
Analysis of spatio-temporal mobile phone data:
a case study in the metropolitan area of Milan

Piercesare Secchi · Simone Vantini · Valeria Vitelli

Accepted: 19 December 2014 / Published online: 15 January 2015

P. Secchi · S. Vantini
MOX - Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32,
20133 Milan, Italy
e-mail: piercesare.secchi@polimi.it

S. Vantini
e-mail: simone.vantini@polimi.it

V. Vitelli (B)

Oslo Center for Biostatistics and Epidemiology, Department of Biostatistics,
University of Oslo, Sognsvannsveien 9, Domus Medica, 0372 Oslo, Norway
e-mail: valeria.vitelli@medisin.uio.no

http://crossmark.crossref.org/dialog/?doi=10.1007/s10260-014-0294-3&domain=pdf


1 Introduction

The metropolitan area of Milan is located in Northern-Italy and, with its 7.4 million 
inhabitants, is the fifth largest metropolitan area in Europe after the Ruhr, Moscow, 
Paris, and London. It includes the nine provinces of Milan, Bergamo, Como, Lecco, 
Lodi, Monza-e-Brianza, Novara, Pavia, and Varese. It is characterized by a very high 
concentration of working activities (nearly 10 % of the entire national Italian gross 
domestic product comes from this area, providing a per-capita GDP 50 % higher than 
the national average) but also of residential activities (the province of Milan is the 
most populated in Italy, with more than 1,000 inhabitants per km2, more than five 
times the national average). The municipality of Milan, located in the center of the 
metropolitan area, and quite identifiable with the area included within the highway 
ring-road, is of course the main attractor of the region. Nearly 1.3 million people live 
there but every working day its population increases nearly 50 % since 600 thousand 
persons commute from the metropolitan area. This large number of commuters is 
mainly due to the lack of housing within the municipality; this, together with lack of 
important investments in improving the transport system in the last decades, has 
generated a critical situation in terms of population density dynamics. Indeed most 
roads connecting the municipality of Milan with the metropolitan area have reached 
their saturation level with peaks of the traffic/capacity ratio up to 150 % during rush 
hours (see OECD 2006a, b).

OECD identifies housing, transport, and congestion as the bottlenecks for the 
future growth of the Milan metropolitan area. These factors seem to badly affect the 
well-being of the city from many perspectives: (i) pollution (Milan is the second most 
air-polluted city in Europe after Moscow), (ii) economy (the difficulty in mobility of 
people and goods is estimated to damp the output of the area of more than 4%), and, 
of course, (iii) demography (while the population of the metropolitan area is growing 
the population of the municipality of Milan is decreasing; in 1971 nearly 1/2 of the 
population of the province of Milan lived within the municipality, in 2001 only 1/3).

In recent years a congestion charge has been introduced, the regional railway net-
work has been fully integrated, three new highways and two new subway lines are under 
construction, and a few bike- and car-sharing initiatives have been promoted. The Green 
Move project, which the present research is part of, is among these initiatives. Green 
Move is an interdisciplinary research project financed by Regione Lombardia involving 
different research groups at Politecnico di Milano and focused on the development of a 
vehicle sharing system based on the concept of “little, electric and shared vehicles”. This 
work is a first attempt to gather information about population density dynamics in the 
metropolitan area of Milan from mobile network data belonging to the Telecom Italia 
database. In a long term perspective this information will



be used to optimally locate vehicles and docking stations of the car-sharing network.
The possible use of this information is however much wider. Large scale quantitative
information on human population density dynamics is of extreme interest to the urban
planner, the traffic flow being functionally related to the porosity and the permeability
of the urban texture. The same information may, of course, help the city manager, for
instance to locate ambulances and police patrols at a certain time in the most suited
locations, or to maximize the public exposition of alerts relevant to the well-being of
the community.

In the Telecom Italia database, the metropolitan area of Milan is partitioned into a
uniform lattice S0 of 97×109 sites. In each site, the average number of mobile phones
simultaneously using the network for calling is provided every 15min for 14days. This
quantity is called Erlang and, at a first approximation, can be considered proportional
to the number of active people in that site at that time, thus providing information
about population density dynamics. Technically the Erlang Ex j relevant to the site
x ∈ S0 and to the j th quarter of an hour is computed as

Ex j = 1

15

Q∑

q=1

∣∣∣T q
x j

∣∣∣, (1)

where Tx
q
j indicates the time interval (or union of intervals) in which the qth mobile 

phone is using the network for calling while moving within site x and during the
j th quarter of an hour; |Txqj | indicates its length in minutes. The number of potential 
phones using the network is indicated with Q. Equation (1) represents the formula
actually in use by the mobile company for computing Ex j , but its meaning is better
captured by the equivalent representation

Ex j = 1
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∫ 15 j

15( j−1)
Nx(t)dt, (2)

which shows that Ex j is the mean over the j th quarter of an hour of the number Nx(t) 
of mobile phones using the network within site x at time t, measured in minutes. 
The equivalence of representations (1) and (2) is easily proved through the following 
identities
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The Erlang data we deal with are recorded every quarter of an hour, from March
18th, 2009, 00:15, till March 31st, 2009, 23:45. Indeed, in some sites of the lattice the
entire temporal profile of the Erlang values is missing, while in other sites only some
values are missing or non-admissible since they are negative (and they are treated
as missing values). Hence, we restrict the analysis to a non-uniform time grid with
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Fig. 1 In the top panel, the aggregated Erlang of the investigated area as a function of time. The solid 
vertical lines are drawn at midnight of each day, and the dotted vertical lines at noon. The first day is 
Wednesday March 18, 2009. In the bottom panel, a map of the region covered by the lattice of the Telecom 
Italia database

p = 1,308 elements, each element of the time grid being relative to a quarter of
an hour for which an Erlang measurement has been observed in at least one site of
the lattice. The lattice S0 covers an area of 757 km2, reported in the bottom panel of 
Fig. 1, and included between latitude 45.37◦ and 45.57◦ North and longitude 9.05◦
and 9.35◦ East. It is divided  in |S0| =  N = 10,573 approximately rectangular sites 
of



size 232 m× 309 m. Overall, 13,829,484 records are available, among which 
110,475 are missing. The data set at hand can be genuinely considered an instance of 
spatially-dependent functional data, because of the high within-unit sample size and 
the very high signal-to-noise ratio (see Ke and Wang 2001). To our knowledge, this is 
the first attempt at the exploration of Erlang data with the methods provided by 
Functional Data Analysis (see Ramsay and Silverman 2005). To have a first idea of 
these data, in the top panel of Fig. 1 the aggregated Erlang for the investigated area, ∑

x∈S0 
Ex j , is reported as a function of time, measured in minutes. A first inspection 

shows some global
features such as the day/night effect and working/weekend day effect. The aim of the 
analysis is to identify these global features together with the local ones, more subtle 
to detect and possibly associated to particular subregions of the investigated area.

The Erlang data are progressively arousing the enthusiasm of the urban planners’ 
community (Becker et al. 2011; Calabrese et al. 2011; Manfredini et al. 2015). In this 
work we aim at using Erlang data for segmenting the metropolitan area of Milan into 
subregions that share the same activity pattern along time in terms of population 
density dynamics. To this end, Erlang data need to be properly decomposed to point 
out the relevant spatial and temporal dynamics. More specifically, we propose to 
integrate a Treelet analysis for dimensional reduction (see Lee et al. 2008) with a 
Bagging Voronoi strategy for the exploration of spatial dependence (Secchi et al. 
2013). Even though the previous work described in Secchi et al. (2013) shares the 
same philosophical approach, both the purpose of the analysis and its methodological 
details are different: indeed in Secchi et al. (2013) the focus is on clustering spatially 
dependent functional data, while here we aim at dimensional reduction of spatially 
dependent signals. In the present context some specific methodological challenges 
arise, whose solution has to be integrated to enrich the previously proposed method.

The rest of the paper is structured in five sections. In Sect. 2 the methodology used 
to perform dimensional reduction of spatially dependent functional data is presented. 
In Sect. 3 the site-wise temporal smoothing of time-varying Erlang data through a 
suitable Fourier expansion is described. In Sect. 4 the results of the analysis of the 
Telecom Italia database are shown. In Sect. 5, we draw some conclusions and we 
trace possible directions for future research. Finally, in Sect. 6, the Supplementary 
material available online is briefly described: it consists in a simulation study 
conducted to address some specific methodological issues.

2 Data analysis: methodology

Erlang data can give insight on different aspects of the urban area they are referred to, 
and their analysis can be developed with various scopes: the segmentation of the area 
into districts characterized by homogeneous telephonic patterns; the identification of 
a set of “reference signals” able to describe the different temporal patterns of use of 
the mobile phone network; the description of the influence of each detected 
telephonic pattern in each site of the lattice.

Let Ex(t) be the random Erlang value at site x ∈ S0 and time t. We consider an 
additive model where Ex(t) is represented by the value at t taken by a limited number K 
of time-varying functions {ψ1,...,ψK }, common to the entire lattice S0, and coupled



with the values at x taken by K latent random fields {D1, . . . , DK } indexed by the
sites of S0:

Ex(t) =
K∑

k=1

Dk(x)ψk(t) + ε. (3)

The random error term ε is assumed to be independent of {D1, . . . , DK }, with zero
mean and bounded variance.

Model (3) is often assumed in the context of reduced basis representation methods,
like Functional Principal Component Analysis (FPCA) and Independent Component
Analysis (ICA). The important difference here stands in the fact that we introduce
spatial dependence, through the random fields {D1, . . . , DK } generating the scores of
the basis expansion.

Model (3) implies the following regression model for the collection {Ex(t)}x∈S0 of
time profiles belonging to our Erlang dataset,

E [Ex(t)|D1 = d1, . . . , DK = dK ] =
K∑

k=1

dk(x)ψk(t), (4)

for x ∈ S0 and t ∈ [0, T ]. Details on the smoothing preprocessing of the data are 
described in Sect. 3. The time-varying functions {ψ1, . . . , ψK } are unknown, each 
function describing a time profile for mobile phone activity. The surfaces {d1, . . . , dK } 
are the unobserved realizations of the random fields {D1, . . . ,  DK }. The K values 
{d1(x), . . . , dK (x)} represent the contributions to the Erlang time profile Ex of their 
coupled time-varying functions. The other way round, the K time-varying functions 
{ψ1, . . . , ψK } express the evolution in time of the coupled surfaces. Estimation and 
interpretation of these two sets of functions is of interest to the urban planner, since 
they jointly describe both people behavior in time and population density dynamics 
in space.

2.1 Dimensional reduction: a short tutorial on Treelet analysis (TA)

We first consider the problem of estimating the set of functions {ψ1, . . . , ψK }. This
means finding a parsimonious description of the sample of Erlang time profiles 
{Ex(t)}x∈S0 via a finite set of reference profiles. For the moment we are not con-
sidering the spatial dependence which is intrinsic in our data set: we will deal with it 
in the next subsection.

Many approaches are commonly considered to perform dimensional reduction of 
functional data, the most common being undoubtedly FPCA. Even though FPCA is 
a powerful method to find optimal subspaces for representing data, it presents the 
drawback of being a global method, not suitable for multi-resolution analysis, since 
each basis element most often results in a linear combination of all the primitive 
variables. On the other hand, wavelets (see Mallat 1989) are commonly used to generate 
a localized and multi-scale basis for data representation. Their main limitation is that
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the wavelet basis is not data-driven, since basis elements are fixed, regardless of the 
data.

The use of a treelet basis, introduced in Lee et al. (2008), is an efficient and recent 
approach that avoids these drawbacks: treelets are a multi-scale data-driven basis 
yielding a hierarchical tree that, at each level, represents data through an orthonormal 
basis. This data-driven basis seems the most suited to the analysis of Erlang data, 
which present extremely localized functional features, since treelets have been origi-
nally designed and developed for treating sparse unordered data. Their property is to 
have a hierarchical structure, since they are a multiscale orthonormal basis indexed 
on a hierarchical tree. Indeed, as in multi-resolution analysis, treelets provide a set of 
“scaling functions” defined on the nested subspaces RJ = V0 ⊃ V1 ⊃  · · ·  ⊃  VJ , and
a set of orthogonal “detail functions” defined on residual spaces {W j } j 1, where 
V j ⊕ W j = V j−1 for all j = 1, . . . ,  J . We remark that treelets are v

=
ery close 

to wavelets, even though they are not a wavelet basis. Indeed, in treelet computa-
tion, the wavelet approach is mixed with principal component analysis, which is 
hierarchically performed on the couple of most correlated variables at any given 
level. At each level of the tree, these are identified and replaced by a coarse-grained 
sum variable, and by a residual difference variable: the new variables are com-
puted by a local principal component analysis in two dimensions. Difference vari-
ables are then stored, and only sum variables are processed at higher levels of the 
tree.

More precisely, consider a generic functional sample χ1, . . . , χN and J time 
instances t1, . . . , tJ . The algorithm described in Lee et al. (2008) is initialized with the 
sample design matrix X ∈ RN×J . In our functional specification, X is the evaluation 
matrix obtained by setting Xi j  = χi (t j ), for i = 1, . . . ,  N and j = 1, . . . ,  J . In the
language of Treelet analysis, for each j = 1, . . . ,  J, we interpret χ1(t j ), . . . , χN (t j ) 
as a sample from the variable χ(t j ). Note that in most functional data analyses, each 
function χ is observed only at discrete time points, often with error. It is thus common 
to identify the set of functions χ1, . . . , χN by properly smoothing these discrete data 
and then evaluating each function on the same suitable time grid t1, . . . , tJ . We will 
give more details on the smoothing of Erlang data in Sect. 3.

After initializing the set of sum variables with the original variables χ(t1),  . . . χ(tJ ), 
the algorithm proceeds in the construction of the tree by removing at each iteration 
the two most correlated variables from the set of sum variables, and by replacing them 
with the associated first principal component. The second principal component, i.e. the 
difference variable, is stored along iterations. The algorithm is stopped when the set 
of sum variables is empty, thus returning the set of difference variables {ϕ1, . . . , ϕJ }, 
each represented by a vector in RJ . In our functional specification, the vectors of this 
set are interpreted as the evaluation of a set of functions {ϕ1(t), . . . , ϕJ (t)} at time 
instances t1, . . . , tJ . For further details on treelet decomposition see Lee et al. (2008).

The output of the algorithm allows for the choice of any subset of difference vari-
ables, which in turn will generate a proper linear subspace of RJ . For instance, the 
first L ≤ J difference variables generate the space W1 ⊕ . . .⊕WL . In our application, 
the estimation of the set of functions {ψ1(t), . . . , ψK (t)} is indeed accomplished by 
using the complete treelet basis {ϕ1(t), . . . , ϕJ (t)}, according to a criterion detailed 
in the next subsections.



2.2 Bagging Voronoi Treelet analysis (BVTA)

The model expressed in Eq. (4) relates the observed functional signal to a linear 
combi-nation of a set of time-varying functions, each time-varying function 
contributing to the signal observed in a specific site of the lattice according to the 
value assumed in that site by a coupled surface. We can exploit the strategy described 
in the previous subsection and based on treelet decomposition for decoupling 
observed functional data into their constitutive parts. Indeed, we can directly apply 
the treelet basis decomposition to the N -dimensional sample of Erlang data 
{Ex(t)}x∈S0 , and then select a K -dimensional subset of the complete treelet basis as 
an estimate for {ψ1(t), . . . , ψK (t)}. The cou-pled surfaces {d1(x), . . . , dK (x)} will 
then be obtained by site-wise projection of the Erlang data on the estimates of 
{ψ1(t), . . . , ψK (t)}. In the rest of the paper, we will refer to this strategy as Treelet 
analysis (TA).

The drawback of this approach is that it does not take into account spa-
tial dependence, neither in the estimation of {ψ1(t), . . . , ψK (t)}, nor in that of 
{d1(x), . . . , dK (x)}. Due to the continuity in space of the phenomenon they capture, 
spatial dependence is intrinsic to the Erlang data. Hence, we develop a novel 
approach for the identification of the functions ψ and the coupled surfaces d by 
integrating the treelet decomposition with a proper treatment of spatial dependence. 
A comparison between this novel approach and TA for dimensional reduction of 
functional data indexed by a lattice is discussed in the Supplementary material (see 
the description of the Supplementary material in Sect. 6) in the light of the results of 
simulation studies.

We will take into account spatial dependence by following a Bagging Voronoi 
strategy along the lines illustrated in Secchi et al. (2013). The rationale beyond this 
strategy is simple, but effective: (i) replace the original data set with a reduced one, 
composed by local representatives of subsets of data belonging to neighborhoods 
covering the entire investigated area; (ii) analyze the local representatives; (iii) repeat 
the previous analysis many times for different reduced data sets associated to 
different randomly generated systems of neighborhoods, thus obtaining many 
different weak formulations of the analysis; (iv) finally, bag together the weak 
analyses to obtain a conclusive strong analysis.

At each iteration of the first part of the algorithm, called Bootstrap Step, we 
generate a partition of the considered region in random neighborhoods, which are 
used to com-pute local representatives. Each representative is a summary of the data 
belonging to the same element of the partition, and it is computed as a weighted mean 
with Gaussian isotropic weights [i.e., by performing spatial smoothing Banerjee et al. 
(2004)], even though other strategies are conceivable (Secchi et al. 2013). The 
sample of functional local representatives exploits a specific structure of spatial 
dependence, and it is usu-ally less noisy and less spatially dependent (Secchi et al. 
2013). By applying the TA strategy to the sample of local representatives, one obtains 
a coarse estimate of a refer-ence basis. The coarse estimate of the coupled surfaces is 
then obtained by projecting each local representative on the estimated basis, and by 
assigning the corresponding scores to all sites of the lattice belonging to the element 
of the partition associated to the considered representative. After B replicates of this 
weak analysis, the intermediate output of the algorithm consists of:



– a collection of reference bases
{
ϕb
1 (t), . . . , ϕ

b
J (t)

}B
b=1;

– a collection of sets of surfaces
{
db1 (x), . . . , dbJ (x)

}B
b=1.

The second part of the algorithm, the Aggregation Step detailed in the next subsec-
tion, bags together this intermediate output obtaining a final reference basis, estimate 
of the time-varying functions {ψ1(t), . . . , ψK (t)}, and an estimate of the coupled sur-
faces {d1(x), . . . , dK (x)}. Larger values of B imply a higher accuracy of the final 
estimate.

The proposed procedure is sketched in the pseudocode scheme in Fig. 2. We named 
this procedure Bagging Voronoi Treelet Analysis (BVTA), since it is based on bagging, 
it uses Voronoi tessellations to compute random partitions of the considered area, and 
it uses treelets to perform dimensional reduction.

Note that one has to fix some parameters in advance: n, the number of elements of 
each random partition and of the sample of functional local representatives; B, the 
number of bootstrap replicates; d(·, ·), the most proper metric to measure distances in 
the considered region. While B can be tuned in order to achieve the desired accuracy, 
and d(·, ·) has to be chosen according to the particular application at hand, the choice 
of n is somehow more tricky and has great influence on the algorithm performances. 
In Secchi et al. (2013) the tuning of this parameter has been extensively studied in the 
light of simulations, and for the specific purpose of minimizing misclassification 
error. Nevertheless, the study pointed out a quite general conclusion, which is valid 
also when the Bagging Voronoi strategy is employed for purposes different from 
clustering, as it is the case for the present paper. The optimal choice of n is the one 
that finds a good compromise between variance and bias: as n decreases, noise is 
reduced in the local representatives sample, since local representatives are weighted 
sample means calculated on sub-samples that are larger on average (minimal 
variance), but at the same time the associated Voronoi tessellation becomes coarser, 
thus including less homogeneous data in the computation of local representatives 
(maximal bias). On the other hand, as n increases, the resulting Voronoi tessellation 
becomes more and more refined, being able to catch very localized spatial features 
(minimal bias), but at the same time the variability reduction due to spatial smoothing 
is smaller (maximal variance). The optimal value of n determined by this trade-off 
depends both on the strength of spatial dependence, and on the distribution of the 
spatial signal generating the functional data. In Secchi et al. (2013) a tuning criterion 
for this parameter had been proposed for the purposes of clustering; in Sect. 4 we 
propose a criterion based on the total average variance, and more suited to the 
purposes of dimensional reduction. More insight on this novel criterion is given in the 
Supplementary material (see Sect. 6), where its performance is discussed and 
analysed in the light of the results of simulation studies.

2.3 Aggregation step: 1-median alignment for basis matching

We will here give the details of the Aggregation Step in the BVTA algorithm sketched in 
Fig. 2, whose aim is to aggregate together the B coarse results obtained in the Bootstrap 
Step. In the context of the present analysis, this means aggregating sets of treelet basis



Fig. 2 Pseudocode scheme of the BVTA algorithm

functions and of their coupled surfaces. The aggregation strategy illustrated in the 
following lines is a discrete variation of the Procrustes alignment procedures described 
for instance in Ramsay and Li (1998), James (2007), Kaziska and Srivastava (2007), 
Sangalli et al. (2009).
The BVTA algorithm is centered on data-driven bases, i.e., treelets. Hence, a match-ing 

of the elements of the B different bases generated by the Bootstrap Step of the



algorithm is in order before computing the final reference basis. Different approaches 
to basis matching are possible. We develop a procedure for 1-median basis alignment, 
which jointly computes the reference basis from the B coarse bases, while also 
reorder-ing their elements. This procedure is inspired by the joint clustering and 
alignment method described in Sangalli et al. (2010), where a Procrustes continuous 
alignment is integrated in a k-mean clustering strategy, to jointly meet the two tasks 
of assigning curves to a group, while simultaneously aligning them to the 
corresponding group prototype. In the context of bases matching, each object is a 
multivariate functional data (one of the coarse bases), and we look for the unique 
prototype (the reference basis) which best describes the set of functional objects, 
while also aligning their components, by permutations in the order of basis functions.

Consider the collection of all bases obtained in the Bootstrap Step, 
{
ϕ1
b, . . . , ϕb

J 
}
b
B 

1, and choose a proper measure d̃(·, ·) for the distance (or dissimilarity) between tw
= 
o 

bases, which in our application will be the L1([0, T ]; RJ ) distance. Both the choice 
of the L1 measure for computing the distance between bases, and the choice of the 
mul-tivariate functional median as reference basis, are motivated by the need of 
preserving in the aggregation step the sparse nature of treelets.

The 1-median basis alignment is an iterative algorithm, which is initialized by ran-
domly selecting a reference basis {ϕ̃[0]

1 , . . . , ϕ̃
[0]
J }, among the B coarse bases generated

by the Bootstrap Step of the BVTA algorithm. The following two basic steps are then
iterated until convergence (consider the l-th iteration, l > 0):

1. Alignment stepFor each of the B coarse bases, by permutation of their components,
find the best matching to the reference basis {ϕ̃[l−1]

1 , . . . , ϕ̃
[l−1]
J } according to the

measure d̃(·, ·). For b = 1, . . . , B, let {kb,[l]1 , . . . , kb,[l]J } be the permutation of the
order of the elements in the basis {ϕb

1 , . . . , ϕ
b
J } minimizing the distance to the

current reference basis;
2. Estimation step Given the B reordered bases, let the new reference basis be that

whose j-th element is

ψ̃
[l]
j = argmin

ϕ∈L1(T )

B∑

b=1

d̃(ψb
kb,[l]j

, ϕ), j = 1, . . . , J.

Since d̃(·, ·) is the L1([0, T ];RJ ) distance, the reference basis {ϕ̃[l]
1 , . . . , ϕ̃

[l]
J } is

the functional median of the B reordered bases.

The algorithm is stopped at iteration l̄ after two subsequent iterations with no
reordering of the basis elements, for all bases. Thefinal reference basis is thus identified
as {ϕ̃1, . . . , ϕ̃J } ≡ {ϕ̃[l̄]

1 , . . . , ϕ̃
[l̄]
J }.

For b = 1, . . . , B, set {πb
1 , . . . , πb

J } to be the final permutation {kb,[l̄]1 , . . . , kb,[l̄]J }
and let {d̃b1 (x), . . . , d̃bJ (x)} ≡ {db

πb
1
(x), . . . , db

πb
J
(x)}, for x ∈ S0. For j = 1, . . . , J,

we now compute the sample variance s̃2j of the sample {d̃bj (x)}x∈S0,b=1,...,B, whose
size is N × B. For estimating the time-varying functions {ψ1, . . . , ψK } we take the
K elements of the basis {ϕ̃1, . . . , ϕ̃J } associated to the K largest variances among
{s̃21 , . . . , s̃2J }, and we call these elements {ψ̂1, . . . , ψ̂K }.
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Fig. 3 Selection of 100 Erlang data, randomly drawn among the sites of the lattice, as a function of time.
The solid vertical lines are drawn at midnight of each day, and the dotted vertical lines at noon. The first
day is Wednesday March 18, 2009

Indeed, for each given x ∈ S0, the same indexes identifying {ψ̂1, . . . , ψ̂K } among
the elements of the basis {ϕ̃1, . . . , ϕ̃J , also point to a collection of K surface sets
among the sequence of surface sets {d̃ (x)}Bb=1.Let d̂k(x) be themean

1
b(

}
x)}bB=1, . . . , {d̃Jbof the k-th selected surface set, for

 k = 1, . . . ,  K . We take the surface {d̂k (x)}x∈S0
to be an estimate of the surface {dk (x)}x∈S0 coupled with the time-varying function ψk
(t).
Like in many other dimensional reduction methods, the right value for K is decided by 

giving consideration to the fraction of total variance explained by each component.

3 Data analysis: preprocessing

The Erlang data described in Sect. 1 are an instance of spatially dependent functional 
data, indexed by the sites of a spatial lattice. In each given site, the discrete sequence 
of Erlang values can be considered as a sampling of a continuous process in time (see 
Ke and Wang 2001), describing the average number of mobile phones using the 
network in that site, as expressed in Eq. (2). An example of the observed Erlang 
profiles along time is shown in Fig. 3: 100 sites have been randomly selected in the 
lattice, and the Erlang measurements recorded in each selected site have been plotted 
as a function of time. It can be observed in the picture that, beside a periodic behavior 
due to night/day alternation in the average use of mobile phone, Erlang data present 
strongly localized features. Moreover, the average intensity of the Erlang profile can 
be very different from one site to another.

Indeed, in each site of the lattice we observe a discrete version of the Erlang contin-
uous process, recorded approximately every quarter of an hour: due to discontinuities 
in the information provided by the network antennas, the Erlang measure is missing at 
some time instances, and hence the time grid of Erlang measurements is non-uniform. 
Moreover, some Erlang recordings are negative due to measurement errors, and should 
be treated as missing values. We thus need to choose a proper basis expansion to recon-
struct the functional form of the time-varying Erlang data, and to evaluate them on 
a common uniform grid of time values of dimension J = 200, before applying the 
methodology presented in Sect. 2.

For an extensive description of smoothing procedures for functional data we refer to 
Ramsay and Silverman (2005). In our application, we perform a site-wise smoothing
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Fig. 4 Average power spectrum P(h) obtained via site-wise smoothing of the Erlang measures with a
Fourier basis of dimension H = 200. Only the values of P(h) for h = 1, . . . , 100 are shown in the plot.
Dotted vertical lines are drawn for multiples of 7

of the Erlang data via a Fourier basis expansion, due to the evident seasonality in the
Erlang profiles. We set the period of the Fourier basis equal to 1 week: hence, the
reconstructed functional form of the Erlang profile for site x ∈ S0 is a function Ex(t)
such that

Ex(t) = cx0
2

+
H∑

h=1

[
axh cos(hωt) + bxh sin(hωt)

]
, (5)

where t ∈ [0; T ], ω = 2π/T and T = 60 × 24 × 7 is the period expressed in 
minutes. In the following, the periodic terms in the Fourier basis expansion oscil-
lating at frequency ω, 2ω, 3ω, . . . will be referred to as first, second, third, . . .  har-
monic, respectively. The coefficients c0

x, ah
x and bh

x, are estimated by means of least 
squares.

The basis dimension H should be carefully tuned: it has to be chosen large enough 
to ensure that the very localized features (sudden peaks, oscillations, . . .) which char-
acterize this kind of data (see Fig. 3) are properly caught by the smoothing procedure. 
To select the basis dimension, we analyze the power spectrum associated to the site-
wise smoothing of the Erlang data with a Fourier basis of large dimension H = 200. 
The power spectrum of the Fourier expansion of a signal represents the amplitude of 
the signal as a function of the frequency, and at the h-th frequency it is related to the 
amplitude of the h-th harmonic

Px(h) =
√

(axh)
2 + (bxh)

2. (6)

N

Hence, the more the h-th harmonic is relevant in the explanation of features occurring
in the data, the more Px(h) will be large. A local maximum in the power spectrum 
detects the frequency of a harmonic explaining relevant features in the data. When the 
power spectrum vanishes towards zero, there is no need to include higher frequency 
harmonics.

In each site we thus obtain a power spectrum from the site-wise smoothing of the 
Erlang measurements. We choose the most proper value of H by inspecting the shape of
the average power spectrum over all sites of the lattice, i.e., P(h) = 1 ∑

x∈S0 
Px(h).

The average power spectrum of the Telecom Italia database is reported in Fig. 4.



A graphical inspection of the plot makes it clear that the frequencies significantly con-
tributing to the Erlang time variation are the smaller ones (all less than 7), capturing 
differences among days or blocks of days (e.g., the working and weekend days varia-
tion), and the multiples of 7, capturing the recurring daily dynamics. Due to the huge 
dimension of the Telecom Italia database, we choose a basis of very high dimension, 
in order to be reasonably sure to catch all relevant localized features. The picture indi-
cates that, for frequencies higher than 100ω, the average power spectrum is negligible: 
we thus set H = 100 for subsequent analyses.

4 Data analysis: results

The smooth functions obtained by the preprocessing of the Erlang data are then ana-
lyzed along the method presented in Sect. 2. In particular, the analysis has been per-
formed for different values of the dimension n of the Voronoi tessellation, ranging 
from 50 to 2,500 elements. For each value of n, B = 50 random Voronoi maps have 
been used in the Bootstrap Step of the BVTA algorithm. The metric d(·, ·) for gener-
ating the random Voronoi maps is the Euclidean distance on the plane, after having 
flattened the inspected area using the international WGS84 UTM 32N geographical 
system map. Local representatives are identified as weighted means with Gaussian 
isotropic weights.

As discussed in Sect. 2, choosing the right value for n is a delicate issue, since the 
optimal value of this parameter is strongly related to the spatial dependence occurring 
between data recorded in different sites. In Secchi et al. (2013), the choice of n is 
driven by the idea that a good value for n would be the one providing stable results 
of the performed analysis across bootstrap replicates. In that work a cluster analysis 
is performed, and thus the concept of bootstrap stability refers to cluster assignment 
of each site across replicates. To measure stability the authors introduced a criterion 
that averages over the entire area a pixel-wise measure of the entropy of the cluster 
assignment distribution along bootstrap replicates. A thorough simulation study on the 
use of this entropy-based criterion as a strategy for the choice of n has been conducted 
in Secchi et al. (2013), where its performances are discussed and explored in the light 
of simulation studies.

Analogously to Secchi et al. (2013), we here define a measure of stability across 
replicates which is coherent to the aims of the present analysis. An intermedi-ate 
output of the BVTA algorithm consists of the collection of the B surface sets 
{d̃1b(x), . . . , d̃Jb (x)}bB 

1, each surface being coupled with an element of the refer-ence

basis {ϕ̃1(t), . . .
=
, ϕ̃J (t)}. Indeed the final estimates of the time-varying functions 

{ψ1(t), . . . , ψK (t)} and of their coupled surfaces {d1(x), . . . , dK (x)} are exclusively 

based on this intermediate output, that we therefore require to be stable with respect 
to the choice of n. To measure stability, for each site x S0 and j 1, . . . ,  J, we com-

pute the bootstrap variance of the sample {d̃ j
b(x)}bB 

∈
1. We then a

=
verage over x ∈ S0, 

and sum over j = 1, . . . ,  J. We call this quantity 
=
Total Average Variance (TAV): its 

minimization is the criterion driving the choice for n. A small value of TAV implies 
that for each site and for each element of the reference basis we attain stable scores 
across bootstrap replicates. A more thorough simulation study to show the validity
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Fig. 5 Total average variance (log scale) for the BVTA of the Erlang data as a function of n

in the use of the TAV criterion as a strategy for the choice of n in the context of the 
BVTA strategy is included in the Supplementary material (see Sect. 6). The results of 
the simulations show the goodness of this criterion for selecting n, and they also 
prove the better estimate of the time-varying functions {ψ1(t), . . . , ψK (t)} obtained 
with the selected n.

In Fig. 5 the logarithm of TAV is reported as a function of n. A minimum is observed 
for n = 850, that is thus the dimension of the Voronoi tessellation used to run the 
BVTA algorithm for the analysis of the Erlang data. This dimension of the Voronoi 
tessellation is associated to an average area of the Voronoi elements equal to 0.77 km2, 
that corresponds to the area of a circle of diameter nearly equal to 1 km. This indicates 
that spatial dependence is relevant up to this distance, and thus reveals 1 km to be the 
practical spatial range of our data.

The approach described at the end of Sect. 2.3 for selecting the right number K of 
treelets is visually captured by Fig. 6: the height of the bars in the figure corresponds 

to
fraction of the total variance s̃ j

2 explained by each treelet score, for j ≤ 60; for j > 60 
we may safely assume that treelets are representing only noise. By inspecting the 
plot, one is reasonably supported in setting a threshold for the fraction of total 
variance, leading to a possible value of K : for instance, if we set the threshold to 0.2 
%, this is overtaken by a couple of dozens treelets, which is therefore the selected 
dimension for the reference basis. It is worthy of notice that the time-varying 
functions thus selected, and their coupled surfaces, are also easily interpretable. We 
here discuss just four of them, that we deem to be particularly interesting for 
illustrating the peculiar properties of the analysis conducted by means of the BVTA 
algorithm:

– the general mobile phone activity along time function ψ̂1;
– the working/non-working time function ψ̂2;
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– the rush-hour time function ψ̂4;
– the International Fair at the Rho-Fiera exhibition site time function ψ̂9.

The first function corresponds to a global feature of our dataset, the second illus-

ψ ψ ψ ψ

ψ ψ ψ ψ

ψ

ψ

ψ

trates a static activity, the third one a dynamic activity, and the fourth a spot event 
concentrated in space and time. Figure 7 reports the temporal pattern of the basis 
elements { ˆ1(t), ˆ2(t), ˆ4(t), ˆ9(t)} over a week-period starting from Wednesday 
00:00 and ending with Tuesday 24:00. Full vertical lines separate different days while 
dotted lines are reported every two hours to help the reader. Their coupled surfaces 
{d̂1(x), d̂2(x), d̂4(x), d̂9(x)} are represented in Fig. 8. A value close to 0 in a partic-
ular site of the map means that the corresponding reference basis element does not 
significantly contribute to the Erlang signal measured in that site. On the contrary, a 
positive/negative large value on the map means that the corresponding reference basis 
element significantly contributes to the Erlang signal in that site, with sign coherent to 
the score sign. The 0-level contour lines are traced in bold. Figure 9 zooms on the city 
center of the previous maps. In the remaining part of the Section, we give more details 
on the interpretations of { ˆ1(t), ˆ2(t), ˆ4(t), ˆ9(t)} and of their coupled surfaces, 
with the aim of illustrating the type of information about the city dynamics that can 
be drawn from our analysis.

4.1 General mobile phone activity along time function ˆ1
The estimated surface {d̂1(x)} coupled with ˆ1 is reported in the top-left panel of 
Fig. 8. This map catches the urbanization of the area, clearly pointing out day-time 
low-density population areas and day-time highly-populated areas. We thus relate 
{d̂1(x)} to the average population density, and the reference basis element ˆ1 to the
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general mobile phone use. The general mobile phone activity along time function is 
the most important in terms of magnitude, in the sense that it is the one presenting 
the largest contribution to the Erlang signals of many highly active sites. It can be 
indeed detected even through much simpler analyses, that do not take into account 
spatial dependence, or even by simply looking at a random sample of curves (e.g., 
Fig. 3). As it is evident by inspection of Fig. 7 (top panel), this reference basis 
element is always switched on with positive sign with significant values between 
7:00 a.m. and 2:00 a.m. in working days and between 8:00 a.m. and 2:00 a.m. in 
weekend days. It describes daily and weekly periodicity. In particular it points out a 
larger activity during day-time with respect to night-time, a bi-modal behavior of the 
daily signal, and confirms Milan to be an attractor during the day-time of working 
days. This is clear from the lower level observed during the weekend.



Fig. 8 From top to bottom, and then from left to right, maps of the estimated surfaces {d̂1(x), d̂2(x),
d̂4(x), d̂9(x)} coupled to the reference basis elements reported in Fig. 7. The 0-level contour lines are
reported in bold

4.2 Working/non-working time function ψ̂2

Looking at Fig. 7 (second panel from the top), we notice that this function contrasts 
working-time (i.e., from 8:30 a.m. to 8:00 p.m. of working days) against non-working 
time (i.e., from 7:00 a.m. to 8:30 a.m. and from 8:00 p.m. to 2:00 a.m. of working days, 
and day-time of week-end days). Positive values on the relevant map (top-right panel 
in Fig. 8) indicate high activity during non-working-time and a reduced activity 
during working-time, and viceversa for negative values. The map clearly spots the 
historical center connected with a northeast offshoot toward the Central Railway 
Station, areas mostly devoted to tertiary activities, and where the resident population 
density is very low. Then, a donut-shaped area around the city center, mostly 
covering residential or leisure areas, emerges with high positive values. Moving 
further from the city center, the values of d̂2 tend to vanish except for some non-
working hours spots corresponding



ψ

Fig. 9 Zooms on the city center of the maps already shown in Fig. 8

to satellite towns right outside the city of Milan. Moreover, one can observe a working 
hours spot in the north direction corresponding to the Bicocca neighborhood, that is 
a renewed area in the outskirts of Milan mostly devoted to tertiary and to university-
related activities. This basis element presents the city center as an attractor during 
the working hours and the outskirts and the satellite towns as attractors during the 
non-working hours. This can possibly be explained by the daily population density 
dynamics, determined by movements of people from their residence to their working 
place and backward.

4.3 Rush-hour time function ˆ4
Positive scores with respect to this function point out areas where an high activity is 
present between 8:00 a.m. to 10:00 a.m. and 5:00 p.m. to 9:00 p.m., which correspond 
to the morning and evening rush hours (see the second panel from the bottom in Fig. 7).



ψ

Inspection of the coupled surface d̂4 in the bottom-left panel of Fig. 8, shows that 
areas particularly active during rush hours are concentrated around the third ring-road 
within the city (Circonvallazione Esterna), at the Central Railway Station, along 
arteries connecting the city with the satellite towns, along some segments of the 
highway ring-road, and in Linate Airport (the eastern spot on the map). It is also 
interesting to note the hole in the very city center corresponding to the congestion 
charge area, which is restricted only to local traffic during weekdays.

4.4 International fair at the Rho-Fiera exhibition site time function ˆ9
This function contrasts the Saturday activity carried on between 10:00 a.m. and 8:00 
p.m. and everyday dinner time (see the bottom panel in Fig. 7), and seems strongly
related to the activity, during non-working time, connected to the International Fair
at the Rho-Fiera exhibition site. This event has been held between the 18th and the
23rd March, 2009, at the Fiera Milano Exhibition Complex North-West of the city; the
activities related to this occasional but highly attractive event clearly affect the Erlang
measurements in the time period covered by our data. Indeed, in the bottom-right
panel of Fig. 8, the Fiera Milano Exhibition Complex can be easily located by the
positive peak in d̂9, while a corresponding negative peak is observed in the city
center. This is possibly explained in the light of the interpretation given to d̂2, by a
flow of people spending Saturday at the Exhibition site and dinner and after-dinner in
the city center.

5 Conclusions

In this work, a real case study concerning the dimensional reduction of spatially 
dependent functional data, describing the number of mobile phones simultaneously 
using the Telecom Italia mobile network for calling at a given time, has been 
described. This work is a first innovative attempt to gather information about 
population density dynamics in Milan from mobile network data belonging to the 
Telecom Italia database. We believe that the applicability and impact of the proposed 
analysis are broad, both to the purposes of the Green Move project and, more 
generally, for future urban planning and development.

The methodology developed to perform dimensional reduction of spatially-
dependent functional data is an innovative integration between a treelet analysis (see 
Lee et al. 2008) and the Bagging Voronoi strategy for the exploration of spatial depen-
dence (see Secchi et al. 2013), and it is thus named Bagging Voronoi Treelet Analysis. 
We exploit the potentialities of both techniques, improving on the results that can 
be obtained using the original methods alone. The method is proven useful in the 
applicative context of interest, and in a simulated scenario close to the real one (see 
the Supplementary material).

Further research developments concern both the treatment of spatial dependence, 
and the dimensional reduction technique. The former can be improved by 
considering, either in the random generation of the set of nuclei for the tessellation, or 
in the distance d(·, ·) used to compute the Voronoi elements, relevant information 
concerning the area under investigation. For instance, the diffusion tensor describing 
the traffic flow



could be used to define a city-adapted measure of distance, thus obtaining Voronoi
elements capable of “following” the flow of people. For what concerns the latter aspect,
the dimensional reduction strategy can be modified by removing the orthogonality
constraint implicit in the use of treelets for the construction of the reference basis.
Indeed we are currently working on the analysis of mobile network data by means of
Independent Component Analysis (Secchi et al. 2014), and on the integration of ICA
within the Bagging Voronoi strategy: this will be the focus of future work.

6 Supplementary material

The supplementary material to the present paper contains a detailed description of two 
simulation studies, conducted in order to investigate the properties and performances
of the method detailed in Sect. 2.

The simulations are aimed at supporting the use of TAV as a criterion for selecting 
the optimal value for n, and at checking whether the best estimate of the time-varying
functions is obtained for the selected value of n. Moreover, a comparison with the 
results obtained by a standard TA, which does not take into account spatial dependence, 
is also shown.

Both simulation studies are designed to support these claims in a simulated scenario 
as close as possible to the case study at hand, and where the functional patterns 
generating the data are complex enough to be untractable with standard parametric
models. In the first simulation, in order to evaluate the estimates provided by the 
TA and the BVTA strategies in optimal conditions, the time-varying component are
set orthogonal. The second simulation, instead, is aimed at testing the robustness 
of the BVTA strategy when the set of time-varying components is no longer a set 
of orthogonal functions. In both cases, the coupled spatial surfaces are generated
according to a Hidden Markov Random Field Model (Kunsch et al. 1995).
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