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Abstract— We address a cooling energy management problem
in a multi-building setting where buildings need to maintain
comfort conditions for the occupants by keeping their zones
temperature within a certain range. To this purpose, each one
of them has its own chiller and is connected to a shared
cooling network. The goal is to minimize the overall district
electricity cost over some finite time horizon by optimally setting
the temperature set-points in the buildings and the energy
exchange with the cooling network, compatibly with comfort
and actuation constraints, while accounting for uncertainty,
mainly due to outside temperature, people occupancy, and solar
radiation. To this purpose, a distributed version of the scenario
approach to stochastic constrained optimization is adopted,
which allows to guarantee by design a predefined robustness
level of the obtained solution against uncertainty.

I. INTRODUCTION

One of the biggest challenges worldwide nowadays is the
increasing trend of electrical energy demand, and its impact
on the environment. Namely, residential and commercial
buildings account for 40% of the overall energy consump-
tion, [4]. In European countries, out of this 40%, a 76% frac-
tion is spent for comfort in buildings and heating, ventilation
and air conditioning in particular, [3]. This calls for suitable
energy management strategies for building thermal control,
so as to minimize electric energy consumption, subject to
actuation constraints. Studies in this direction include, but
are not limited to, [6], [7], [8], [9], [10], [11], [12].

Only a few contributions address the multi-building case,
[5], [2]. When dealing with a district network set-up where
multiple buildings cooperatively aim at reducing the elec-
trical energy consumption and associated cost while sharing
resources, a distributed approach can be adopted. This allows
to cope with privacy issues when buildings are willing
to cooperate but not to share their consumption profiles.
Also, the computational effort involved in the distributed
computation of the optimal energy management strategy is
reduced if compared with a centralized solution for large
scale networks. Stochastic disturbances, e.g., outside tem-
perature, people occupancy, and solar radiation, affecting
the building thermal energy request should be accounted for
when devising an energy management strategy. Given that a
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robust approach where constraints are enforced for all dis-
turbance realizations is often computationally impracticable,
and possibly even infeasible, here we opt for a solution which
is guaranteed to satisfy constraints for all disturbances except
for a set of a-priori defined probability ε ∈ (0, 1).

In particular, we adopt a data-driven approach to robust
optimization that is known in the literature as scenario
approach (see e.g. [1]) where robust constraints are replaced
by a finite number of constraints, one per observed/extracted
value of the uncertain parameter (scenario). The scenario
approach has been already proposed for energy management
of a building in, e.g., [16], but, to the best of our knowledge,
this is the first time that it is used in a multi-building
distributed set-up.

Interestingly, in our distributed approach, scenarios can be
extracted by each single building separately and do not need
to be exchanged among them in order to compute the optimal
strategy, thus avoiding the overload of the communication
network and preserving the privacy of local information.
More importantly, if the number of (local) scenarios is
appropriately chosen, then, with high confidence, the opti-
mal strategy for the locally extracted scenarios satisfies the
constraints also for unseen realizations of the uncertainty,
except for a set of probability smaller than or equal to ε.

The rest of the paper is organized as follows. In Section II
the grid-connected district network with multiple buildings,
each one equipped with its own chiller plant, and all of
them sharing a cooling network, is described. This involves
introducing a model of the district components (i.e., building,
chiller plant, cooling network) in terms of thermal energy
exchange and conversion of thermal energy into the corre-
sponding electrical energy request to the grid. In Section III,
we formulate the optimal energy management problem in
a stochastic setting so as to account for the disturbances
affecting the building thermal evolution. In Section IV a
distributed algorithm is described. Finally, a simulation study
is shown in Section V and concluding remarks are given in
Section VI.

II. DISTRICT NETWORK MODEL

The system under consideration is composed of multiple
buildings, each one is equipped with its own chiller plant
to guarantee a certain level of comfort for its occupants.
Moreover, the buildings are connected to a cooling network
through which they can exchange cooling energy. The goal
is to minimize the overall electrical energy cost for thermal
comfort of the building district over a one-day time horizon.



A. Model of the building

Following the work in [17], each building is divided into
Nz thermal zones and the one-day control time horizon is
discretized into M time slots of duration τ . The average
temperature of zone j is assumed to be set by a low-level
controller that is able to adequately track an appropriately
defined piece-wise linear reference profile Tz,j(k), Tz,j(0)
being the zone temperature at the beginning of the time-
horizon, and Tz,j(k) being the temperature at the end of time
slot k. We collect all building zone temperatures in vector
Tz(k) = [Tz,1(k) · · · Tz,Nz (k)]>. Let d(k) denote the
vector of disturbances (outside temperature, solar radiation,
and people occupancy) at the end of time slot k.

From [17, Section 2.1], the vector Wc = [Wc(1) · · ·
Wc(M)]> describing the cooling energy requested by the
building to track the temperature set-points of every zone
over the time horizon [1,M ] can be expressed as

Wc = AT (0) +B(d)u + C(d) +Dd, (1)

where T (0) is the building thermal state at the beginning
of the time horizon, u = [Tz(0)> · · · Tz(M)>]>, d =
[d(0)> · · · d(M)>]>, and A, B, C, and D are suitably
defined matrices, with B and C depending on d. Note that
Wc(k) is obtained as Wc(k) =

∑Nz
j=1Wc,j(k), Wc,j(k)

being the cooling energy requested by zone j.

B. Model of the chiller unit

The chiller unit converts electrical energy into cooling
energy. Following the derivations in [17, Section 2.2], the
electrical energy Wch,`(k) needed to produce a certain
amount Wch,c(k) of cooling energy during time slot k can
be obtained as a piece-wise affine convex approximation of
the Ng-Gordon model, [15]:

Wch,`(k) = max{mcWch,c(k) + qc}, (2)

with vectors mc and qc collecting the coefficients of the
affine pieces.

C. Model of the cooling network

Since the cooling network has a high thermal inertia, it acts
as a thermal storage, whose energy content can be described
as a first-order dynamical system S(k+ 1) = aS(k)− s(k),
where S(k) is the amount of cooling energy stored, s(k) is
the district overall energy exchange (s(k) > 0 if energy is
drawn, and s(k) < 0 if energy is injected in the network) in
the k-th time slot, and a ∈ (0, 1) is a coefficient that models
energy losses, [17, Section 2.3]. By unrolling the cooling
network dynamics over the time horizon [1,M ], we get

S = Ξ0S(0) + Ξ1s, (3)

where S = [S(1) · · · S(M)]>, s = [s(0) · · · s(M − 1)]>,
and Ξ0 and Ξ1 are suitably defined matrices.

III. THE OPTIMAL ENERGY MANAGEMENT PROBLEM

The district network is composed of m buildings, each
with its own chiller plant. For building i, denote with ui

the vector containing the temperature set-points of its zones
(as appearing in (1)) and with si the vector containing the
contribution of building i to the overall energy exchange of
the district in (3) so that s =

∑m
i=1 si.

The optimal energy management problem consists in
finding the values of ui and si, i = 1, . . . ,m, so as to
minimize the electricity cost along the time horizon [1,M ],
while satisfying comfort and actuation constraints. Due to
the presence of uncertainty, constraints need to be enforced
robustly.

Cost function: Let Ψ = [Ψ(1) · · · Ψ(M)]> be the vector
of the time-varying electric energy price over the reference
time horizon [1,M ]. Then, the electricity cost is given by

J =
m∑
i=1

Ji =

m∑
i=1

Ψ>W i
ch,`, (4)

with W i
ch,` = [W i

ch,`(1) · · · W i
ch,`(M)]> being the electric

energy needed by the chiller of building i to supply the cool-
ing energy W i

ch,c = [W i
ch,c(1) · · · W i

ch,c(M)]>, according
to (2). In turn, W i

ch,c is given by

W i
ch,c = W i

c − si,

where W i
c is obtained via (1) setting u = ui and T (0) =

Ti(0) and depends on Ti(0), ui, and d.
Note that d is a global uncertainty vector collecting all

disturbances (solar radiation, outside temperature, and people
occupancy) affecting all m buildings. Furthermore, note that
some of these disturbances (e.g., the outside temperature)
may be common to buildings that are close, while others
(e.g., people occupancy) may be local to each building.

Comfort constraints: The zone temperatures of each build-
ing should be maintained within some comfort range, i.e.,

umin
i ≤ ui ≤ umax

i , i = 1, . . . ,m. (5)

Actuation constraints related to the cooling network: For
each building, a limit is imposed on the amount of energy
exchange with the cooling network in each time slot. Also,
the energy stored in the network must be non-negative and
cannot exceed the network capacity. Therefore

|si| ≤ smax, i = 1, . . . ,m, (6)
0 ≤ Ξ0S(0) + Ξ1s ≤ Smax. (7)

Actuation constraints related to the chiller plant: Con-
straints are also imposed on the amount of cooling energy
required by every building, for each zone, in each time slot
of the control horizon. This energy should be positive due
to the fact that the chiller can provide cooling energy only.
Moreover, the chiller can provide a maximum amount of
cooling energy per time slot, which depends on the chiller
size and might be different from building to building. This



translates into

W i
c,j ≥ 0, j = 1, . . . , N i

z, (8)

0 ≤W i
ch,c ≤W

i,max
ch , (9)

for all i = 1, . . . ,m, where W i
c,j = [W i

c,j(1) · · ·
W i
c,j(M)]> is the cooling energy request of zone j in

building i, j = 1, . . . , N i
z , over [1,M ].

Constraints related to periodicity of the solution: Finally,
three additional closure constraints are imposed on the zone
temperature set-points, building thermal state, and network
energy content so as to obtain a periodic solution if distur-
bances were periodic. Constraints on the building thermal
state are imposed with reference to the average value of the
disturbances:

ui(M) = ui(0), i = 1, . . . ,m, (10)
Ti(M) = Ti(0), i = 1, . . . ,m, (11)
S(M) ≥ S(0), (12)

Ti(M) being the thermal state of building i at the end of
the horizon. The constraint on the network energy content is
useful to avoid depletion of the thermal storage in a myopic
finite-horizon perspective that does not account for the day
to follow.

Let Xi denote the set of constraints defined by (5), (6),
(8)–(11) that are local to building i plus the ones involving
si, i = 1, . . . ,m, in (7) and (12). Let z the optimization vec-
tor with components: {ui}mi=1, {si}mi=1, S(0), {Ti(0)}mi=1.
The uncertainty vector δ = d affects both the cost function
Ji in (4) and the constraint set Xi. Introducing an additional
optimization variable χi per building and enforcing

Ji(ui, si,d,Ti(0)) ≤ χi, (13)

we can replace (4) with
∑m
i=1 χi and move the uncertainty

δ to the constraint set Xi through the additional constraint
(13), jointly with the upper bound

χi ≤ χmaxi (14)

on the maximum electricity cost per building i as dictated by
the maximum chiller capacity. Denoting by Xi the constraint
set per building i obtained by enlarging Xi with (13) and
(14), and by x the optimization vector containing z and
{χi}mi=1, we can compactly formulate the energy manage-
ment problem as

min
x

m∑
i=1

hi(x) (15)

subject to: x ∈
⋂
δ∈∆

m⋂
i=1

Xi(δ),

where hi(x) = χi and we are minimizing the worst-case
electricity cost in the cooling district over all admissible
disturbances δ within the uncertainty domain ∆.

Algorithm 1 Distributed stochastic algorithm
1: Initialization
2: k = 0
3: Consider xi(0) ∈

⋂
δi∈Si

Xi(δi), for all i = 1, . . . ,m

4: For i = 1, . . . ,m repeat until convergence
5: xwi (κ) =

∑m
j=1 a

i
j(κ)xj(κ)

6: xi(κ+1) = arg min
xi∈

⋂
δi∈Si

Xi(δi)
hi(xi) + (κ+1)

2 ‖xwi (κ)−xi‖22

7: κ← κ+ 1

IV. SOLUTION VIA DISTRIBUTED ALGORITHM

Since in our case ∆ is a continuous set, problem (15)
is a semi-infinite constrained optimization problem and is,
therefore, hard to solve. In order to find a computationally
tractable solution, we use a sampled-based method that is
known in literature as “scenario approach”. To this end,
suppose that each building has available Ni realizations
(scenarios) of the uncertainty parameters and consider the
following optimization problem

min
x

m∑
i=1

hi(x) (16)

subject to: x ∈
m⋂
i=1

⋂
δi∈Si

Xi(δi),

where Si is the set of local scenarios. If Ni satisfies a suitable
bound as a function of ε and β as defined in [14], then,
with probability at least 1− β, the solution computed from
(16) is guaranteed to be feasible for (15) for all uncertainty
realizations δ, except for a set of probability at most ε, where
ε, β ∈ (0, 1) are selected by the user.

Since we aim at a distributed solution to (16), an iterative
approach based on proximal minimization is adopted. In
such an approach, an additive quadratic term is added to
the local objective function so as to enforce consensus
between local decision makers. Problem (16) can then be
solved via distributed computations, according to the iterative
Algorithm 1.

Algorithm 1 evolves as follows: At iteration κ = 0 each
building computes a tentative value for vector x. A possible
choice is that each building solves a local optimization prob-
lem without any additional term. At the generic iteration κ in
Algorithm 1, each building i computes the weighted average
xwi (κ) of its own tentative decision and that of its neighbors,
with aij(κ) > 0 only if building j transmits information
to building i, and aij = 0 otherwise (step 5). Then, each
building minimizes the sum of its local objective function and
a proximal term, which penalizes the distance between its
new decision and the previously calculated average (step 6).
The relative weight between the two terms in the sum is
regulated by the non-decreasing coefficient (κ+1)/2, which
drives the buildings towards consensus.

Under the following assumptions, the buildings reach
asymptotic consensus to one of the minimizers of the optimal



solution of (16), [14].
Assumption 1: For each i = 1, . . . ,m, the function hi(x)

and constraint set Xi(δ) are convex in x for any δ ∈ ∆, and⋂
δ∈S Xi(δ) is compact, for any finite set S of realizations

of δ ∈ ∆.
Indeed, since the electrical energy request W i

ch,` is a
piecewise-affine convex function of the cooling energy re-
quest W i

ch,c, and the latter one is linear in the optimization
variables, then the sets Xi(δ) are convex in x. The convexity
of hi(x) trivially follows from its definition. The compact-
ness condition follows from constraints (5)–(7).

Assumption 2: The constraint
⋂
δ∈S

⋂m
i=1 Xi(δ) must

have a non-empty interior for any finite set S of realizations
of δ ∈ ∆.
The reader is referred to [14] for additional assumptions on
the connectivity of the communication network.

Even though constraints (10) and (11) seem to violate
Assumption 2, constraint (10) can be removed by reducing
the dimensionality of the decision space using one decision
variable for both ui(0) and ui(M). As for constraint (11),
it can be used to express Ti(0) as an affine function of ui

(Ti(M) is in fact affine in Ti(0) and ui, see [17] for all the
details). The obtained expression can then be used to remove
the dependency of all other quantities on Ti(0), and, hence,
to finally remove constraint (11).

V. A NUMERICAL CASE STUDY

In this section we show some numerical examples where
the proposed energy management strategy is applied to a
three-building network district set-up. For further details the
reader is referred to [19].

A. Distributed management of the shared resource

Consider three medium-size office buildings, each with
its own chiller unit, sharing a thermal energy storage. All
the three buildings are 20 m long, 20 m wide, and 10 m
tall. Each of them is divided into 3 floors, each facade is
half glazed and the roof is flat. As for the three chillers,
they are all equal and modeled according to the Ng-Gordon
formula (see equation (21) in [17]) approximated as in (2)
and with maximum cooling energy W i,max

ch = 40 MJ. The
cooling network has a maximum capacity Smax = 540 MJ, a
maximum charge/discharge rate smax = 15 MJ within each
time slot, and a loss coefficient a = 0.99. The control horizon
was set to 24 hours and the time slot duration τ equal to 10
minutes.

The distributed stochastic Algorithm 1 was implemented
with Ni = 100 disturbance realizations extracted for each
building from the same stochastic disturbance models as-
suming independence between disturbances. The disturbance
realization for the outdoor temperature and short/long-wave
radiation are generated as in [18], where the method of func-
tional principal component analysis (FPCA) is employed,
although in a different context. The occupancy profiles
are instead generated using the model in [13]. We here
report them along with their mean value (blue thick line)
in Figure 1. The reader should note that past observation of

daily disturbances can be used in place of generating them
with the aforementioned procedure.

To show the evolution of the algorithm towards consensus,
we plot in Figures 2 and 3 the exchanges with the storage
s1, s2, s3, computed by the three buildings at iterations κ = 1
and κ = 50. In Figure 2 referring to iteration κ = 1, the
proxy term appears for the first time and thus imposes a
small penalty on the decisions of the buildings about the
storage usage. Consequently, the decisions of each building
are such that the others mostly charge the storage while the
local decision maker uses the stored energy. At iteration κ =
50 in Figure 3, the penalty term gains more importance and
the buildings let other buildings use the stored energy as well.
The algorithm was tested with three types of communication

structure between the buildings:

• complete network, where each building is connected to
the other two buildings at each iteration;

• connected network, where building 1 is directly con-
nected to buildings 2 and 3, while buildings 2 and 3
communicate indirectly via building 1, at each iteration;

• time-varying network, where every 3 iterations one
building becomes disconnected from the network, to
simulate temporary failures in the communication net-
work.

The corresponding number of iterations until convergence is
199, 434 and 722, respectively.

B. Robustness of the obtained solution

In this further test, we keep the same structure of buildings
and storage as previously defined. However, each building
has a different chiller now: a small (W 1,max

ch = 20 MJ),
medium (W 2,max

ch = 30 MJ), and big chiller (W 3,max
ch = 40

MJ). We will refer to the corresponding buildings respec-
tively as building 1, building 2 and building 3.
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Fig. 1. Disturbance realizations and their mean value (blue thick line) over
a one-day horizon.
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Fig. 2. Energy exchanges with the storage s1, s2, s3 (from top to bottom)
as computed by building 1 (red), building 2 (green), and building 3 (blue)
at iteration κ = 1
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Fig. 3. Energy exchanges with the storage s1, s2, s3 (from top to bottom)
as computed by building 1 (red), building 2 (green), and building 3 (blue)
at iteration κ = 50

The parameters ε, β for the probabilistic guarantees on
feasibility in [14] are set to the values: ε = 0.1, β = 10−6.
Figure 4 reports the optimal zone temperature set-points
for the three floors in the three buildings corresponding to
the consensus solution. We see that for each building, the
strongest pre-cooling is imposed to the top floor as it is the
most exposed to the disturbances. Figure 4 also shows that
building 1 (solid lines) tends to keep its zone temperature set-
points lower compared to the other two buildings so as to
better exploit the building inertia. This is due to the fact that
building 1 has a small chiller. In Figure 5 we see that building
1 is constantly drawing cooling energy from the storage
(si > 0), while building 3 supplies energy to the storage
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Fig. 4. Optimal zone temperature set-points for the 3 floors of building 1
(solid line), building 2 (dashed line), and building 3 (dash dot line).
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Fig. 5. Energy exchange between the storage and building 1 (red), building
2 (green), and building 3 (blue).

(si < 0) most of the time. In the late non-occupancy hours
(7-12 p.m.) building 3 supplies cooling energy to building 1
through the storage to meet the closure constraints (10)–(12),
while building 2 is not participating in the energy exchange
with the storage. Overall, it is as if the buildings were sharing
their actuation capabilities given by the chillers.

The obtained solution was feasible for 99.8% of a set
of 500 randomly generated disturbance realizations, corre-
sponding to a 0.2% violation, which is much less than the
value of 10% set for the probability of constraint violation
(ε = 0.1). Finally, in Figure 6, one can see the benefit of
introducing the cooling network compared to the solution
without it. Indeed in the former case the values assumed by
the COP are lower than in the latter case.
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VI. CONCLUSIONS

In this paper, distributed stochastic optimization is applied
to the problem of optimal energy management of a multi-
building system with reference to thermal control in presence
of a shared cooling network that creates the coupling. The
algorithm has various nice features: it preserves privacy
of information related, e.g, to the building consumption
profiles and actuation capabilities; computational load is
divided among the buildings; and some degree of robustness
against (temporary) failures in the communication network
is guaranteed. The framework exploited is very modular,
and applicable to different set-ups where, e.g., there are also
local storages, heating devices, renewable power generation
sources like photovoltaic panels, shared chiller units, etc.
Further work is needed to analyze the behavior of building
districts with delayed communication links.
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