð7Þ

and mj
i denotes the mass of the ith story in the jth building. The

stiffness matrix has the form

K ¼
Kð1Þ ½0�4�5

½0�5�4 Kð2Þ

" #
; ð8Þ

where

Kð1Þ ¼

k1
1 þ k1

2 �k1
2 0 0

�k1
2 k1

2 þ k1
3 �k1

3 0

0 �k1
3 k1

3 þ k1
4 �k1

4

0 0 �k1
4 k1

4

2666664

3777775; ð9Þ

Kð2Þ ¼

k2
1 þ k2

2 �k2
2 0 0 0

�k2
2 k2

2 þ k2
3 �k2

3 0 0

0 �k2
3 k2

3 þ k2
4 �k2

4 0

0 0 �k2
4 k2

4 þ k2
5 �k2

5

0 0 0 �k2
5 k2

5

266666664

377777775; ð10Þ



and kj
i denotes the stiffness coefficient of the ith story in the jth

building. The damping matrix also has a block diagonal structure
of the form

C ¼
Cð1Þ ½0�4�5

½0�5�4 Cð2Þ

" #
: ð11Þ

When the damping coefficients are known, the matrices C(1) and
C(2) can be obtained by replacing the stiffness coefficients kj

i in Eqs.
(9) and (10) by the corresponding damping coefficients ci

j. Fre-
quently, however, the values of the damping coefficients cannot be 
properly determined and the matrices C(1) and C(2) are com-puted 
following other methods such as the Rayleigh damping ap-proach 
[21]. The control location matrix is

Tu ¼ ½ 0 0 0 �1 0 0 0 1 0 �T ; ð12Þ

and the disturbance input matrix can be written as

Tw ¼ �M½1�9�1; ð13Þ

where ½1�9�1 is a column vector of dimension 9 with all its entries 
equal to 1.

In the different controller designs and numerical simulations 
presented in Section 4, the following particular mass values 
(�103 kg) have been used: m1

1 ¼ 215:2; m1
2 ¼ 209:2; 

m1
3 ¼ 207:0; m1

4 ¼ 266:1; m2
1 ¼ 215:2; m2

2 ¼ 209:2, m2
3 ¼ 207:0; 

m2
4 ¼ 204:8; m2

5 ¼ 266:1. The particular values of the stiffness coef-
ficients (�106 N/m) are: k1

1 ¼ 147; k1
2 ¼ 113; k1

3 ¼ 99;
k1

4 ¼ 84; k2
1 ¼ 147; k2

2 ¼ 113; k2
3 ¼ 99; k2

4 ¼ 89; k2
5 ¼ 84. These values

of mass and stiffness coefficients are similar to those corresponding 
to the five-story building presented in [22]. The matrices C(1) and 
C(2) have been computed as Rayleigh damping matrices by setting a 
2% of relative damping on the corresponding first and last modes. 
The obtained particular values (in Ns/m) are as follows:

Cð1Þ ¼105�

2:6450 �0:9034 0 0
�0:9034 2:2455 �0:7915 0

0 �0:7915 2:0078 �0:6715
0 0 �0:6715 1:3719

26664
37775; ð14Þ

Cð2Þ ¼105�

2:6017 �0:9244 0 0 0
�0:9244 2:1958 �0:8099 0 0

0 �0:8099 1:9946 �0:7281 0
0 0 �0:7281 1:8670 �0:6872
0 0 0 �0:6872 1:2741

26666664

37777775: ð15Þ
2.2. First-order state-space model

Now we consider the first-order state-space model

_xðtÞ ¼ AxðtÞ þ BuðtÞ þ EwðtÞ; ð16Þ

with state vector

xðtÞ ¼
qðtÞ
_qðtÞ

� �
: ð17Þ

The state matrix in Eq. (16) can be written as

A ¼
½0�9�9 I9

�M�1K �M�1C

" #
; ð18Þ

where Ir denotes the identity matrix of order r. The control and dis-
turbance input matrices have, respectively, the following form:

B ¼
½0�9�1

M�1Tu

" #
; E ¼

½0�9�1

�½1�9�1

� �
: ð19Þ
In addition to the state variables, two different sets of output
variables are considered in this work: interstory drifts and inter-
building approaches. The interstory drifts are the relative displace-
ments between consecutive floors of the same building, and can
be defined as

sj
1ðtÞ ¼ qj

1ðtÞ;
sj

iðtÞ ¼ qj
iðtÞ � qj

i�1ðtÞ; 1 < i 6 nj;

(
ð20Þ

where nj represents the number of stories of building j. For building
Bð1Þ, the vector of interstory drifts is

sð1ÞðtÞ ¼ s1
1ðtÞ; s1

2ðtÞ; s1
3ðtÞ; s1

4ðtÞ
� �T

; ð21Þ

and for Bð2Þ, we have

sð2ÞðtÞ ¼ s2
1ðtÞ; s2

2ðtÞ; s2
3ðtÞ; s2

4ðtÞ; s2
5ðtÞ

� �T
: ð22Þ

The overall vector of interstory drifts

sðtÞ ¼ sð1ÞðtÞ
sð2ÞðtÞ

" #
ð23Þ

can be computed as

sðtÞ ¼ CsxðtÞ ð24Þ

with the output matrix

Cs ¼ ~Cs ½0�9�9

� �
; ð25Þ

where

~Cs ¼
Cð1Þs ½0�4�5

½0�5�4 Cð2Þs

" #
; ð26Þ

Cð1Þs ¼

1 0 0 0
�1 1 0 0
0 �1 1 0
0 0 �1 1

26664
37775; ð27Þ

Cð2Þs ¼

1 0 0 0 0
�1 1 0 0 0
0 �1 1 0 0
0 0 �1 1 0
0 0 0 �1 1

26666664

37777775: ð28Þ

The interbuilding approaches describe the approaching be-
tween the stories placed at the same level in adjacent buildings

aiðtÞ ¼ � q2
i ðtÞ � q1

i ðtÞ
� �

; 1 6 i 6 minðn1;n2Þ: ð29Þ

For our particular two-building system, the vector of interbuilding
approaches

aðtÞ ¼ a1ðtÞ; a2ðtÞ; a3ðtÞ; a4ðtÞ½ �T ð30Þ

can be computed as

aðtÞ ¼ CaxðtÞ ð31Þ

using the output matrix

Ca ¼ ~Ca ½0�4�9

� �
; ð32Þ

where

~Ca ¼ I4 �I4 ½0�4�1½ �: ð33Þ



Remark 1. It should be observed that positive values of the 
interbuilding approaches defined in Eq. (29) correspond to a 
reduction of the distance between the corresponding stories. 
Clearly, for a given interbuilding separation, large values of the 
interbuilding approaches may result in interbuilding collisions.
3. Static output–feedback energy-to-peak controller design

In this section, the theoretical results presented in [18] are ap-
plied to define an effective computational strategy to design static 
output–feedback energy-to-peak controllers. We begin by consid-
ering the system

S :
_xðtÞ ¼ AxðtÞ þ BuðtÞ þ EwðtÞ;
zðtÞ ¼ CzxðtÞ þ DzuðtÞ;

�
ð34Þ

where xðtÞ 2 Rn is the state, uðtÞ 2 Rm is the control input, wðtÞ 2 Rr

is the disturbance input, and zðtÞ 2 Rnz is the controlled output. A, B,
E, Cz, and Dz are known, real and constant matrices of appropriate
dimensions. Given a state-feedback controller

uðtÞ ¼ GxðtÞ; ð35Þ

the following closed-loop system results:

SCL :
_xðtÞ ¼ AGxðtÞ þ EwðtÞ;
zðtÞ ¼ CGxðtÞ;

�
ð36Þ

where

AG ¼ Aþ BG; CG ¼ Cz þ DzG: ð37Þ

The closed-loop transfer function from the disturbance w(t) to the
controlled output z(t) is

TGðsÞ ¼ CGðsI� AGÞ�1E: ð38Þ

In the state-feedback energy-to-peak control design, the objec-
tive is to find a control gain matrix ~G which produces an asymptot-
ically stable closed-loop matrix A~G and, at the same time,
minimizes the value of the energy-to-peak norm

cG ¼ TGk k2;1 ¼ sup
0<kwk2<1

kzk1
kwk2

; ð39Þ

where

kzk1 ¼ sup
06t<1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zTðtÞzðtÞ

q
; ð40Þ

kwk2 ¼
Z 1

0
wTðtÞwðtÞdt


 �1=2

: ð41Þ

For a prescribed c > 0, the following two statements are equivalent
[23–25]:

1. AG is asymptotically stable, and kTGk2,1 < c.
2. There exists a symmetric positive-definite matrix X such that
AGXþ XAT
G þ EET < 0; CGXCT

G < c2I: ð42Þ
Using the closed-loop matrix definitions given in Eq. (37), the con-
ditions in Eq. (42) become
ðAþ BGÞXþ XðAþ BGÞT þ EET < 0; ð43Þ
ðCz þ DzGÞXðCz þ DzGÞT < c2I: ð44Þ

By introducing the new variables Y = GX, g = c2, and using Schur 
complements in Eq. (44), the nonlinear matrix inequalities in Eqs.
(43) and (44) can be written as the following Linear Matrix 
Inequalities (LMIs):
AXþ XAT þ BY þ YT BT þ EET < 0; ð45Þ

X ðCzXþ DzYÞT

CzXþ DzY gI

" #
> 0; ð46Þ

and the continuous-time state-feedback energy-to-peak control
problem can be transformed into the following optimization prob-
lem with LMI constraints:

minimize g;
subject to X > 0; g > 0; and the LMIs in Eqs: ð45Þ and ð46Þ;

�
ð47Þ

where matrices X and Y are the optimization variables. If the opti-
mal value ~g is attained for the matrices ~X and ~Y, then the control
gain matrix

~G ¼ ~Yð~XÞ�1
; ð48Þ

defines a state-feedback controller uðtÞ ¼ ~GxðtÞ with asymptotically
stable closed-loop matrix A~G and optimal energy-to-peak norm

c~G ¼ T~G

�� ��
2;1 ¼ ~g1=2: ð49Þ

Now, let us focus our attention on a more realistic scenario,
where only a restricted set of observed output variables are avail-
able as feedback information. More precisely, we consider the ob-
served output vector

yðtÞ ¼ CyxðtÞ; ð50Þ

where yðtÞ 2  Rp; p < n, and Cy is a full row-rank matrix of 
dimen-sions p � n. Following the ideas presented in [18], a static 
output–feedback energy-to-peak controller

uðtÞ ¼ GyyðtÞ; ð51Þ

can be computed by defining the transformations

X ¼ QXQ Q T þ RXRRT ; Y ¼ YRRT ; ð52Þ

where R is the Cy Moore–Penrose pseudo-inverse

R ¼ CT
yðCyCT

yÞ
�1

; ð53Þ

Q is a matrix with dimensions n � (n � p), whose columns are a ba-
sis of Ker(Cy); XQ, XR are symmetric matrices with respective 
dimensions (n � p) � (n � p), and p � p; and YR is an m � p matrix. 
After substituting the transformations given in Eq. (52) in the LMIs 
presented in Eqs. (45) and (46), we obtain the new set of LMIs dis-
played in Fig. 2 and the continuous-time static output–feedback en-
ergy-to-peak control problem can now be formulated as the 
following optimization problem with LMI constraints:

minimize g;
subject to XQ > 0; XR > 0; g > 0; and the LMIs in Fig:2;

�
ð54Þ

where matrices XQ, XR, and YR are the new optimization variables. If
an optimal value ~g is attained for the matrices ~XQ ; ~XR, and ~YR, then
the control gain matrix

~Gy ¼ ~YR
~XR

 ��1
; ð55Þ

defines a static output–feedback controller uðtÞ ¼ ~GyyðtÞ with
asymptotically stable closed-loop matrix

A~Gy
¼ Aþ B~GyCy; ð56Þ

and optimal energy-to-peak norm



 
f 

Fig. 2. LMIs for static output–feedback energy-to-peak controller design.
c~Gy
¼ T~Gy

��� ���
2;1
6 ~g1=2: ð57Þ

Remark 2. As indicated in Eq. (57), solving the optimization 
problem given in Eq. (54) only provides an upper bound of the c-
value corresponding to the controller defined by the output–
feedback control gain matrix G~y. The actual value of c~Gy 

can be 
computed by considering the associated state-feedback gain matrix

Ĝ ¼ ~GyCy; ð58Þ

and the LMIs

ðAþ B ĜÞXþ XðAþ B ĜÞ
T
þ E ET < 0; ð59Þ

ðCz þ DzĜÞXðCz þ DzĜÞ
T
� gI < 0: ð60Þ

If the optimization problem

minimize g;
subject to X > 0; g > 0; and the LMIs in

Eqs: ð59Þ and ð60Þ;

8><>: ð61Þ

admits the optimal solution ĝ, then we have

c~Gy
¼ ĝ1=2: ð62Þ

Note that, in contrast with what happened in Eqs. (43) and (44), Ĝ is a
known matrix in Eqs. (59) and (60); consequently, this last pair o
matrix inequalities are linear.
 

4. Results and discussion

4.1. Controllers design

In this subsection, the controller design methodology discussed 
in Section 3 is applied to compute a local velocity-feedback con-
troller for the two-building system introduced in Section 2. A
state-feedback LQR controller and a state-feedback energy-to-peak 
controller are also computed to be used as a reference.

4.1.1. State-feedback LQR controller
Let us consider the state vector x(t) given in Eq. (17) and the 

matrix

Q̂ ¼ a2
s CT

s Cs þ a2
aCT

aCa; ð63Þ

where Cs is the output matrix of interstory drifts defined in Eqs.(25)–
(28), Ca is the output matrix of interbuilding approaches given in 
Eqs. (32) and (33), and as, aa are real scaling coefficients. The 
quadratic form
Fig. 3. Control gain matrices for the state-feedback LQR cont
xTðtÞ Q̂ xðtÞ ¼ a2
s

X2

j¼1

Xnj

i¼1

sj
iðtÞ

n o2
þ a2

a

X4

i¼1

aiðtÞf g2
; ð64Þ

provides a joint quadratic cost of interstory drifts and interbuilding
approaches. To compute a state-feedback LQR controller

uðtÞ ¼ GxðtÞ; ð65Þ

we take the state-space model

_xðtÞ ¼ AxðtÞ þ BuðtÞ; ð66Þ

with the matrices A and B given in Eqs. (18) and (19), and the 
qua-dratic cost function

J xðtÞ;uðtÞð Þ ¼
Z 1

0
xTðtÞQ̂ xðtÞ þ R̂ uðtÞf g2 dt: ð67Þ

The control gain matrix that minimizes the index in Eq. (67), 
subject to the constraints given in Eqs. (65) and (66), can be easily 
computed with the lqr( ) command of the MATLAB Control Sys-

tem Toolbox [26]. In Fig. 3, we present the optimal solution G~I cor-
responding to the particular values of the buildings parameters 
given in Section 2.1, the weighting matrix Q̂ with scaling coeffi-
cients as = 5,  aa = 1, and the weighting factor R̂ ¼ 10�13.

Remark 3. Typically, the peak values of interbuilding approaches 
are significantly larger than those observed in interstory drifts. The 
scaling coefficients as and aa in Eq. (63) are introduced to compen-
sate for this effect, which can be clearly appreciated in the graphics 
presented in Section 4.2 (see also the graphics in [16,17]).
4.1.2. State-feedback energy-to-peak controller
In this second case, we consider the state-space model

_xðtÞ ¼ AxðtÞ þ BuðtÞ þ EwðtÞ; ð68Þ

with the matrices A, B, E given in Eqs. (18) and (19), and the 
controlled output

zðtÞ ¼ CzxðtÞ þ DzuðtÞ; ð69Þ

defined by the matrices

Cz ¼
~Q 1=2 ½0�9�9

½0�1�9 ½0�1�9

" #
; ð70Þ

Dz ¼
½0�9�1

~R

" #
; ð71Þ
Remark 4. Note that the state-feedback LQR control gain matrix ~GI

is a row matrix of dimensions 1 � 18. For clarity, however, it has
been presented in the figure using a two-row layout.
roller and the state-feedback energy-to-peak controller.



Fig. 4. Matrices for the transformation of the LMI variables.
ð72Þ

where

Q~ ¼ ~as
2 ~Cs

T C~s þ ~aa
2 ~CT

a C~a;

and the matrices ~Cs; C~a are given in Eqs. (26) and (33).
As indicated in Section 3, a state-feedback energy-to-peak 

controller with the form given in Eq. (65) can be computed by 
solving the optimization problem with LMI constraints de-fined in 
Eq. (47). Solving this problem with the optimization tools of the 
MATLAB Robust Optimization Toolbox [27] for the particular values 
of the buildings parameters given in Sec-tion 2.1, and

~as ¼ 5; ~aa ¼ 1; ~R ¼ 10�6:5; ð73Þ

produces the control gain matrix G~II displayed in Fig. 3, with an 
associated c-value

c~GII
¼ 0:3905: ð74Þ

Remark 5. The controlled output z(t) corresponding to the
particular values

~as ¼ as; ~aa ¼ aa; ~R ¼ R̂1=2; ð75Þ

satisfies

zTðtÞzðtÞ ¼ xTðtÞQ̂ xðtÞ þ R̂ uðtÞf g2
; ð76Þ

where Q̂ and R̂ are the weighting matrices used in the quadratic in-
dex defined in Eq. (67). This choice of the controlled output pro-
duces a relatively similar behavior of the controllers designed 
following the LQR and energy-to-peak approach.
Remark 6. A complete knowledge of the state variables is required 
to compute the control actions with the state-feedback energy-to-
peak control gain matrix G~II . Consequently, a full set of sensors and 
a complex communication system would be necessary for a practi-
cal implementation of the corresponding control system. This 
remark also applies to the controller defined by the control gain 
matrix G~I .
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Fig. 5. Full scale North–South El Centro 1940 seismic record.
4.1.3. Energy-to-peak controller with restricted local state information
Now, let us assume that the information available for feed-back 

purposes is reduced to the relative velocity between the stories at 
the fourth level of the buildings. To design this third controller, we 
consider the same state-space model and con-trolled output used 
in Section 4.1.2, and define the observed output variable

yðtÞ ¼ _q2
4ðtÞ � _q1

4ðtÞ; ð77Þ

which can be written as

yðtÞ ¼ CyxðtÞ; ð78Þ

with

Cy ¼ ½0; 0;0; 0;0;0;0;0;0;0; 0;0;�1;0; 0;0;1; 0�: ð79Þ

Next, we compute the matrices that define the transformation of the 
LMI variables presented in Eq. (52). The particular values of the 
matrices Q and R used in the controller design are displayed in 
Fig. 4. These matrices have been obtained with the MATLAB 
commands null( ) and pinv( ), respectively. Note that an 
orthonormal basis of Ker(Cy) is provided by the null( ) 
command.

The next step should be solving the optimization problem de-
fined in Eq. (54) to obtain a static output–feedback controller
uðtÞ ¼ GyyðtÞ: ð80Þ
However, a first attempt of solving this problem with the optimiza-
tion tools of the MATLAB Robust Optimization Toolbox fails, and the 
problem is reported to be infeasible. This same difficulty has been 
encountered in previous works (see [19,20,28]), and extensive 
numerical tests indicate that it can be overcome by introducing a 
small perturbation in the state matrix. More precisely, after replac-
ing the state matrix A by the perturbed state matrix

A� ¼ A� �I18; ð81Þ

with � = 10�5, the problem in Eq. (54) can be properly solved, result-
ing the control gain

eGy ¼ �6:8719� 105; ð82Þ

with an associated c-value that satisfies

c~Gy
6 0:9782: ð83Þ

According to the discussion presented in Remark 2, the actual c-va-
lue corresponding to eGy can be computed by solving the auxiliary 
optimization problem defined in Eq. (61). Taking the matrix Ĝ in Eq. 
(58) as

ð84ÞĜ ¼ GeyCy;

where Cy is the output matrix given in Eq. (79), we obtain 

c~Gy 
¼ 0:5083: ð85Þ

Moreover, although the gain eGy has been computed using the per-
turbed matrix A�, the feasibility of the LMIs in Eqs. (59) and (60) as-
sures the asymptotic stability of the closed-loop matrix A~Gy 

given in 
Eq. (56).
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Remark 7. The procedure presented in Remark 2 can also be 
applied to compute the energy-to-peak norm of the LQR controller 
designed in Section 4.1.1. By solving the optimization problem 
defined in Eq. (61) with Ĝ ¼ G~I, we obtain

c~GI
¼ 0:4670: ð86Þ

Comparing the values presented in Eqs. (74), (85) and (86), we get

cG~II 
< cG~I 

< c~Gy 
: ð87Þ
0 5 10 15 20 25 30
1

maximum interbuilding approaches (cm)

Local ETP

Fig. 6. Maximum interbuilding approaches.
Remark 8. The initial infeasibility of the LMI optimization prob-
lems associated to the design of static output–feedback controllers 
for structural vibration control is certainly a strange phenomenon. 
Using a perturbed state matrix in the form given in Eq. (81) has 
proved to be a very effective computational strategy to overcome 
this problem. Moreover, the method discussed in Remark 2 pro-
vides a general procedure to validate the correctness of the con-
troller designed on the basis of the perturbed state matrix A�. 
Currently, we are working on using more general transformations 
of the LMI variables to provide a better solution to this feasibility 
problem with promising results.
Remark 9. In all the previous discussions, it has been assumed 
that D is an ideal active device. In this case, a practical implemen-
tation of the output–feedback controller

uðtÞ ¼ eGyyðtÞ; ð88Þ

would only require a velocity sensor allocated in the actuation de-
vice D, and the control system could be operated using only this lo-
cal feedback information. From a practical perspective, an even
more interesting scenario arises when the actuation device D is con-
sidered to be a passive linear damper with adjustable damping
capacity cD. In this second case, the force exerted by the damper
D can be modeled as

fDðtÞ ¼ �cD _q2
4ðtÞ � _q1

4ðtÞ
� �

; ð89Þ

and the proposed output–feedback controller design strategy pro-
vides a systematic procedure to determine the damping capacity
cD. Specifically, for our particular two-building model, we will have

cD ¼ �~Gy ¼ 6:8719� 105 Ns=m: ð90Þ

A more detailed discussion on the optimal design of passive damp-
ing systems for structural vibration control of single buildings using 
a static output–feedback approach can be found in [20].
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Fig. 7. Interbuilding approaches at the fourth story level.
4.2. Numerical simulations

In this subsection, numerical simulations are conducted to 
compute the vibrational response of the two-building system for 
several control configurations. Specifically, the following four 
control configurations are considered: (1) Uncontrolled. No control 
system is implemented. (2) Full State LQR. The control system in-
cludes an ideal active device D, which is driven by the state-feed-
back LQR controller designed in Section 4.1.1. (3) Full State ETP. 
The control system includes an ideal active device D, driven now 
by the state-feedback energy-to-peak controller designed in Sec-
tion 4.1.2. (4) Local ETP. In this case, we can assume that the control 
system includes an ideal active device D, which is driven by the 
local velocity-feedback energy-to-peak controller designed in 
Section 4.1.3. Alternatively, and according to Remark 9, we could 
assume that the actuation device D is a linear passive damper with 
the damping capacity cD ¼ �Gey given in Eq. (90). In all the cases, 
the full scale North–South El Centro 1940 seismic record is taken 
as ground acceleration disturbance (see Fig. 5), and the
interbuilding approaches a(t) together with the interstory drifts 
s(t) are computed as output variables. The control effort u(t) is also 
computed in the controlled cases (2)–(4).

The maximum values of the interbuilding approaches corre-
sponding to the different control configurations are displayed in 
Fig. 6. A quick inspection of the graphic clearly shows that all the 
proposed controllers meet the first control design objective of pro-
viding a significant protection against pounding events. In particu-
lar, interbuilding separations of about 15 cm can be considered safe 
for the three controlled configurations while, in contrast, an 
interbuilding separation of 25 cm would produce an interbuilding 
collision for the Uncontrolled configuration. Moreover, it can also be 
appreciated that the best results are achieved by the Local ETP 
configuration, which attains levels of reduction in the maximum 
interbuilding approaches that are uniformly superior to those ob-
tained by the full state configurations. The interbuilding ap-
proaches at the fourth story level a4(t) corresponding to the 
Uncontrolled and the Local ETP configurations are presented in Fig. 
7.

The percentages of reduction in maximum interbuilding ap-
proaches with respect to the uncontrolled response presented in 
Table 1 provide a more detailed account of the excellent behavior 
exhibited by the Local ETP configuration, which achieves percent-
ages of reduction in the interbuilding approaches peak-values of 
about 55% in all the stories. Comparatively, the percentages ob-
tained by the Full State LQR configuration are 3–5 points lower; and 
this difference is even larger for the Full State ETP configura-tion, for 
which the corresponding percentages of reduction are 8–13 points 
lower.

With regard to the second control design objective of introduc-
ing no negative effects in the structural vibration response of the 
individual buildings, the graphics of maximum absolute interstory 
drifts (presented in Figs. 8 and 9) show that, for building 1, the best



Table 1
Percentages of reduction in maximum interbuilding approaches with respect to the
uncontrolled response.

Story 1 2 3 4

Full State LQR 50.8 51.0 51.9 52.5
Full State ETP 44.5 42.7 43.7 47.5
Local ETP 54.7 56.2 56.2 55.7

Table 2
Percentages of reduction in maximum absolute interstory drifts with respect to the
uncontrolled response for building 1.

Story 1 2 3 4

Full State LQR 27.6 18.5 6.2 7.5
Full State ETP 17.9 9.9 5.0 �8.1
Local ETP 28.3 22.1 7.9 6.6

Table 3
Percentages of reduction in maximum absolute interstory drifts with respect to the
uncontrolled response for building 2.

Story 1 2 3 4 5

Full State LQR 25.3 28.1 28.8 18.6 7.3
Full State ETP 31.8 36.4 27.0 19.6 16.6
Local ETP 20.8 22.5 23.7 11.4 �3.7

Table 4
Maximum absolute control efforts (N).

Controller Full State LQR Full State ETP Local ETP

max06t<1ju(t)j 0.64 � 106 1.07 � 106 0.62 � 106
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Fig. 9. Maximum absolute interstory drifts in building 2.
results are achieved by the Local ETP configuration. However, the 
uncontrolled seismic response is slightly exceeded by the response 
corresponding to the Local ETP configuration for the fifth story of 
building 2 (see Fig. 9). Something similar happens for building 2. In 
this case, the best results are obtained by the Full State ETP con-
figuration, but again the uncontrolled seismic response is also 
slightly exceeded by the response corresponding to the Full State 
ETP configuration for the fourth story of building 1 (see Fig. 8). 
Considering the two-building system as a whole, the best results 
correspond to the Full State LQR configuration, which attains an 
appreciable reduction of the interstory drifts peak values for all the 
stories in both buildings without exceeding in any case the values 
corresponding to the Uncontrolled configuration. The percentages of 
reduction in maximum absolute interstory drifts with respect to 
the uncontrolled response presented in Tables 2 and 3 provide a 
more detailed description of the results achieved by the different 
controlled configurations. The negative values in these tables 
indicate the cases where the uncontrolled response is exceeded by 
the response of the corresponding controlled configuration.

An overall consideration of the reduction in interbuilding 
approaches, the reduction in interstory drifts for both buildings,
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Fig. 8. Maximum absolute interstory drifts in building 1.
and the maximum absolute control efforts displayed in Table 4, 
clearly indicate the excellent performance of the Local ETP config-
uration which, despite its simplicity, achieves levels of seismic pro-
tection similar to those provided by the Full State LQR configuration, 
and requiring also similar levels of control effort. However, it must 
be highlighted the singular characteristics of the Local ETP 
configuration which, according to Remark 9, can be implemented 
by a passive damper and, consequently, can be operated without 
sensors, with null power requirements, and no com-munication 
system.

Remark 10. Looking at the numerical results presented in this 
subsection, it becomes quite clear that the Local ETP configuration 
produces better results than the Full State ETP configuration. It 
should be noted, however, that these results do not contradict the 
optimality of the state-feedback energy-to-peak controller com-
puted in Section 4.1.2, since the optimality of this controller refers 
to minimizing the energy-to-peak norm given in Eq. (39), and this 
fact does not imply a better performance in reducing the 
interbuilding approach or the interstory drift peak values.
5. Conclusions and future directions

In this article, a novel approach to the problem of structural
vibration control for multi-structure systems has been presented.
The new perspective comprises conceptual, computational, and
methodological aspects: Conceptually, the attention is primarily
focused on the interactions between adjacent substructures, rather
than on the vibrational response of the individual substructures.
Computationally, recent advances on static output–feedback
control are used to compute simple and effective controllers. Meth-
odologically, decentralized velocity-feedback control design strate-
gies are used to design optimal passive-damping systems. To
illustrate the main ideas, a control system for the seismic protection
of two adjacent buildings linked by a single actuation device has
been designed, and numerical simulations have been conducted to
assess the effectiveness of the proposed controller with positive re-
sults. Although no accurate nor general conclusions can be drawn
from such simplified models, the obtained results clearly indicate
that the proposed approach is a promising research line that cer-
tainly deserves deeper attention and further research effort. In par-
ticular, the following four issues are of special interest: (1)
Considering more advanced control methodologies to include some



practical aspects, such as limited frequency domain [29], actuation 
saturation [24,30], or actuation failures [25,31]. (2) Extending the 
study to more complex multi-structure systems, which may include 
three or more adjacent substructures [17]. (3) Considering more 
complex actuation schemes, which can include interstructure actu-
ation devices together with actuation devices implemented in the 
individual substructures [16,17], and also optimal design of passive 
actuation systems [20]. (4) Providing more general and effective 
methods to overcome the initial unfeasibility of the optimization 
problems with Linear Matrix Inequality constraints associated to 
the design of static output–feedback controllers.
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