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Summary

Kalman filtering for linear systems is known to provide the minimum variance esti-
mation error, under the assumption that the model dynamics is known. While many
system identification tools are available for computing the system matrices from
experimental data, estimating the statistics of the output and process noises is still an
open problem. In fact, although some methods based on maximum likelihood and
correlation approaches have been proposed in the literature, it turns out that the exist-
ing techniques are either too computationally expensive or not accurate enough. In
this paper, we propose an alternative solution – tailored for process noise covariance
estimation and based on stochastic approximation and gradient-free optimization –
that provides a better trade-off in terms of performance and computational load. The
effectiveness of the method as compared to the state of the art is shown on a number
of recently proposed benchmark examples.
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1 INTRODUCTION

Kalman filtering is probably the most widespread tool for designing virtual sensors and state estimators in dynamical sys-
tems1,2,3. Within the linear framework, it can be shown that the Kalman filter provides the minimum variance state estimator,
under the assumption that the employed model accurately describes the real system dynamics. The model is characterized as a
stochastic dynamical system in the state-space form, that includes both a model of the process relating the inputs to the outputs
and a noise model accounting for both noise effects and unmodeled dynamics. Such noise model is a crucial complement to the
process model, which is typically the result of some approximations. This is even more true in practical applications where the
physics underlying the systems is unknown or too complex to model from first principles.

System identification4,5, namely the science of learning dynamical models from experimental data, plays a key role in such
conditions and has been extensively applied to compute the system matrices from data, resulting in several well-established
techniques. On the other hand, a relatively smaller effort has been devoted to characterize the noise model, which however
is a key factor affecting the quality of the state estimator6. In the Kalman filtering context, the noise model is expressed in
terms of the noise Covariance Matrices (CMs) acting on the state and output equations. In particular, while the variance of the
output noise can be roughly estimated by looking at the output spectrum, the process noise statistics are generally unknown,
given that the process noise model accounts for the unmodeled dynamics on which typically no prior knowledge is available. It
follows that, in many applications, tuning the process noise covariance matrix requires extensive experimental campaigns and
time-consuming trial-and-error procedures.
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Some research works in the literature have investigated the problem of jointly estimating the state and the noise covariance
matrices (CMs). The available approaches can be classified into two main categories. The feedback methods estimate simulta-
neously the unknown CMs and the state of the system by defining a vector of the extended state, which includes the parameters
of the unknown CMs. In feedback-free methods instead, the states are first estimated by a sub-optimal filter and then the predic-
tion error of the latter is used to calculate the CMs. The main drawback of feedback methods is the fact that the extended system
is nonlinear. Feedback-free methods are then usually preferred, in view of their usually lower computational burden. Moreover,
consistency and unbiasedness properties can often be shown to hold for such methods. Among feedback-free techniques, we
can distinguish between correlation-based methods, like7,8,9,10, and maximum-likelihood methods, such as11 and12. Overall
(see, e.g., the survey13 which carries out a full comparison), an accuracy/complexity trade-off applies to noise CM estimation
methods, in that some methods have good accuracy properties obtained at the price of a large computational burden, while
efficient methods have to settle for less accurate estimates.

The above observations led us to introduce a novel estimation method, based on stochastic approximation and gradient-free
optimization, which aims at obtaining a more balanced trade-off between estimation performance and computational load. The
main idea is to recast the estimation of the process noise CM as an optimization problem, whose objective function is defined
in terms of the existing relation between the unknown CM and the Kalman filter state estimation error. In this way, the search
for the minimum of the so-defined objective function actually corresponds to the search for the process noise CM that best
approximates the optimal behavior of the Kalman filter. The resulting optimization is solved by means of a novel iterative
method inspired by the stochastic approximation method presented in14 and exploiting a parabolic interpolation15 approach in
the optimization.

The remainder of the paper is structured as follows. The process noise covariance estimation problem is formally stated in
Section 2. Section 3 briefly reviews the existing methods to highlight the main features and the limitations of the state of the art.
The proposed algorithm is introduced and analysed in Section 4, while the results of the experimental tests on some benchmark
examples are illustrated and discussed in Section 5. The paper ends with some concluding remarks.

2 PROBLEM STATEMENT

Consider the state-space model of a linear time-invariant discrete-time dynamic stochastic system S with additive noise (and
no external input, for simplicity):

x(t + 1) = Fx(t) + v(t) (1)

y(t) = Hx(t) +w(t),

where x(t) ∈ ℝn denotes the state vector, y(t) ∈ ℝp is the output vector, v(t) ∼ WGN(0, Q)† is the process noise with
Q = QT ⪰ 0, Q ∈ ℝn×n, and w(t) ∼ WGN(0, R) indicates the measurement noise with R = RT ≻ 0, R ∈ ℝp×p. F and H are
the dynamic and output matrices, respectively. Without loss of generality, we assume here that v and w are uncorrelated.

In state estimation problems, the objective is to estimate the value of the state x̂(t|t) at time t, based on the available past
output measurements up to the same instant t. In the Kalman setting, these estimates are obtained by a two-step procedure. In
the predictive phase, the measurements up to t − 1 are used to estimate the value of the states at the current instant t, as well as
P (t), which is the CM of the state estimation error:

x̂(t|t − 1) = F x̂(t − 1|t − 1) (2)

ŷ(t|t − 1) = Hx̂(t|t − 1) (3)

P (t|t − 1) = FP (t − 1|t − 1)F T +Q. (4)

Then, the measurement relative to the current time instant is used to adjust both the estimates of x(t) and P (t) (update phase):

x̂(t|t) = x̂(t|t − 1) +K(t) [y(t) −Hx̂(t|t − 1)] (5)

P (t|t) = [I −K(t)H]P (t|t − 1). (6)

The Kalman gain K(t) in (5) is obtained as:

K(t) = P (t|t − 1)HT [HP (t|t − 1)HT + R
]−1 . (7)

†WGN is short for White Gaussian Noise.
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The a priori estimate of x(t) calculated in the predictive phase is therefore adjusted through the innovation term e(t) = y(t) −
Hx̂(t|t − 1), weighted by K(t). The whole procedure is repeated at each time instant.

The formula (5) is known to minimize the variance of the state filtering error, provided that both the system matrices and the
noise statistics are correctly estimated. If this is not the case, a robust implementation of the filter is needed, see, e.g.,16,17, at
the price of a more conservative performance. Sometimes, in practical applications, even if F and H can be properly computed
from a set of experimental data with rigorous system identification tools, the noise CMs are tuned by trial and error on a much
larger set of tests. In this paper, we will propose a rigorous system identification method that, based on one set of data (where
the real state is also assumed to be available), finds the process noise CM providing the best filtering performance.‡

3 RELATED WORKS

In this section, we will briefly review the main feedback-free methods for the computation of the process noise covariance
matrix from data. Feedback methods are not covered here as they resort to nonlinear state estimation. For further details, see13.

The first class of methods usually employed to estimate the noise CMs are the so-called correlation-based methods. Such
techniques are based on the analysis of the innovation sequence, generated by a steady-state Kalman filter starting from an
arbitrary initial condition x̂(0| − 1) and a gain K selected such that the matrix F̄ = F − FKH is stable. The pioneer of these
methods is the work presented in7 (denoted here as Indirect Correlation Method, ICM), in which the noise CMs are estimated
using a three-step procedure with a classical least squares (LS) approach. The method is based on a system of N (user-defined)
linear matrix equations stemming from the auto-covariance function (ACF):

Cj = cov[e(t), e(t − j)] =

{

HPHT + R, j = 0
HF̄ j−1F (PHT −KC0), j > 0

(8)

where P is the CM of the steady-state state estimation error, given by the solution to the Lyapunov equation

P = F̄ P F̄ T + FKRKTF T +Q. (9)

Specifically, given the estimate of the ACF computed from the innovation sequence as

Ĉj =
1

� − j

�
∑

t=j
etet−j , j = 0,… , N − 1, (10)

where � denotes the number of collected data, the following three steps are performed:

1. Compute the LS estimate P̂H
T

of PHT from Ĉj , j = 1,… , N − 1, with C0 = Ĉ0, according to (8).

2. Based on P̂H
T

and C0 = Ĉ0, compute the estimate R̂ from (8).

3. Compute the LS estimate Q̂ of Q from (9), substituting P̂H
T

for PHT and multiplying both sides of (9) by H and HT ,
respectively.

Remark 1. Notice that the estimation of R is decoupled from that of Q, since the sampled version of Cj , namely Ĉj in (10), is
employed to compute the system of N equations according to (8).

A second method, denoted here Weighted Correlation Method (WCM), is introduced in8. This approach is still based on the
processing of the ACF, similarly to7, but employs a suitable parameterization of the noise CMs and the ACF. More precisely,
the unknown CMs are expressed as linear combinations of known (user-defined) basis matrices Q(i) and R(i), i = 1,… ,M :

Q =
M
∑

i=1
�(i)Q(i), R =

M
∑

i=1
�(i)R(i),

‡As already mentioned, the output noise CM R can usually be inferred from sensor characteristics. When this is not possible, one may assume a diagonal structure
for R and estimate it from the knowledge of y and x as R = Ip ⋅‖"‖2, with ‖"‖2 = ‖y−Hx‖2. Another possibility, in case a dataset with x is not available for CM tuning,
is to roughly estimate R from (8) as in 7.
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where �(i), i = 1,… ,M , are unknown weights to be estimated. In a similar fashion, the ACF is now defined as a linear function
of the unknown weights �(i):

Cj = cov[e(t), e(t − j)] =
M
∑

i=1
i(t, j)�(i),

where i(t, j) is appropriately defined (see Equation (16) in8).

Remark 2. Assuming for example n = p = 2, the basis matrices Q(i) and R(i), i = 1,… ,M can be selected as follows:

Q(1) =
[

1 0
0 0

]

, Q(2) =
[

0 1
1 0

]

, Q(3) =
[

0 0
0 1

]

, Q(4) = Q(5) = Q(6) =
[

0 0
0 0

]

(11)

R(1) = R(2) = R(3) =
[

0 0
0 0

]

, R(4) =
[

1 0
0 0

]

, R(5) =
[

0 1
1 0

]

, R(6) =
[

0 0
0 1

]

(12)

This justifies the use of a single vector of weights � ∈ ℝM for both the Q(i)s and the R(i)s.

Finally, the method presented in9 (denoted here as Direct Correlation Method, DCM), and extended in10, estimates the CMs
in a single step, by reformulating the relations of7 in such a form that the three intermediate steps can be replaced by the
resolution of a single LS problem.

The three mentioned methods can estimate all the elements of R and no more than n ⋅ p elements of Q, and they require the
full knowledge of the structure of Q (i.e., the number and position of the nonzero elements). In particular, the method in7 does
not work when Q has more than n ⋅ p nonzero elements. Furthermore, they are based on the assumption that the sampled ACF
Ĉj approaches its true value. However, this is not generally true for finite data sets, especially due to the dependence of the
innovation sequence on the a priori defined gainK . On the other hand, these methods appear to be very computational efficient,
since they only need a single-point estimation following a classical LS approach.

The maximum-likelihood (ML) methods are based on the maximization of a likelihood function over the collected data. The
method in11 (denoted Input-Output Correlation Method, IOCM) is based on the minimization of the innovation related to an
input-output ARMAX model of order . Assuming that  = 1, n = p, and H = In, the ARMAX model can be reformulated
as in (1). A ML step is first required to compute the covariance and the cross-covariances of the innovation, that are needed to
estimate the noise CMs.

A classical ML approach is instead adopted in12 (here denoted MLM), where a negative log-likelihood function is directly
maximized w.r.t. the unknown CMs. Therefore, compared to the previous method, no intermediate steps are needed to recover
the optimal CMs. However, the a priori setting of the unknown CMs is crucial for the convergence of the method and the
accuracy of the final estimate.

In general, although they generally provide more accurate solutions than correlation-based methods, ML methods involve a
much more significant computational load, mainly due to the computation of the gradient descent direction from data over the
parameter space.

4 PROCESS NOISE COVARIANCE ESTIMATION VIA STOCHASTIC APPROXIMATION

we will propose an alternative solution to the process noise CM estimation, based on the stochastic approximation approach
introduced in18 and14. Specifically, we will propose a gradient-free policy optimizing a stochastic approximation of the real
cost function, namely the mismatch between actual and estimated state, during a training phase. This is doable under the
assumption that a preliminary dataset including the state measurement is available. However, this is not a strong assumption in
many practical applications, see, e.g., the Kalman-filter based roll angle estimation of19 and20.

As ML-based methods, the proposed approach does not suffer from the limitation of the correlation-based methods regarding
the maximum number of free parameters of Q that can be estimated. At the same time, the use of a gradient-free optimization
approach compares quite favorably with the computationally heavy ML-based methods.

The problem reformulation involves the definition of an ad hoc objective function, which relates the estimation accuracy to
the unknown CMs, assuming that the optimal estimates of the latter are those that guarantee maximum filtering accuracy. For
the reasons explained previously, we limit the optimization to matrix Q, assuming that R is fixed. Precisely, let the objective
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function be:

J (Q) = 1
�

�
∑

t=1

(

x(t) − x̂Q(t)
)T (x(t) − x̂Q(t)

)

∈ ℝ+, (13)

where x̂Q(t) is the state estimate obtained using matrixQ as the process noise CM and � is the number of collected observations.
The optimization problem can then be formulated as that of finding the semidefinite positive matrix Q that optimizes the filter
accuracy as described by J (Q):

minimize
Q

J (Q)

s.t. Q ⪰ 0
(14)

Figure 1 depicts the relationship among all the variables involved in the optimization problem.

Q̂

R

y x

ŷ

x̂ �
Kalman

Filter
MS�

FIGURE 1 Graphical representation of the relationship between J , Q, and R.

The optimization problem (14) is subject to the constraint thatQ ⪰ 0, but can easily be reformulated as an unconstrained one
by factorizing Q using a Cholesky decomposition21 to automatically ensure its positive definiteness:

Q = ZZT , (15)

where Z is a lower triangular n × n matrix. Accordingly, the optimization problem becomes:

minimize
Z

J (Z) (16)

where with a slight abuse of notation we denote as J (Z) the cost function J (Q) = J (ZZT ) defined in terms of Z.
As it is formulated, the envisaged optimization problem cannot be solved in closed form but relatively simple iterative

solution algorithms can be applied to find the optimum Q in the absence of constraints. For example, Newton-type or other
gradient-based algorithms could be suitable for this purpose. Here we employ a stochastic approximation method (see14 and22

for a review of such methods), which avoids the computation of gradients of the cost function and requires an affordable
computational load.

4.1 Stochastic approximation methods
The working principle behind stochastic approximation methods can be summarized as follows. Consider a target function
f (�), where � is the parameter vector. The goal is to find �◦ for which f ′(�◦) = 0. Assume that only (noisy) measurements
of f (�) – but not of its derivative f ′(�) – are available for some �’s. Then the optimum point can be estimated iteratively by
solving the following update equation at each iteration:

�̂k+1 = �̂k − �kĝk(�̂k) (17)

where ĝk(�̂k) is an estimate of the gradient g(�) = f ′(�) at the kth iteration. For the calculation of ĝk(�̂k) one needs only
measurements of the target function at given points, specifically f (�̂k + ℎk) and f (�̂k − ℎk), where ℎk is a sufficiently
small perturbation. The Finite Difference Stochastic Approximation (FDSA)18, and the Simultaneous Perturbation Stochastic
Approximation (SPSA)14 provide two alternative approximations of the gradient, by perturbing the components of the vector
�̂k in different ways: FDSA perturbs one parameter at a time, while SPSA perturbs all of them simultaneously. Specifically,
with the FDSA method the ith component of the gradient is computed as:

ĝk,i(�̂k) =
f (�̂k + ℎkei) − f (�̂k − ℎkei)

2ℎk
, (18)

where ei is vector whose elements are all equal to 0 except the ith one which is equal to 1. The main drawback of the FDSA is
the large computational load at each iteration, in view of the numerous evaluations of function f (⋅) involved, which ultimately
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causes a slow convergence of the algorithm. Conversely, with the SPSA method all the components of the parameter vector are
simultaneously perturbed by a random amount, so that the ith component of the gradient can be computed as

ĝk,i(�̂k) =
f (�̂k + ℎkΔk) − f (�̂k − ℎkΔk)

2ℎkΔk,i
(19)

where Δk = [Δk,1 Δk,2 … Δk,n]T is the perturbation vector, which contains only ±1 in random positions. In this case, the same
two function evaluations f (�̂k ± ℎkΔk) are used for each component, thus significantly reducing the computational burden.

4.2 The SAPI method: the scalar case
The proposed method for solving problem (14) or (16), denoted SAPI (Stochastic Approximation with Parabolic Interpolation),
belongs to the category of stochastic approximation methods briefly described in the previous subsection. To convey more
effectively the idea behind the SAPI, we first describe it in the simple case where Q is a scalar. The more general case will be
addressed in subsection 4.3.

In the scalar case, there is only one free parameter and there is no need to resort to the reformulation (16), so we will make
reference to the original formulation (14). The error surface is a 2-dimensional curve and for a given starting value of Q there
are only two possible directions of exploration, as depicted in Figure 2.

QQi Q�

iQ�

i

�

FIGURE 2 Graphical representation of the J curve exploration in the scalar case.

Starting from an initial point Q0 and an initial step size �0, the following steps are carried out at each iteration i:

1. Let Q+
i = Qi + �i and Q−

i = Qi − �i.

2. Compute Ji = J (Qi), J+i = J (Q
+
i ), and J−i = J (Q

−
i ).

3. If Ji ≥
J−i +J

+
i

2
then choose Qi+1 as:

Qi+1 = arg min
{Qi,Q+i ,Q

−
i }
J (Q), (20)

set �i+1 as:
�i+1 = �i + ��i, (21)

and go to Step 8.

4. Interpolate a parabola over the three points (Qi, Ji), (Q+
i , J

+
i ), and (Q−

i , J
−
i ).

5. Find the minimum point Q◦
i of the interpolating parabola, and compute the corresponding J ◦i = J (Q

◦
i ).

6. Choose Qi+1 as:
Qi+1 = arg min

{Qi,Q+i ,Q
−
i ,Q

◦
i }
J (Q) (22)
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7. Compute �i+1 as follows:

�i+1 =

⎧

⎪

⎨

⎪

⎩

�i + ��i, if Qi+1 ≠ Q◦
i

�i − ��i, if |Ji − Ji−1| ≤ TOL
�i, otherwise

(23)

8. If |Ji − Ji−1| ≤ TOL then C ∶= C + 1, else C = 0. If C = ITER_OBS then exit, else i ∶= i + 1 and go to Step 1.

After Step 2, one could evaluate which of the three points gives the best J and simply elect it as the new starting point for
the next iteration (basic selection (20)). However, to further speed up the minimization of J , a local parabolic interpolation15

is applied on the cost function when possible (i.e., when the interpolating parabola is opening to the top). The parabolic
interpolation method is a well known technique to find the minimum of a unimodal function, its rationale being illustrated in
Figure 3. Assume that the function (solid line) has been evaluated at three points p1, p2 and p3 and that the parabola (dashed line)
passing through them has been computed. Its minimum, i.e. point p4, is closer to the minimum of the function (point p5) than
point p2 (which is the lower of the three computed points and would have been chosen according to the basic selection (20)).

��

�2

�3

�4

�5

FIGURE 3 The rationale behind parabolic interpolation.

The application of (20) or, alternatively, (22) ensures that the sequence of Ji values is decreasing (see the next subsection for
a more detailed discussion about convergence). Notice that J ◦i is the value of J at the minimum point of the parabola Q◦

i , and
it is not guaranteed that it will be lower than Ji, J+i , and J−i . This is why the new point must be calculated by means of (22).

The role of the step size � is critical in the functioning of the algorithm. In the early stages of the algorithm, when Qi might
be far from the optimum, a large � value allows the algorithm to exploit the parabolic interpolation mechanism to quickly run
away from that region. As the algorithm proceeds, � should be gradually reduced to increase the algorithm resolution in the
vicinity of the (local) optimum point. Notice that for small values of � the three points (Qi, Ji), (Q+

i , J
+
i ), and (Q−

i , J
−
i )may turn

out to be close to collinearity, causing the minimum point (Q◦
i , J

◦
i ) of the parabola to be far apart. While this may occasionally

allow the algorithm to exit from a local minimum, it generally reduces the utility of the parabolic interpolation mechanism.
In such cases, increasing � and thus picking points at larger distances may produce more meaningful parabolic interpolations,
avoiding a repetition of the problem in the subsequent iterations. These observations are condensed in the update rule (23),
where parameters � > 0 and � > 0 govern respectively the increase and decrease of �.

The stopping criterion is met when J does not improve by more than TOL for ITER_OBS subsequent iterations, TOL > 0 and
ITER_OBS ∈ ℕ+ being user-defined thresholds. These two parameters have to be chosen carefully in order to avoid the early
stopping of the algorithm, thus allowing it to converge.
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4.3 The SAPI method: the general case
When the state x is an n-dimensional vector, with n > 1, the number of possible directions of exploration increases in view of
the larger size of Q. Indeed, the free parameters are n� =

n(n+1)
2

due to the symmetry of matrix Q. As mentioned previously, the
process noise CM matrix is factorized as Q = ZZT , Z being a lower triangular n × n matrix, and the optimization is carried
out with reference to problem (16). The optimization parameters are the elements zjk of matrix Z with j ≥ k. Accordingly, the
parameter vector is defined as � = [z11 z21 z22 … znn]T . To simplify the notation, we will indicate as J (�) the cost function
J (Z) = J (Z(�)). The exploration of J according to the SAPI mechanism is carried out by simultaneously perturbing all the
components of �.

Specifically, the parameter perturbation is applied along a random direction defined by the perturbation vector Δi, both in
the positive and negative directions, its amplitude being defined (on each axis) by the step size parameter �i. According to23,
a simple (and theoretically valid) choice for each component of the perturbation vector Δi in (19) is to use a Bernoulli ±1
distribution with probability of 0.5, denoted here as Be(0.5), for each ±1 outcome. Starting from �i, a perturbation Δi vector is
extracted according to the mentioned Bernoulli distribution, and the following two points are computed in the parameter space:

�±i = �i ± �iΔi =

⎡

⎢

⎢

⎢

⎢

⎣

�i,1 ± �iΔi,1
�i,2 ± �iΔi,2

⋮
�i,N ± �iΔi,N

⎤

⎥

⎥

⎥

⎥

⎦

. (24)

As in the scalar case, the value of J can be calculated in correspondence to the three parameterizations Z(�−i ), Z(�i), and
Z(�+i ), obtaining respectively the values J−i , Ji, and J+i . Notice that although J is a n�+1-dimensional surface, the three points
�−i , �i, and �+i all stand on a straight line, defined as:

�∗i (a) = (1 − a)�
−
i + a�

+
i . (25)

Indeed, �−i = �∗i (0), �i = �∗i (0.5), and �+i = �∗i (1). Thanks to this property, the parabolic interpolation can be applied as in the
scalar case in the plane defined by a and J . The procedure requires to find the minimum a◦ of the parabola interpolating the
three points (0, J−i ), (0.5, Ji), and (1, J+i ) in the (a, J ) space and then to compute the corresponding �◦i as follows:

�◦i = (1 − a
◦)�−i + a

◦�+i . (26)

Algorithm 1 (see the next page) depicts the overall procedure for the general case and its convergence to a local minimum of
the considered cost can be proven as follows.

Theorem 1. Algorithm 1 converges to a local minimum of J .

Proof. The convergence of Algorithm 1 is proven upon observing that the application of (20) or (22) (when applicable) ensures
that the sequence {Ji} is non-increasing, i.e., Ji−1 ≥ Ji. Furthermore, J is by definition bounded from below (J ≥ 0), and
hence, for the Monotone Convergence Theorem24, it converges to a limit value. Such a limit is associated to a local minimum
point of the surface J (Q). In fact, at any new iteration, either the optimum pointQi changes in favor of a better one or it remains
unchanged. If it stops changing, or the difference between Ji and Ji−1 becomes negligible, the value of � between consequent
iterations also decreases and the distance between the points Q±

i shrinks.

5 SIMULATION RESULTS

In this section two simulation examples are discussed to show the effectiveness of the proposed method w.r.t. the approaches
briefly reviewed in Section 3. First, a comparative analysis is carried out (Section 5.1) on the example reported in13, which
represents an ideal case in which the applicability and the identifiability conditions of all the considered methods are met. Then,
a second example is discussed (Section 5.2), in which some identifiability issues arise.

All tests are performed within a MATLAB 2017a environment25, on a i7-4702MQ CPU @2.20 GHz with 8GB of RAM. The
code implementation of the methods appearing in the comparative analysis is part of the package made publicly available by13.
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Algorithm 1 SAPI

Require: {(x(t), y(t)), t = 1,⋯ , �}, F , H, R, �0, �0, �, �, TOL, ITER_OBS
Ensure: Q

1: C ← 0; ⊳ Convergence counter
2: n� ← |�0|;
3: Qi ← compute_Q(�0); ⊳ Retrieve Q from �
4: Ji ← compute_J(Qi, F ,H,R, x, y); ⊳ Compute J according to (13)
5:  ← 0; ⊳ Needed boolean variable
6: repeat
7: for l = 1 to n� do ⊳ Generate a random ±1 perturbation vector
8: Δi,l ∼ Be(0.5);
9: end for

10: �±i ← �i ± �iΔi;
11: Q±

i ← compute_Q(�±i );
12: J±i ← compute_J(Q±

i , F ,H,R, x, y);
13: if Ji ≥

J−i +J
+
i

2
then

14: Qi+1 ← arg min
{Qi,Q+i ,Q

−
i }
J (Q);

15: �i+1 ← �i + ��i;
16:  ← 1;
17: else
18: K ← parabolic_interpolation

(

(0, J−i ), (0.5, Ji), (1, J
+
i )
)

; ⊳ Parabola in the form b = K1a2 +K2a +K3
19: a◦ ← −K2∕2K1; ⊳ Compute the minimum
20: �◦i ← [�+i , �

−
i ] ⋅ [a

◦, (1 − a◦)]T ;
21: Q◦

i ← compute_Q(�
◦
i );

22: J ◦i ← compute_J(Q◦
i , F ,H,R, x, y);

23: Qi+1 ← arg min
{Qi,Q+i ,Q

−
i ,Q

◦
i }
J (Q);

24: if Qi+1 ≠ Q◦
i then

25: �i+1 ← �i + ��i;
26:  ← 1;
27: end if
28: end if
29: if |Ji − Ji−1| ≤ TOL then ⊳ Check for algorithm convergence
30: C ← C + 1
31: if  = 0 then
32: �i+1 ← �i − ��i;
33: end if
34: else
35: C ← 0
36: end if
37: until C ≤ ITER_OBS ⊳ Stopping criterion

5.1 Example 1

Consider the system in the form (1), with F =
[

0.9 0
−0.3 0.8

]

, H = I2, Q =
[

2 −0.5
−0.5 1

]

and R =
[

3 0
0 2

]

13. The following

settings13 have been adopted for the different algorithms considered in the comparison:

• ICM, DCM:

– N = 2
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– filter gain K0 = 0.8I2

• WCM:

– N = 2

– filter gain K0 = 0.8I2

– basis matrices: Q(1) =
[

1 0
0 0

]

, Q(2) =
[

0 1
1 0

]

, Q(3) =
[

0 0
0 1

]

, Q(4) = Q(5) = Q(6) = 02

• IOCM:

– initial condition for the estimation of B, B = 02

• MLM:

– number of EM steps: 50

– initial value of Q, Q0
0 =

[

3.43 0.75
0.75 2.73

]

– initial value of R, R0 = R, i.e., the initial estimate equals the true value

– initial state estimation error CM set to P0|−1 = 02

• SAPI:

– ITER_OBS = 10

– TOL = 10−7

– initial step size: �0 = 0.5

– increasing step factor: � = 0.2

– decreasing step factor: � = 0.05

– initial � vector: �0 = [1,… , 1]T

Tables 1 and 2 report the aggregated results obtained from 103 different realizations of the noises v(t) ∼ WGN(0, Q) and
w(t) ∼ WGN(0, R), considering respectively two datasets of different size, namely � = 104 and � = 105. For each of the
considered methods, these tables report the average and variance of the estimates of the individual qij , i, j = 1, 2, values, the
elapsed time (ET) expressed in seconds, and the relative error:

 = |J ◦ − Ĵ |
J ◦

,

where J ◦ and Ĵ are respectively the J values computed according to (13) when x̂ has been obtained starting from the true Q
and Q̂.

Apparently, all the methods provide comparable results in terms of the accuracy of the qij estimates. As for the computational
burden, the correlation-based methods (ICM, DCM, and WCM) outperform the SAPI, but this is to be expected since they rely
on a single-point estimate, whereas the SAPI is iterative by nature. Instead, there appears to be an evident advantage in using the
SAPI compared to the ML-based methods from a computational point of view. This gap increases significantly with �. Indeed,
the ET values corresponding to the IOCM and MLM methods are one order of magnitude bigger than those of the SAPI for
� = 105.

An important issue with correlation-based methods is that they depend on the arbitrary initial choice of the filter gain K0. It
is therefore interesting to assess the robustness of such methods for different values of K0. Figures 4 and 5 report the results of
a sensitivity analysis to K0 that has been carried out for the DCM method (but the results can be generalized to the ICM and
WCM algorithms, as well), by considering K ′

0 = 0.8I2 and K ′′
0 = 1.5I2. The figures show a strong sensitivity of the method to

this design parameter in terms of the variance of the estimates and also of the relative error. Indeed, for K ′′
0 the mean relative

error  is equal to 7.26 ⋅ 10−3, which is significantly bigger than for K ′
0 (see Table 1), and also compared to the SAPI.
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method q̂11 q̂12 q̂22 ET [s] 

ICM
avg. 2.0039 -0.4999 0.9979

0.0368 6.8712 ⋅10−4
var. 0.0087 0.0030 0.0041

DCM
avg. 1.9992 -0.5045 1.0004

0.0365 6.9102 ⋅10−4
var. 0.0086 0.0031 0.0040

WCM
avg. 2.0003 -0.5028 0.9987

0.0382 7.0559 ⋅10−4
var. 0.0095 0.0027 0.0041

IOCM
avg. 2.0014 -0.4980 0.9980

13.0027 3.0771 ⋅10−4
var. 0.0053 0.0017 0.0022

MLM
avg. 1.9979 -0.4920 1.0096

29.8488 2.8290 ⋅10−4
var. 0.0046 0.0016 0.0020

SAPI
avg. 2.0019 -0.5003 1.0030

2.9206 2.2410 ⋅10−4
var. 0.0037 0.0013 0.0012

TABLE 1 Estimates of the elements of Q with � = 104 for 103 MC runs.

method q̂11 q̂12 q̂22 ET [s] 

ICM
avg. 1.9987 -0.5000 0.9999

0.3630 7.2808 ⋅10−5
var. 0.9330 ⋅10−3 0.2942 ⋅10−3 0.4153 ⋅10−3

DCM
avg. 2.0009 -0.4995 1.0001

0.3595 6.7294 ⋅10−5
var. 0.8490 ⋅10−3 0.3025 ⋅10−3 0.4025 ⋅10−3

WCM
avg. 2.0008 -0.5006 1.0003

0.3598 7.0442 ⋅10−5
var. 0.9215 ⋅10−3 0.2869 ⋅10−3 0.4140 ⋅10−3

IOCM
avg. 2.0002 -0.5001 0.9998

115.7523 2.9439 ⋅10−5
var. 0.5056 ⋅10−3 0.17021 ⋅10−3 0.2300 ⋅10−3

MLM
avg. 1.9988 -0.4993 1.0014

249.1815 2.4228⋅10−5
var. 0.3724 ⋅10−3 0.1348 ⋅10−3 0.1293 ⋅10−3

SAPI
avg. 2.0013 -0.4999 1.0012

13.029 4.1392 ⋅10−5
var. 0.5677 ⋅10−3 0.3004 ⋅10−3 0.1918 ⋅10−3

TABLE 2 Estimates of the elements of Q with � = 105 for 103 MC runs.

5.2 Example 2
Consider a system in the form (1), where

F =
⎡

⎢

⎢

⎣

0.0218 0.9243 −0.2750
0.4645 −0.2466 −0.8076
0.8451 0.1167 0.4530

⎤

⎥

⎥

⎦

,H = [0.9936 0 0.6539] , Q =
⎡

⎢

⎢

⎣

6.3557 6.2921 −0.7910
6.2921 6.5128 −0.0420
−0.7910 −0.0420 6.7963

⎤

⎥

⎥

⎦

, and R =
var(y)
10

.

Prior to analyzing the results stemming from a Monte Carlo simulation performed similarly to the previous example, let us
point out the following aspects:

1. As discussed in Section 3, the correlation-based methods can typically estimate no more than n ⋅ p elements of Q. The
proposed example emphasizes this identifiability issue, since n = 3 and p = 1, implying that only 3 elements of Q can be
estimated, while Q has actually 6 elements. Furthermore, the ICM method does not work at all.

2. The IOCM cannot deal with this example, since it is based on the state-space reformulation of an ARMAX model by
assuming that n = p and H = In.

3. The SAPI, as well as the MLM, can address this case, but the identified solution is not unique. Accordingly, we will
compare the methods only in terms of computational efficiency and accuracy.
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FIGURE 4 DCM method: Sensitivity to the design parameter K - estimation accuracy.

FIGURE 5 DCM method: Sensitivity to the design parameter K - relative error.

The studied methods are applied with the following settings §:

§The filter gain K0 used for the DCM and WCM methods, is a fair approximation of the optimal predictor gain coming from the SAPI, which ultimately represents
at least an optimal initialization.
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• DCM:

– N = 2

– filter gain K0 = [0.1 − 0.03 0.5]
T

• WCM:

– N = 2

– filter gain K0 = [0.1 − 0.03 0.5]
T

– basis matrices: Q(1) =
⎡

⎢

⎢

⎣

1 0 0
0 0 0
0 0 0

⎤

⎥

⎥

⎦

, Q(2) =
⎡

⎢

⎢

⎣

0 1 0
0 0 0
0 0 0

⎤

⎥

⎥

⎦

, ⋯, Q(10) = 03

• MLM:

– number of EM steps: 30

– initial value of Q, Q0 = 1.2Q, i.e. the initial estimate is a scaled version of the true value

– initial value of R, R0 = R, i.e. the initial estimate equals the true value

– initial state estimation error CM set to P0|−1 = 03

The SAPI has been set up as in the previous example.
The results are summarized in the plot of Figure 6. The correlation methods (DCM and WCM) are those requiring the least

computational time but provide scarce accuracy. Conversely, the MLM is the most accurate method but requires a significantly
large computational time. The SAPI approach reveals to be the solution providing the best trade-off between accuracy and
computational burden.

FIGURE 6 ET vs.  curve with � = 104 for 103 MC runs.

6 CONCLUSIONS

In this paper, we have addressed the estimation of the process noise covariance matrix in a Kalman filter setting, proposing
a novel method based on an efficient stochastic approximation method employing a local parabolic interpolation of the cost
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function. The proposed method appears to be effective on the considered benchmark examples as compared to the state of the
art.

Specifically, with respect to correlation-based methods, SAPI provides more accurate results, albeit at a slightly higher
computational cost, and has an extended range of applicability, since it does not suffer from structural identifiability issues.
Furthermore, SAPI significantly outperforms maximum-likelihood based methods in terms of computational load at the cost
of a negligible accuracy degradation, thus providing a convenient trade-off between accuracy and computational burden. Such
a trade-off can be suitably tuned using the parameters TOL and ITER_OBS. We stress here that SAPI can easily embed also
constraints on the matrix structure, by simply constraining the exploration of the cost function surface. This observation is the
basis of our ongoing work.
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