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Introduction

The shape memory alloys used in engineering and bio-
medical applications undergo repeated (cyclic) deforma-

tion [1, 2]. These alloys undergo reversible, thermo-elastic

phase transformations at the macro-scale, while a degree of
irreversibility exists when slip occurs locally at micro-s-

cale. The fatigue damage tolerance of these alloys has been
a tremendous concern, yet an understanding remains elu-
sive as of today. This is partly because our knowledge of
fatigue crack growth is built upon untransforming alloys,
while the transformation behavior modifies the driving
force parameters. In the case of untransforming materials,

the stress intensity factor and the crack tip displacements are
used to characterize fatigue crack growth. In the case of
shape memory alloys, these parameters change but the exact
nature of the changes in the driving force that occur has not
been derived.

Table 1 illustrates the mechanisms that have been for-
warded to modify the driving forces in the presence of phase
transformation from austenite to martensite. The

modifications in driving force due to internal tractions (first
row) have been derived by Rice–McMeeking–Evans [3, 4]
using weight function theory. The transformation strains
drive these tractions. Also as shown in Table 1 (second
row), there have been several efforts attempting to calcu-
late the redistribution of stress fields ahead of the crack tip
due to the phase transformation. These analyses [5], similar

to the work of Irwin on plastic zone size correction [6],
propose a change in effective crack length, resulting in a
change in the stress intensity factor. A number of recent
works on the numerical [7–9] determination of transfor-
mation zones under monotonic deformation have been
undertaken. The local driving forces are found to differ
compared to remotely evaluated levels.
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There have been previous fundamental works on fatigue
crack initiation in shape memory alloys [10–16] describing
the role of slip, the origin of irreversibilities, and residual
martensite, but much less work has been undertaken on
fatigue crack growth behavior. Systematic efforts have

been undertaken by Ritchie and his students [17–19] on

experimental fatigue crack growth studies on NiTi alloys.
Overall, the measured threshold stress intensity levels were
rather low (less than 3 MPa

ffiffiffiffi

m
p

) in NiTi. Other papers

confirmed the low fatigue crack growth resistance of shape
memory alloys in general [13, 20, 21]; however, the cal-
culation of effective stress intensity in fatigue remains

unresolved.

We note that under cycling loading eigenstrains (misfit

strains) arise when transformation develops in the matrix.

Under fatigue conditions both the maximum stress in-
tensity and minimum stress intensity levels are modified

due to the transformation effects. The maximum stress
intensity (Fig. 1a) is reduced as Kred�max while the

minimum stress intensity is decreased by Kred�min resulting

in a net reduction of the stress intensity range, rendering
an effective range denoted as DKeff ¼ DK �DKred (shaded 
region). In this work, we propose a cal-culation

methodology for these quantities. The effective stress
intensity range would remain the same if the reductions of
stress intensity at maximum and minimum loads were
identical.

Because we are considering the differential reduction in

maximum and minimum stress intensity, the consideration of

moduli difference between martensite and austenite domains

becomes significant. The martensite under consideration is

‘oriented martensite’ and not the ‘thermally induced

martensite’ [22]. The elastic moduli of oriented martensite

differ from the thermally induced one and also from the

austenite moduli, and this difference cannot be ignored. The

martensite crystal moduli tensor (monoclinic or tetragonal

depending on the alloys considered here) has higher number

of independent constants than the cubic austenite. Also, in this

study, our experiments utilize single crystals of austenite

permitting precise knowledge of the elastic constants.

In Fig. 1b, the main variables that influence the trans-

formation mediated fatigue crack growth rate are listed.

The equivalent eigenstrain, e��mn, is calculated from Eshel-

by’s equivalent inclusion principle; the crack length, a;

transformation height in the crack wake, w; the elastic

moduli of the austenite, Cijkl; and martensite, C
0

ijkl, phases

respectively (see Fig. 1b). Because the stress state at the

crack tip is rather complex, the resulting strain distribution

is difficult to predict but it can be measured experimentally.

Even though the residual strain per one cycle is very small,

it accumulates over many fatigue cycles. The crack length

and transformation zone height in the wake can also be

obtained through experiments. The elastic moduli can also

be measured for the austenite single crystals, while density

Table 1 A summary of the mechanisms at crack tips undergoing transformation under loading

Type of loading-

mechanism

Schematic Important variables References

Monotonic loading-

shielding associated

with tractions

Dimensions of the residual transformation zone in the

crack wake, tractions cancel ahead of tip but

substantial on crack faces

[3, 4]

Monotonic loading-

modification of crack

tip stress fields

Redistribution of stress fields ahead of crack tip, stress

state dependence of transformation zone

[5]

Fatigue loading-closure

force differential at

max. and min. loads

Elastic moduli (crystallography), transformation zone

(verified with DIC), residual transformation strain,

reduction of stress intensity range

This study

The tractions due to transformation are shown at the austenite to martensite interface. The differences of closure forces at the minimum and

maximum stress intensity levels are important in fatigue case (this study)



the current work, the displacement fields are measured in

the vicinity of crack tip during fatigue experiments with

digital image correlation (DIC). These displacement results

can be utilized in turn to determine the ‘effective stress

intensity’ levels. In the case of transforming alloys, these

measured displacement fields would naturally reflect the

crack tip driving force modification in the presence of

transformation strains. As an extension of the method using

regression, it is worthwhile to measure the contact of crack

surfaces during fatigue resulting in crack closure. Such

experiments are now possible with the use of virtual ex-

tensometers behind the crack tip in conjunction with digital

image correlation studies. We explore this possibility as

well in the current work accounting for a full range of

mechanisms. The results from regression and virtual ex-

tensometers agreed in untransforming alloys, and a similar

agreement is expected in shape memory materials. Alter-

nately, in the second approach (Method II), we compute the

modified stress intensity in transforming alloys due to in-

ternal tractions. In fatigue loading, one needs to consider

tractions at both maximum and minimum loads imposed on

the transforming regions by the surrounding untransformed

domains. Ideally, both approaches (I and II) should render

an ‘effective stress intensity range’ that is comparable in

magnitude resulting in the true value of the driving force in

fatigue.

To develop an appreciation of the length scales for the

experimental and modeling work pursued in this work, we

include Fig. 2. At the smallest length scales, atomistic

simulations provide a critical resource to establish the

elastic constants [22–24] of austenite and martensite which

can be substantially different. At the higher length scale, a

micro-mechanics analysis is undertaken to determine the

closure forces in the wake of the crack tip. Consideration of

the theoretical transformation strains and experimentally

measured transformation strains are taken into account.

The modeling results are verified by precise measurements

of crack tip displacements with DIC, and closure stress

levels are determined with virtual extensometers at the

macro-scale. The paper will cover the entire length scales

in Fig. 2 with theory and experimentation.

In summary, the driving force for fatigue crack growth

in shape memory alloys (the effective stress intensity

range) requires additional calculations and depends on the

closure forces at both maximum and minimum load, the

elastic moduli of austenite and martensite and their

anisotropy. The irreversible (residual) strain accumulates

with cycles and the residual transformation strain in the

crack wake produces closure forces. In turn, such forces

contribute significantly to setting an ‘effective stress in-

tensity range’ lower than the theoretical one. In the present

work utilizing anisotropic elasticity theory, Eshelby’s

equivalent inclusion principle [25], weight function

Fig. 1 a The full stress intensity range, the reductions in maximum and 
minimum stress intensity levels due to transformation induced

tractions. The definition of an effective stress intensity range is shown.
Note that DKeff ¼ DK � DKred ¼ DK � ðKred�max � Kred�minÞ.
b Schematic of fatigue crack growing in a shape memory material. 
The effective stress intensity range is influenced by the residual
transformation zone (colored red), the equivalent eigenstrain dictated
by the moduli tensors of austenite and martensite, and the internal
tractions indicated with arrows. Note that eigenstrain corresponding to
maximum and minimum loads are calculated

function theory (DFT) calculations need to be utilized in
the case of martensite. Considering all the factors, we
postulate that the fatigue crack growth rate is given as
a function of C

0

ijkl, Cijkl, a, w, and e�� , as  da ¼
mn dN

f ðDKeff ðC
0

ijkl; Cijkl; a; w; e�� ÞÞ. Experimentally, crack tip
mn

displacements field measurements can be used to extract
stress intensity levels. In the first approach (Method I) of



Then, in ‘‘Method I: Extraction of Stress Intensity Factor
from Displacements Using Anisotropic Elasticity via Re-
gression’’ section, Method I (regression to extract effective
stress intensity range) is described. In ‘‘Method II: Calcu-
lation of the Driving Force Changes Due to Transformation

Shielding in Crack Wake-Equivalent Eigenstrain Deter-
mination-Minimum and Maximum Load’’ section, Method

II (modeling to determine effective stress intensity range) is
outlined and the results are extended to two other shape
memory alloys. The modification in stress intensity ob-
tained from Method I and Method II and the experimental

fatigue crack growth rates are given in ‘‘Fatigue Crack

Fig. 2 The methodology utilized in the present work. At the atomic 
scale, the elastic moduli tensor is determined through ab initio
calculations, at the micro scale quantities such as transformation strain
and the modification of crack driving forces can be calculated.

methods for anisotropic media [26], density functional
theory (DFT) calculations, extensive digital image corre-
lation results for displacements in crack wake and in
transformation zones, we establish the modified stress in-
tensity factor for fatigue crack growth in Ni54Fe19Ga27 shape

memory alloy. The elastic moduli and details of the fatigue
crack growth experiments are presented in ‘‘Mate-rials,

Elastic Moduli and Fatigue Crack Growth Ex-periment

Details’’ section. In ‘‘Digital Image Correlation of the Crack
Tip Strains in Cyclic Loading’’ section, ex-perimental

determinations of strain fields at crack tips ob-tained via
DIC and strain irreversibility are demonstrated.

At the macro scale, the stress intensity and the fatigue crack growth

on single-crystal specimens are measured through DIC displacement

and strain fields at the crack tip, also in the presence of residual strains



Growth Experiments and Corrections to Stress Intensity’’
section. Finally, in ‘‘Virtual Extensometer Results: Deter-
mination of Crack Opening Load’’ section, the measure-

ments of crack opening and closure loads with virtual
extensometers are presented.

Materials, Elastic Moduli, and Fatigue Crack
Growth Experiment Details

Material

The material studied experimentally in this study is

Ni54Fe19Ga27 (hereafter referred to as Ni2FeGa for the sake
of simplicity) which undergoes cubic to tetragonal trans-
formation (Fig. 3). It is a new class of shape memory alloys
which exhibits multi-martensites with strain levels ex-
ceeding 10 % [27–29]. The materials undergoes L21 to

10 M to 14 M to L10 tetragonal transformation. The typical
stress–strain response for Ni2FeGa is summarized in

Fig. 4a and b for deformation in tension. Figure 4a shows
orientation dependence and the modulus difference among

the three crystallographic orientations analyzed in this
study. Figure 4b shows the two-stage transformation and
transformation strain levels exceeding 10 %. More details
are provided in Appendix 4.

Based on the lattice deformation theory calculations
[30], the maximum transformation strains are known for all
three orientations. Among the three orientations considered
in this study, the [001] strain is as high as 12 %, while the
[011] strain is 3.5 %, and the [123] strain is 4.5 %. The
magnitude of the residual or accumulated strain is a frac-
tion of the maximum strain, and based on careful mea-

surements, we measured this strain as slightly less than
0.8 %.

The elastic moduli tensors for austenite and tetragonal
martensite phases need to be known for the calculations.
The austenite constants can be determined experimentally

and are given in Table 4 (also graphically plotted in
Fig. 5a), but the martensite elastic constants need to be
evaluated from atomistic simulations. DFT calculations
were made for the martensitic state (L10).

DFT Simulation Setup

In order to calculate the elastic constants of martensitic

Ni2FeGa, a cell structure consisting a total of 8 atoms was
used. The cell consisted of four Ni, two Fe and two Ga
atoms, thus maintaining an atomic ratio of Ni, Fe, and Ga as
2:1:1. We employed first principles calculations based on
the DFT to obtain the total-energy of the system. We

utilized the Vienna ab initio simulations package (VASP)
with the projector augmented wave (PAW) method and the
generalized gradient approximation (GGA) as implemen-

tations of DFT [31]. In our calculations, we used a 12 9 12
9 12 Monkhorst–Pack k-point meshes for the Brillouion-
zone integration to ensure the convergence of results. The
energy cut-off of 500 eV was used with the plane-wave
basis set and a conjugate gradient algorithm was performed

for ionic relaxation ensuring an energy convergence to less
than 5 � 10�3 eV/Å .

To calculate the elastic constants of the martensitic (L10-
non-modulated Ni2FeGa), we obtained the total en-ergy
variation of the crystal as a function of the volume subjected
to six different distortions (strain). The defor-mation tensors
given in Voigt notation and the corre-sponding energy
densities are given in Table 2. The strain parameter d in 
Table 2 for each deformation was varied from -0.03 to 0.03
in the present analysis. After obtaining the total energies E
and E0 for the strained and the un-strained lattice

respectively, the parameter ðE � E0Þ=V0 values were then
plotted as a function of strain (e), where V0 is the 
equilibrium volume. The elastic constants were then

extracted from the second-order coefficient fit of the

following equation:

Fig. 3 The crystal lattices of

cubic austenite (L21) and

tetragonal martensite (L10). The

lattice constants are established

with DFT calculations which

are then in turn used for

determination of the elastic

moduli tensors



Fig. 4 a Stress–strain response of Ni2FeGa in tension for three orientations considered in this study, b stress–strain response to high strains for

the [001] case in tension. Note that the maximum transformation strains are rather high as high as 12 % in this material

Fig. 5 Elastic moduli of

Ni2FeGa, a Austenite modulus

as a function of crystal

orientation, b Martensite

modulus tensor, the difference

in [001] and [010] represent ‘‘c’’

and ‘‘a’’ axis, respectively
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Table 2 Distortion matrices

and energy densities for elastic

constant calculations of

martensitic Ni2FeGa

Structure Distortion matrix DE=Vo

Martensite (L10) e1 ¼ d2=ð1� d2Þ; e4 ¼ d 2C44d
2 þ Oðd4Þ

e3 ¼ d2=ð1� d2Þ; e6 ¼ d 2C66d
2 þ Oðd4Þ

e1 ¼ d; e2 ¼ d; e3 ¼ d2=ð1� d2Þ C11 � C12ð Þd2 þ Oðd4Þ
e1 ¼ d; e2 ¼ d2=ð1� d2Þ; e3 ¼ �d 1=2 C11 � 2C13 þ C33ð Þd2 þ Oðd4Þ
e1 ¼ e2 ¼ e3 ¼ d C11 þ C12 þ 2C13 þ C33=2ð Þd2 þ Oðd4Þ
e3 ¼ d C33=2ð Þd2 þ Oðd4Þ

Table 3 Elastic constants (in

GPa) and the corresponding

crystal structures of alloys

Ni2FeGa, NiTi, and CuZnAl in

martensitic phase

Alloys Crystal structure C11 C22 C33 C44 C55 C66 C12

Ni2FeGa* L10 256 241 212 109 109 45 103

NiTi B190 209 234 238 77 23 72 114

CuZnAl 18R 175 156 235 54 28 48 118

Alloys Crystal structure C13 C15 C23 C25 C35 C46 AM

Ni2FeGa* L10 155 0 155 0 0 0 1.75

NiTi B190 102 1 139 -7 27 -5 2.5

CuZnAl 18R 40 10 150 0 0 -10 16

The data for Ni2FeGa (marked with *) are obtained using DFT in the present analysis. The NiTi and
CuZnAl data are obtained from [22, 32], respectively. The anisotropic ratios (AM) are also given. Note the
very high anisotropy ratio for CuZnAl

Table 4 Elastic constants (in GPa) and the corresponding crystal

structure of alloys in austenitic phase noted in the present study

Alloys Crystal structure C11 C12 C44 AA

Ni2FeGa L21 163 136 86 5.4

NiTi B2 175 130 31 1.37

CuZnAl B2 116 102 84 12

The data are obtained from [24, 33, 36, 37] respectively. The
anisotropic ratios (AA) for three alloys are also given

Fatigue Crack Growth Experiments

Fatigue crack growth experiments were conducted on the
Ni2FeGa single crystals for three-crystal orientations:[001],
[123], and [011]. The tensile dog-bone-shaped spe-cimens

utilized in this study were cut using EDM and have nominal

1.50-mm 9 3-mm-gage section, 10-mm-gage length and a
0.5-mm notch. Prior to testing, the specimens were polished
using SiC paper (from P800 to P1500). Successively, a fine
speckle pattern adapted for image correlation was deposited
using an Iwata micron B airbrush and black paint. Three
experiments were conducted separately on the single

crystals. The fatigue crack growth experiment on [001]
Ni54Fe19Ga27 was conducted under MTS Landmark Servo
Hydraulic Load Frame to capture the relationship between
stress intensity factor range and crack growth rate. For the
other two orientations, [011] and [123], two experimental

set-ups were prepared. (i) Under

ð1Þ

where Cij, ri, ei are the elastic constants, stress, and strain 
in Voigt notation. The results are shown in Fig. 5, and the
modulus tensor for martensite is provided in Table 3. The
total energies to obtain C33=2ð Þd2 þ Oðd4Þ are discussed in 
Appendix 5.

In addition to the elastic moduli of martensites, the
anisotropy factor is included in the Table 3. The results for
NiTi and CuZnAl, two well-known studied alloys in terms

of fatigue resistance, are also included in Table 3. The
plots of the elastic moduli for NiTi and CuZnAl are given
in Appendix 3. The NiTi results are obtained from [22] and
the CuZnAl constants are obtained from [32]. The elastic
constants for the three materials in the austenitic state are
listed in Table 4. The anisotropy factor is also included in
Table 4. The procedure for calculating the anisotropy ratio
can be found in the work Ostoja-Starzewski [34]. It is
important to note that these set of constants meet the me-

chanical stability criteria for the elastic moduli. We note
that the moduli values for both austenite and martensite are
strongly orientation dependent. This information is of
fundamental importance for precise calculation of the in-
ternal forces acting on the crack surfaces and for deter-
mination of the stress intensity levels when displacements

are measured.



image correlation results. An example of the strains in the
crack wake is shown in Figs. 7 and 8. In Fig. 7, the axial
strain fields at the beginning of the cycle (point A) and at the
end of the cycle (point B) are shown for the [011] crystal
orientation. The strain maps were obtained adopting two
image resolutions. Utilizing the 0.44 lm/px set-up the full-
field strain field of the notch region can be analyzed, and the
extent of the crack wake can be readily obtained. Images

captured at higher resolutions (0.22 lm/px for the example 
reported) are then necessary in order to characterize the
crack-tip strain field. From the high-resolution strain fields
marked as A and B in Fig. 7, it is possible to calculate the
accumulation of the local strains in front of the crack tip
following the fatigue cycle.

Providing these strain measurements for different crack
lengths, in Fig. 8, we report the strain accumulation during
crack propagation in terms of the equivalent strain at the
crack tip. The equivalent strain at the crack tip was calculated
via averaging the strain tensor components over a region of
approximately 50 lm 9 50 lm in front of the crack tip for 
different crack lengths. That is, within this confined region
ahead of the crack tip, the strain components, exx, eyy, and exy,
can be extracted from digital image correlation results.
Consequently, the corresponding equivalent strain, eEquivalent,
can be calculated from Eq. (2). The difference between levels
of strain at point A and point B, in Fig. 8, yields the
equivalent strain accumulation in one fatigue cycle

eEquivalent ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

3
e2xx þ 2e2xy þ e2yy

� �

r

: ð2Þ

A comparison of the strain fields at peak and minimum

load for the three crystal orientations [001], [123], and [011]
is illustrated in Fig. 9. The shapes of the transfor-mation

region determined using these strain fields will be used to
evaluate the reduction in stress intensity factor for each
orientation.

Stress Intensity Determination via Regression and
Modeling, Fatigue Crack Growth Rates, Virtual
Extensometers, and Key Variables
for Modeling

Method I: Extraction of Stress Intensity Factor
from Displacements Using Anisotropic Elasticity
via Regression

The displacement fields from the digital image correlation
are shown in Fig. 10. In Figs. 10a and b, the displacements

normal and parallel to the crack tip are shown respectively
for fatigue crack growth in [001] oriented specimens. These
results are fitted to the anisotropic displacement fields for
cubic crystals. Such solutions are available by Sih

Fig. 6 The SEM tester that is utilized with high resolution micro-
scope to measure the local crack tip displacements for fatigue
experiments

the same servo hydraulic load frame, we initially pre-
cracked the specimens utilizing constant amplitude load-
ings in order to induce a fatigue crack from the notch. For
this experimental configuration, the images used for crack
length measurements and displacements (in x and y direc-
tions) and strain fields correlations were captured using an
IMI model IMB-202 FT CCD camera (1600 9 1200 pixel)
with a Navitar optical lens, providing an average resolution
of approximately 2 lm/px [35]. (ii) Successively, the 
cracked specimens were loaded under a 4.5 kN EBSD
SEMTester which was herein fitted under an Olympus

BX51M microscope (Olympus lens). This set-up is shown
in Fig. 6 and was utilized for obtaining images at higher
magnifications (from 0.44 up to 0.22 lm/px). This set-up 
allows precisely obtaining the strains at crack tip and the
extent of the residual transformation zone. For these three
experiments, initial images of the virgin specimens were
captured prior to loading (reference images) in order to
calculate the accumulated strain in the further analyses.

Digital Image Correlation of the Crack Tip Strains
in Cyclic Loading

Displacement and strain fields were monitored in the
vicinity of the crack as the crack advances. These

measurements were made at maximum load, minimum load,
and at intermediate loads. As the crack advances into a zone
of transformed material is generated in the wake of the
crack. This zone height and the strains are readily measured

from the digital



extracted. In the case of [123] and [011]-oriented single
crystals, the crack grew nearly normal to the loading axis
and the Mode II stress intensity is small. The crack tip
displacements for the [123]-oriented specimens are shown
in Fig. 10c. Figures 10a–c demonstrate the comparison

between experimental and regression displacement fields.

Fig. 7 Residual strain

accumulation during cycling

loading of Ni2FeGa oriented

along the [011] crystal

direction; the DIC images are

taken at minimum load at the

beginning of the cycle (point A)

and at the conclusion of the

cycle (point B) and correlated

with the reference image

Fig. 8 The measured

accumulation of equivalent

strains over a wide range of

crack lengths. The accumulated

strain per cycle is the difference

between the strain levels at

points B and A shown in the

schematic

et al. [26]. It is possible to extract the stress intensity by
regression fit to the following set of equations, Eqs. (3) and
(4). We note that the equations include the elastic constants
and T stress term. We also note that the orientation of the
crack in the [001] specimen is 45� to the loading axis. In this 
case, both Mode I and Mode II stress intensities can be



A video was attached to this paper to illustrate such com-

parison during one fatigue cycle.

The stress intensity factors, K1 and K2, can be extracted

from horizontal and vertical displacements, u1 and v1,

through the following equations

u1 ¼K1

ffiffiffiffiffi

2r
p

Re
1

l1�l2
l1p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

coshþl2 sinh
p

�

�

�l2p1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

coshþl2 sinh
p

�i

þK2

ffiffiffiffiffi

2r
p

Re

1

l1�l2
p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

coshþl2 sinh
p

� p1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

coshþl2 sinh
p

� �

� �

þ a11TrcoshþArsinhþBu ð3Þ

v1 ¼ K1

ffiffiffiffiffi

2r
p

Re
1

l1 � l2
l1q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos hþ l2 sin h
p

�

�

�l2q1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos hþ l2 sin h
p

�i

þ K2

ffiffiffiffiffi

2r
p

Re
1

l1 � l2
q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos hþ l2 sin h
p

�

�

�q1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos hþ l2 sin h
p

�i

þ a12Tr cos hþ Ar sin hþ Bv ð4Þ

a11l
4 � 2a16l

3 þ 2a12 þ a66ð Þl2 � 2a26lþ a22 ¼ 0; ð5Þ

where Re represents the real part of a complex number, T is

the T-stress, A is the rigid body rotation, Bu and Bv are the

Fig. 9 The strain fields at the

peak and at the minimum loads

obtained from fatigue crack

growth experiments on Ni2FeGa

utilizing digital image

correlation. The results for

fatigue loading in three

orientations are displayed:

[001], [123], and [011]



rigid body translations in u1 and v1 directions, respectively, 
a11, a12, a16, a22, a26, and a66 are the compliance compo-

nents, r and h are the polar coordinates with their origin at 
the crack tip, and l1 and l2 are the roots of Eq. (5). The pi 
and qj in Eqs. (3) and (4) are the anisotropic terms defined in
the following ways

pi ¼ a11l
2
i þ a12 � a16li

qj ¼ a12lj þ
a22

lj
� a26:

ð6Þ

Method II: Calculation of the Driving Force
Changes Due to Transformation Shielding in Crack
Wake-Equivalent Eigenstrain Determination-

Minimum and Maximum Load

The strain level measured via DIC is shown in Fig. 9 for
different single-crystal orientations. Since the transformed

area is surrounded by the matrix material, the DIC result
can be interpreted as the total strain, etmn which is the sum 
of constrained strain and far field strain. The intrinsic

Fig. 10 The crack tip

displacements. a Normal to the

crack plane (indicated as

vertical displacements v), and

b horizontal to the crack plane

(horizontal displacements u) for

the inclined crack in a single-

crystal oriented in [001]

orientation. c The vertical crack

tip displacements for the single

crystal oriented in [123]

orientation



transformation strain, e
p
kl can be calculated by following

equation

e
p
kl ¼ S�1

klmn etmn � eomn
� �

; ð7Þ

where eomn is the far-field strain and Sijkl the Eshelby’s

tensor for cubic crystal material. The Sijkl represents the

geometry of the martensite platelets and is treated as a flat

ellipsoidal shape. It can be obtained as

Sijkl ¼
1

8p
Cpqkl

�Gipjq þ �Gjpiq

� �

; ð8Þ

where the specific terms, �Gipjq, are given a book by Mura

[38] and also in Appendix 1 for completeness.

Assuming the minimum load to be near zero, the misfit

strain due to modulus mismatch can be neglected. As a

result, in the case of minimum load, e
p
kl is the equivalent

eigenstrain that needs to be calculated. Therefore, the

corresponding stress, Tij, on the transformation contour can

be obtained via

Tij ¼ Cijkle
p
kl: ð9Þ

When the maximum load is applied, the eigenstrain ef-

fect due to modulus mismatch, e�mn needs to be taken into

account. The equivalent eigenstrain, e��mn, which is the sum

of e�mn and e
p
kl can be calculated through Eshelby’s

equivalent method described below

Cijkl e
0
kl þ Sklmne

��
mn � e��kl

� �

¼ C
0

ijkl e
0
kl þ Sklmne

��
mn � e

p
kl

� �

e��mn ¼ Cijkl � C
0

ijkl

� �

Sklmn � Cijmn

h i�1

� Cijkl � C
0

ijkl

� �

e0kl � Cijkle
p
kl

h i

; ð10Þ

where Cijkl and C0
ijkl are the elastic moduli of cubic 

austenite and tetragonal martensite for Ni2FeGa, respec-
tively. These tensors are given in ‘‘DFT Simulation Setup’’
section. We note that all tensors are given in the cubic
coordinate frame, and the rotations associated with the
transformation are accounted for when the moduli are
determined.

Upon calculation of the equivalent eigenstrains, the
corresponding stress, Tij, in the transformation zone can be
ascertained as
Tij ¼ Cijkle

��
kl ð11Þ

Using equation above, it is possible to determine the in-
ternal tractions along the transformation contour using the
Cauchy formula. Further details are given in Appendix 1.

Knowing the tractions on the surface of transformation

zone, we can numerically calculate the stress intensity
change for a specific loading case. By implementing the
weight function technique proposed by Bueckner and Rice
[4], the stress intensity factor due to the internal tractions,
DKI, can be written as

DKI ¼
Z

Sp

niTijhjdSp; ð12Þ

where ni is the outward normal of the transformation zone,
dSp is the line element on the perimeter of the zone, and hj 
is the anisotropic weight function which is going to be
determined.

According to Rice, the weight function can be readily
obtained through Eq. (13) if the displacement fields, u1 and 
v1, and stress intensity factor, K1 and K2, in a reference load 
system are known

hx ¼
H

2K1

ou1

ol

hy ¼
H

2K1

ov1

ol
:

ð13Þ

The solution for stress intensity factors due to tractions
on the crack surface in Fig. 11 can be found via Eq. (14) and
displacement fields are provided by Sih et al. [26] as

K1 ¼ � 1

p
ffiffiffi

a
p

Z

a

0

r xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ x

a� x

� �

r

� 1

2

ao
bo

" #

dx

K2 ¼ � 1

p
ffiffiffi

a
p

Z

a

0

r xð Þ a2o
2bo

þ 1

2bo

a12

a11
þ a2o þ b2o
� �

� �	 


dx;

ð14Þ

where ao and bo are the real and imaginary component of 
the roots for Eq. (5), i.e., for l1 ¼ ao þ boi and 
l2 ¼ �ao þ boi.

The elastic moduli, H, can be represented in Eq. (15)

H ¼ � 1

8

l1 � l2
l2

� �

i

aobo

a12

a11
þ a2o � b2o
� �

� �

þ 1

	 


:

ð15Þ

Fig. 11 Schematic of the load system on the crack surface. Four

zones are considered and the contributions of all four zones are taken

into account. Zones 1, 3 and 4 have the most significant influence on

the results of stress intensity due to internal tractions



Once weight functions are obtained, the corresponding
stress intensity factor in that loading system can be deter-
mined through Eq. (13). The summation of stress intensity
factors obtained from different parts of the transformation

contour (Fig. 11) yields the change of stress intensity factor
due to transformation effect. Further details are given in
Appendix 2.

The net reduction in stress intensity factor as the applied
loading is increased is given in Table 5. The contributions
from different sectors of the transformation zone are pro-
vided. It is noted that the Zone 2 provides negligible
contribution while Zones 1 and 3 provide a smaller con-
tribution compared to Zone 4. These results are further
presented in the next section.

Fatigue Crack Growth Experiments

and Corrections to Stress Intensity

The experimental fatigue crack growth rate results and
predictions of fatigue crack growth rates upon correction of
stress in intensity range are shown in Fig. 12. The effective
stress intensity range upon regression of the entire dis-
placement field is also included in Fig. 12. The agreement

for the theory and regression-based stress intensity range is
excellent. The reduction in the stress intensity range is
approximately 35 % of the full range based on regression
and also based on theory. We show virtual extensometer

results of crack opening displacements confirming the crack
closure in the next section.

Virtual Extensometer Results: Determination

of Crack Opening Load

The virtual extensometer method is another technique for
determining the crack closure levels which is complimen-

tary to ‘regression.’ The technique is illustrated in Fig. 13a.
The relative displacements across the crack faces are
measured during loading and unloading. Therefore, DIC
measurements allow the determination of the crack open-
ing displacements during loading and unloading. By making

such measurements over fine increments, it is possible to
precisely determine the applied load level at

which the crack opening occurs. These results are shown in
Fig. 13b for two crack lengths. The crack opening load is
determined as 35 % of the maximum load.

Sensitivity of Results to a=w Ratio and the Moduli
Levels

Three other shape memory alloys were assessed to evaluate
the propensity of K reduction. The results are shown in
Tables 6 and 7. In the first set of simulations (Table 6), the
a=w ratio was maintained at 2. In Table 7, we consider the
reductions in K at both maximum and minimum loads for
different a=w ratios. A noteworthy point is that the re-
duction in K occurs at both maximum and minimum load.
However, since the reduction is higher at the maximum

load, this results in a net decrease in stress intensity range.
The sensitivity of the simulations on the variations in the

a=w ratio and martensite moduli magnitude is studied in
Fig. 14a and b. The basis for these simulations is the Ni2-
FeGa alloy. We note that as the a=w ratio increases, with
all other parameters constant, the reduction in both mini-

mum and maximum stress intensity is noted. The overall
reduction in stress intensity range saturates with increasing
a=w ratio. In Fig. 14b, the martensite modulus is pre-
multiplied by a factor. The factor F = 1 corresponds to the
Ni2FeGa case. As the factor increases the reduction in
stress intensity range increases.

Discussion of Results

Fatigue crack growth experiments were conducted on the
new Ni2FeGa shape memory alloy. Extensive experimental

results and measurements for fatigue crack growth were
obtained in the course of this study. Three single-crystal
orientations of Ni2FeGa shape memory alloy were tested in
tension–tension fatigue. The experimental results were

obtained at room temperature where the material deforms

under ‘pseudoelastic’ conditions. The crack advance was
measured as a function of the effective stress intensity
range and the threshold stress intensity range was precisely
established as 8:3 MPa

ffiffiffiffi

m
p

.

Table 5 Stress intensity factor

(K ðMPa
ffiffiffiffi

m
p

Þ) values due to

tractions on different zone
boundaries of Ni2FeGa in

Fig. 11 for the a=w = 2 case

Zone # Zone 1 Zone 2 Zone3 Zone 4 Total

Load (MPa) K1 K2 K3 K4 Kred ¼
P

Ki MPa
ffiffiffiffi

m
p

ð Þ

3.34 0.35 0.013 0.35 -3.07 -2.37

10 0.42 0.018 0.42 -3.69 -2.85

20 0.63 0.023 0.63 -4.75 -3.49

30 0.93 0.028 0.93 -7.03 -5.17

40 1.16 0.033 1.16 -8.75 -6.43

50 1.46 0.039 1.46 -10.9 -7.98



Reduction in stress intensity range (of the order of 30 %)

was established by calculating the closure forces (Method II
—‘‘Method II: Calculation of the Driving Force Changes
Due to Transformation Shielding in Crack Wake-Equivalent

Eigenstrain Determination-Minimum and Maximum Load’’
section) via a micro-mechanical analysis. The closure forces
arise due to residual strains in the wake of the crack. The
calculated crack tip stress intensity range is in agreement

with the experimental measurements of the effective stress
intensity range. We used two experimental measurements

for measuring the effective stress intensity range. In the first
one, the crack tip displacement fields were utilized to
establish the stress intensity range with a least square fitting
procedure (Method I—‘‘Method I: Ex-traction of Stress
Intensity Factor from Displacements Using Anisotropic
Elasticity via Regression’’ section). This method resulted in
establishment of the effective stress intensity range 30 %
smaller than the theoretical one. The difference is attributed
to shielding due to residual dis-placements in the crack
wake. In the second one, by using virtual extensometers

along the crack faces (‘‘Virtual Ex-tensometer Results:
Determination of Crack Opening Load’’ section), the crack
opening and crack closure loads were measured and found
to be also at nearly 30 % of the maximum load.

A combined experimental-theoretical methodology is
outlined for a better understanding of the driving force for
fatigue crack growth in shape memory alloys. The choice

of single crystals allowed precise knowledge of the elastic

moduli in the austenitic and martensitic phases. In turn, the

moduli tensors were used in a micro-mechanical analysis to

determine the equivalent eigenstrains in the transformed

regions. The equivalent eigenstrain was used to determine

the internal tractions at maximum load of the cycle. This

led to the calculation of the reduction in stress intensity,

hence a modified range of stress intensity was determined.

The calculations presented represent an advancement by

accounting for elastic moduli difference and with the ex-

perimental determination of strain fields at minimum and

maximum loads.

To put perspective on the results, the simulations were

repeated on two well-known shape memory materials, the

NiTi and CuZnAl. The reductions in stress intensity range

were lower in NiTi compared to Ni2FeGa, while the re-

duction in CuZnAl was substantially lower than NiTi and

Ni2FeGa. These results cannot be directly compared with

experiments in the literature, since there is no reported

CuZnAl fatigue crack growth data to our knowledge. The

literature on NiTi shows threshold levels that are lower

compared to Ni2FeGa.

Fatigue crack growth behavior in shape memory alloys

remains a complex topic. The elastic moduli evolves con-

tinuously; it is strongly orientation dependent in both

austenite and martensite. The moduli tensors decide the

equivalent eigenstrains, hence the closure forces. The clo-

sure forces vary as a function of cycles accompanying the

Fig. 12 Fatigue crack growth

behavior of primarily based on

experiments on [001] single

crystals. The range in effective

stress intensity is obtained by

regression analysis of crack tip

displacements (present

experiments) and also via

calculation of the shielding

effects due to transformation

(present theory). The effective

threshold stress intensity range

is 8.3 MPa
ffiffiffiffi

m
p

. The full range

of stress intensity is also

provided as a reference. The

dashed lines are drawn to aid

the eye



Fig. 13 a Schematic of the

virtual extensometer

methodology used for crack

closure measurements. b The

crack opening displacement

profiles, utilizing virtual

extensometers, for the specimen

oriented in [001] direction. The

gage location is the distance

behind the crack tip. The

profiles are given as a fraction

of the maximum applied load.

The crack opening load is

determined as 35 % of the

maximum applied load



residual transformation strains. In this study, we estab-
lished the modification in stress intensity and established a
rigorous estimate of the stress intensity range. In future
studies, the crack growth rate needs to be predicted based on
the magnitude of the irreversibility in displacements at
crack tips [39, 40]. This would require knowledge of the slip
and transformation energy barriers in the material [41]. This
approach would need to be taken with care because both
transformation and plasticity can occur simultane-ously at
the crack tips. In the present calculations no ex-plicit
consideration of plastic slip was included [41]. Plasticity
can occur at high stress levels and it needs to be considered
in future work.

Finally, we comment on the role of martensite to
austenite modulus change. Evidence of higher martensite

modulus relative to austenite is well documented [42]. On
the other hand, the martensite modulus is taken as less than
the austenite modulus in most constitutive models. The
martensite moduli upon deformation in fatigue and fracture
studies are the oriented martensite and not the self-acco-
modated one [22]. Also, the constitutive models utilized
have been simple for the ease of implementation in FEM
codes. This creates some difficulty when residual strain
buildup due to residual martensite or plastic deformation

needs to be considered. There is no provision for these

mechanisms in most constitutive models. Finally, there is

the matter of orientation dependence. A highly anisotropic

material cannot be represented accurately as isotropic with

two elastic constants. Constitutive models will need to

incorporate these characteristics.

Conclusions

The work supports the following conclusions:

(1) The new shape memory alloy Ni2FeGa displays

unusually high fatigue thresholds (8:3 MPa
ffiffiffiffi

m
p

) and

excellent fatigue crack growth resistance. The
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Fig. 14 a Reduction in maximum and minimum stress intensity

levels with increase in crack length, the results are for the [001]

Ni2FeGa material and explore the hypothetical variation of residual

transformation zone on the results. b Reduction in maximum and

minimum stress intensity levels as a function of martensite modulus

factor. The moduli tensor is simply scaled by the factor, F. The F = 1

case corresponds to the baseline Ni2FeGa material

Table 6 The DKredðMPa
ffiffiffiffi

m
p

Þ values for alloys noted in the present

study

Alloys a=w DKredðMPa
ffiffiffiffi

m
p

Þ

Ni2FeGa 2 -5.61

NiTi 2 -2.38

CuZnAl 2 -1.91

Table 7 Reduction in stress intensity factor (KredðMPa
ffiffiffiffi

m
p

Þ) values
for alloys noted in the present study at minimum and maximum loads

Alloys a=w Kred�min Kred�maxðMPa
ffiffiffiffi

m
p

Þ
Minimum load Maximum load

NiTi 0.5 -1.05 -2.59

1 -1.47 -3.37

2 -1.8 -4.18

4 -2.25 -4.54

Ni2FeGa 0.5 -1.26 -3.06

1 -1.89 -6.74

2 -2.59 -7.34

4 -3.17 -7.77

CuZnAl 0.5 -1.48 -2.81

1 -1.86 -3.5

2 -2.29 -4.2

4 -2.62 -4.7



reduction of the stress intensity range associated

with the transformation is considerable as shown

with an anisotropic micro-mechanics calculation.

(2) Excellent quantitative correlation is achieved between

theory and the experimental measurements of stress

intensity range reduction. Utilizing crack tip displace-

ment fields with digital image correlation methods

allowed evaluation of the effective stress intensity

range in agreement with the virtual extensometers

along the crack flanks. These results show that the

reduction in stress intensity is 35 % of the full range.

(3) Comparisonsweremade between three shapememory

alloys to assess their propensity for shielding associ-

ated with phase transformations. It was found that the

Ni2FeGa produced higher levels of stress intensity

reduction compared to NiTi and CuZnAl alloys. The

work underscored the role of elastic moduli in the

martensitic and austenitic phases on the calculations

of the reduction in stress intensity range.
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Appendix 1: Eshelby Tensor for Anisotropic
Media

The treatment follows that given by Mura [38]. The
Eshelby’s tensor calculation is introduced in Eq. (8)

Sijkl ¼
1

8p
Cpqkl

�Gipjq þ �Gjpiq

� �

:

�Gipjq isFor the case of cubic material, the definition of
presented in Eq. (16)

�G1111¼ �G2222 ¼
2p
a

Z

1

0

1�x2ð Þ
pq

1�x2þq2x2
� �

� l2ð1�x2þq2x2Þþbq2x2

 �

dx

þp
a

Z

1

0

1�x2ð Þ2

p pþqð Þ b 1�x2þq2x2
� �

þcq2x2

 �

dx

�G3333¼
4p
a

Z

1

0

q2x2

pq
1�x2þq2x2
� �

l2ð1�x2þq2x2Þ



þb 1�x2
� ��

dxþpc
a

Z

1

0

q2x2 1�x2ð Þ2

p pþqð Þ dx

�G1122¼ �G2211 ¼
2p
a

Z

1

0

1�x2ð Þ
pq

1�x2þq2x2
� ��

l2ð1�x2þq2x2Þþbq2x2

 �

þ 1�x2
� �

b 1�x2þq2x2
� �

þcq2x2

 ��

dx

�p
a

Z

1

0

1�x2ð Þ2

p pþqð Þ b 1�x2þq2x2
� �

þcq2x2

 �

dx �G1133¼ �G2233

¼2p
a

Z

1

0

q2x2

pq
2 1�x2þq2x2
� ��

l2ð1�x2þq2x2Þþbq2x2

 �

þ 1�x2
� �

b 1�x2þq2x2
� �

þcq2x2

 ��

dx �G1212

¼�p kþlð Þ
a

Z

1

0

1�x2ð Þ2

p pþqð Þ l 1�x2þq2x2
� �

þl0q2x2

 �

dx

ð16Þ
�G1313 ¼ �G2323

¼ � 2pl kþ lð Þ
a

Z

1

0

q2x2 1� x2ð Þ 1� x2 þ q2x2ð Þ
pq

dx

� pl0 kþ lð Þ
a

Z

1

0

q2x2 1� x2ð Þ2

p pþ qð Þ dx

�G3311 ¼ �G3322

¼ 2p
a

Z

1

0

1� x2ð Þ
pq

1� x2 þ q2x2
� �

l2ð1� x2 þ q2x2Þ



þb 1� x2
� ��

dx þ pc
2a

Z

1

0

1� x2ð Þ3

p pþ qð Þ dx:

Specific terms in Eq. (16) can be represented as the
following,

q ¼ a1=a3
a ¼ l2 k þ 2l þ l0ð Þ
b ¼ a�1ll0 2k þ 2l þ l0ð Þ
c ¼ a�1l02 3k þ 3l þ l0ð Þ
b ¼ l kþ l þ l0ð Þ
c ¼ l0 2k þ 2l þ l0ð Þ

p¼ 1� x2þq2x2
� �3

n

þ bq2x2 1� x2
� �

1� x2þq2x2
� �

þ 1

4
1� x2
� �2

b 1� x2þq2x2
� �

þ cq2x2

 �


1
2

; 0\x\1

q¼ 1� x2þq2x2
� �3þbq2x2 1� x2

� �

1� x2þq2x2
� �

n o1
2

;

0\x\1;

ð17Þ



hx ¼
H

2K1

ou1

ol

hy ¼
H

2K1

ov1

ol

ð18Þ

Horizontal displacement u1 and vertical displacement v1

can be found earlier. The stress intensity factor K1 is pre-
sented earlier as well as the elastic modulus H. A schematic

showing a point load with a distance r and oriented at an
angle of h from the crack tip is presented in Fig. 16.

The weight function can be calculated as follows:

hx ¼
H

2K1

ou1

oh
sin h
r

� ou1

or
cos h

� �

hy ¼
H

2K1

ov1

oh
sin h
r

� ov1

or
cos h

� �

:

ð19Þ

Appendix 3: 3D Elastic Moduli Representation

The elastic moduli tensor is represented with 3D images in
Fig. 5 for Ni2FeGa. For completeness, we provide the
moduli images for the two other alloys, NiTi and CuZnAl
(Fig. 17).

Appendix 4: Transformation Strains

The lattice constants of three of the alloys considered result
in the following transformation matrix which can be used
to establish the transformation strains (Table 8).

The following equation can be used to establish the

transformation strains, e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

êTFTFê
p

� 1 where F is the

deformation gradient and is related to the transformation

matrix given below by a unique rotation (F ¼
RU and RRT ¼ I), and ê  is any direction in which the 
transformation strain is calculated.

More detailed explanations can be found in Saburi and
Nenno [30], Sehitoglu et al. [34] and in a textbook by
Bhattacharya [43]. The volumetric strain can be obtained
as detðUÞ �  1. This volumetric strain was used to estimate

the transformation strain in the third dimension when in-
plane strains were measured via DIC.

The entire stereographic triangle for the three alloys is
given in Fig. 18 showing the maximum transformation

strains. We calculated the Ni2FeGa and CuZnAl transfor-
mation strain stereographic triangles in this study while the
NiTi stereographic triangle (the detwinning strain version)
was published previously [43].

The important observation is that the transformation

strains in all shape memory alloys considered are as high as
10 %. We point out that transformation strains were mea-

sured for the Ni2FeGa at the maximum and minimum loads
and were used in the calculations. Because we do not have
the experimental results of DIC measurements during fa-
tigue crack growth for NiTi and CuZnAl, these strains were
assumed to be the same magnitude as Ni2FeGa. Admit-

tedly, this is a considerable effort that needs to be under-
taken in future studies.

Appendix 5: Elastic Moduli Determination

An example of the energy variation as a function of the
applied displacement fields is illustrated in Fig. 19 to
establish the elastic constants in tetragonal Ni2FeGa.

In the following analysis, we demonstrate how to cal-
culate the C33 for tetragonal Ni2FeGa. We applied small

strain (d) varying from -0.03 to 0.03 to minimize the er-
rors from higher order terms in the following equation:

Fig. 15 The principal equivalent eigenstrains for three materials 
(CuZnAl, NiTi and Ni2FeGa). The factor F is applied to NiTi and
CuZnAl indicating that the magnitude of the strains are smaller in
those two materials

where k is C12, l is C44, l0 is C11–C12–2C44, a1, a2, and a3
are the semi axis align with the coordinate x, y and z. For
the case of flat ellipsoid (a1 [ a2 [ a3), q is assumed to be 
infinity (Fig. 15).

Appendix 2: The Weight Functions

Earlier, the calculation of weight function was introduced
as the following.

Fig. 16 A schematic showing arbitrary point loading at the crack tip



Fig. 17 a 3-D representation of austenitic CuZnAl, b martensitic CuZnAl, c austenitic NiTi, d martensitic NiTi



E V ; eð Þ ¼ E Vo; 0ð Þ þ Vo

X

6

i¼1

riei þ
Vo

2

X

6

i;j¼1

Cijeiej þ O e3
� �

:

ð20Þ

The distortion matrix to calculate C33 (see Table 2) is
given by
e3 ¼ d

Table 8 The transformation matrix components for Ni2FeGa, NiTi,

and CuZnAl

Material U11 U22 U33 U12 U13 U23

Ni2FeGa 0.9354 0.9354 1.1354 0 0 0

NiTi 0.9563 1.0243 1.0243 -0.0427 -0.0427 0.0580

CuZnAl 1.0101 1.0866 0.9093 0.0249 0 0

Fig. 17 continued



Fig. 18 The transformation strains in tension for Ni2FeGa, NiTi and CuZnAl considered in this study

Fig. 19 Energy variation due to infinitesimal distortions in a tetragonal lattice (Ni2FeGa) a for C44 calculation, b for C33 calculation



Therefore, Eq. (20) becomes

E V ; dð Þ ¼ E Vo; 0ð Þ þ Vo r3dþ
C33

2
d2

� �

: ð21Þ

We calculate the energy variation of the crystal sub-
jected to different magnitudes of strain and the results are
shown in Fig. 19b. The blue curve is a second-order
polynomial function to fit these values, and can be written
as follows:

E dð Þ ¼ 62:87d2 � 0:1006d� 45:812: ð22Þ

We equate the second-order coefficient of Eq. (22) to the
C33 elastic constant in Eq. (21) (note that the energy unit is
eV, and 1 eV = 1.6 9 10-19 J), and calculate the C33 as 
follows:

Vo �
C33

2

� �

d2 ¼ 62:87� 1:6� 10�19
� �

d2 ð23Þ

Substituting the volume of the crystal (Vo) to be 94.69

Å = 94.69 9 10-30 m3 into Eq. (23), we calculate
the C33 to be 212 GPa. All other elastic constants are
calculated following similar procedure.
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