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1. Introduction

In general, the performance of a device is intimately con-
nected through fundamental physical laws to the properties
of the materials or the sub-elements employed in the re-
alization of the device, and these connections may have
far-reaching implications for whole branches of engineer-
ing. For instance, the energy conversion efficiency of a
solar cell is limited by several fundamental limits: for pho-
toexcited carrier exploitation, the Shockley–Queisser limit
applies [1]; photon trapping inside the absorber is instead
governed, in the ray-optics regime, by the Yablonovitch
limit [2] or by more general formulas recently proposed by
Fan et al. [3] for wavelength-size patterned cells.

Focusing back on the optical science, and more specif-
ically on the integrated optical device framework, recent
developments are moving towards reconfigurable systems
constituted of several elements, in order to implement com-
plex operations on classical or quantum signals [4, 5]. As
basic building blocks operating on the amplitude or on the
phase of the wave, besides traditional switching elements
– like those relying on thermic, electric, or plasma dis-
persion effects – devices involving novel materials have
been under investigation in the recent years. Among them
can be cited vanadium dioxide (VO2) [6–11], Ge2Sb2Te5
(GST) [12–17], indium tin oxide (ITO) [18,19], polymeric
materials [20], and resistive switches [21]. With these ma-
terials, and in connection to other concepts like plasmonic
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waveguides, it is expected that certain device metrics like
miniaturization, speed, energy consumption, and state re-
tention will be improved [22]. However, advantages usually
come at a price, and in the present case this can be globally
summarized as large losses.

For instance, plasmonic waveguides systematically suf-
fer from large losses, especially in the visible and near-
infrared spectral ranges, which are of interest for commu-
nications [23]. This does not occur by chance, since the field
confinement and the propagation losses are connected by a
fundamental relation involving solely the properties of the
plasmonic material, and hence of noble metal optical con-
stants [24]. The presence of fundamental limits in optics,
however, does not only concern guiding elements: consid-
ering intensity modulators, it has been recently highlighted
that, when graphene is the active material, the insertion
loss of the overall device is substantially governed by the
graphene conductivity tensor, according to an inequality
proved for planar, multilayered devices embedding con-
ducting sheets [25]. In this article we generalize that result,
proving the existence of a lower limit also on the insertion
losses introduced by a phase actuator. Moreover, our result
applies in general to every two-port device with arbitrary
geometry, like realistic structures in integrated optics. Data
reported in the literature are critically analyzed in view of
the present theory, and the role of resonance in switching
devices is highlighted. A material figure of merit, depending
solely on the dielectric constant of the switching material,



turns out to be the central quantity for both amplitude and
phase switches.

2. Fundamental limit on the losses of phase
actuators

The first problem we address is to determine a fundamental
limit on the insertion loss of a phase modulator. A schematic
of its simplest implementation is shown in Fig. 1a. It is a
two-port linear device that, when passing from state I to
state II, switches the phase of the output beam by a certain
amount. Here we focus on the case of a π -switch, which
is of relevance in most applications. While an ideal phase
switch does not act on the amplitude, a real device possibly
does that. Such a loss may be due to back-reflection, to
scattering into other channels, or to absorption inside the
switching region. Following the theory outlined in [25,26],
and proved in the Supplementary Material for a device of
arbitrary geometry, it turns out that the insertion losses are
ultimately determined solely by the complex permittivity of
the switching material employed in the device. In formulas:

4 min[TI , TII]

(1 − min[TI , TII])2
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|εI (r) − εII(r)|2
4 ε′′

I (r) ε′′
II(r)

≡ γmat ,

(1)

where TI and TII are the intensity transmittances of the
device in states I and I I , εI (r) and εII(r) are the (com-
plex) permittivities inside the volume V where the switch-
ing action takes place, and ε′′ denotes the imaginary part
of the permittivity. In most of the cases, the difference
εI (r) − εII(r) is non-zero and constant at the sole spatial
locations corresponding to the switching material. Hence,
the second term of Eq. (1) only depends on the permittivity,
defining a material figure of merit independent of the spe-
cific device shape. Solving the inequality for min[TI , TII],
the diagram shown in Fig. 1b is obtained. Here there is a
forbidden region which is inaccessible by any device built
out of a material which has a given γmat; in other words, it
is the switching material that ultimately dictates the min-
imum amount of losses introduced by the device into the
optical path1. A material with a small γmat will necessarily
behave as a “bad” actuator, while a material with a large
γmat can potentially be the basis of a well-performing de-
vice. A trivial case is that of a transparent material which
only changes the real part of the refractive index; in this
case, γmat → ∞, and it is clearly possible to build an ideal
phase switch by simply placing the material itself into the
optical path. The reverse is more subtle: given a material

1 It should be highlighted that the limit expressed by Eq. (1)
is reached when the main contribution to the total losses is that
originating from absorption in the switching material. Hence, the
reduction of losses such as reflection and scattering, or dissipation
in opaque components other than the switching material, is always
beneficial.

with γmat → ∞, a design effort is in general needed to
approach the fundamental limit.

To clarify this point, and to check the validity of the
general inequality Eq. (1), we analyze the device shown
schematically on the right-hand side of Fig. 1b. It simply
consists of a waveguide loaded with the switching mate-
rial; the overlap of the latter with the modal field is �.
For a sufficiently weak perturbation2, the waveguide effec-
tive index is modified by (n + iκ) · � in state I , and by
(n + �n + iκ + i�κ) · � in state II [27]. Since the length
of the loaded section must be Lπ = λ0/2��n, the trans-
mittances in states I and II are given by the formulas shown
in Fig. 1b; notice that in these expressions the dependence
on � cancels out. By extracting a random set of n, �n, κ ,
and �κ , the blue dots in Fig. 1b are obtained. All these
points lie in the allowed region of the graph. A detailed
observation reveals that there is a narrow area between the
forbidden region and the cloud of blue points which is not
filled, and two possible causes for this effect have been
identified. First, the waveguide perturbation approximation
has been assumed here, and this may be weaker in certain
areas of the parameter space. Second, the blue dots fol-
low from the analysis of a specific device geometry, i.e.
the loaded waveguide; this choice may result in devices
which do not reach the optimality boundary in the small
γmat region. Similar behavior is also observed in Section 3
concerning amplitude actuators, and a general solution to
that is discussed in detail in Section 4.

Here instead we focus on two cases of special interest,
which have been referred to above. One is that of a material
which is nearly transparent in both states; its representa-
tive point is labeled (i) on the graph in Fig. 1b. Specifi-
cally, its parameters are n = 2, �n = 1, κ = 1.5 × 10−3,
�κ = 0. This leads to γmat 
 105 and TI = TII = 0.99; that
is, a nearly ideal phase delay device with negligible inser-
tion losses. Consider instead a material characterized by
n = 2, �n = 1, κ = 5 × 10−6, �κ = 0.5. Again, the fig-
ure of merit is γmat 
 105, but the insertion loss in state II
is large: TII = 0.04 (point (ii)). In essence, when attempt-
ing to realize a loaded-waveguide phase actuator device
which relies on this material, a very poor performance is
obtained. This is because �κ is large compared to �n, and
the loaded-waveguide section mostly works as an amplitude
switch.

However, even relying on such a material, it is possible
to design a phase switch that approaches the limit given by
Eq. (1). Consider for instance the device sketched in Fig. 1c.
It consists of a ring resonator filter loaded with the switching
material. While the switching material itself essentially acts
as an amplitude switch, the global device implements a π

phase shift actuator. Indeed, in the transparent state, and for
resonant wavelengths, the ring behaves as an all-pass filter

2 The weak perturbation approximation can be safely applied
to low-contrast structures; however, finite-element simulations
show that it can be applied with good accuracy also to silicon-
on-insulator waveguides, provided that the loading material does
not introduce a very large perturbation to the cladding index, or
that the field overlap with the loading material is small enough.



Figure 1 Fundamental limit for a phase-switching optical element. (a) Schematic of the switching action. (b) Minimum transmission
for a π -switch as a function of the material figure of merit γmat. The points describe the action of a simple device consisting of a
waveguide loaded with the active material; different points correspond to different parameters n, �n, κ, and �κ. All the devices lie in
the allowed region of the chart; however, certain devices are strongly sub-optimal. (c) Possible implementation of an optimized phase
switch based on a material which has intensity switching properties.

which shifts the output phase by π (state I ). In the opaque
state, instead, the ring is “broken” and no phase shift ap-
pears at the output port (state II). This is an example which
shows the potentiality of the concept of material figure of
merit γmat and of Eq. (1): by an appropriate device design, it
is possible to obtain a quasi-ideal phase switch even though
at a first glance the material itself is not suited for that pur-
pose. The distance from the zero-insertion-loss condition
(IL 
 0 ↔ T 
 1) is here tuned by a device parameter, the
coupling efficiency K (see Fig. 1c): small values of K mean
small IL. It should however be noticed that a small K , and
hence a small IL, is accompanied by a narrow bandwidth,
a known tradeoff encountered in optical devices based on
resonance.

3. Fundamental limit on the losses of
amplitude actuators

The second problem we address is that of evaluating the
performance of an amplitude switch. Its working principle
is shown schematically in Fig. 2a. State I is the “on” of the
device, in the sense that light is not blocked; conversely,
state II is the “off”. An ideal amplitude switch would allow
all the radiation pass in state I , while completely blocking
it in state II. Non-idealities are hence described by the IL
and by the extinction ratio (ER), usually expressed in dB
scale: IL = −10 log10 TI , ER = −10 log10 TII/TI . As for
the phase switch, by generalizing the theory reported in
Ref. [25], it can be shown that the following inequality
holds:

TI
(√

TI /TII − 1
)2

(1 − TI ) (TI /TII − TI )
≤ γmat, (2)

Figure 2 Fundamental limit for an amplitude-switching optical
element. (a) Schematic of the switching action. (b) Minimum in-
sertion loss as a function of the material figure of merit when an
extinction ratio of 20 dB is required. The points represent the loss
of a loaded-waveguide intensity switching device, where the re-
fractive index and attenuation coefficient of the material in states
I and II are randomly chosen. All the points lie in the allowed
region. (c) Validation of the theory based on the analysis of liter-
ature data for VO2. (d) Same as in (c), but here for GST. In (c)
and (d), empty symbols correspond to experimental works, filled
symbols to theoretical ones.



where the material figure of merit γmat only depends on the
permittivities of the switching material in states I and II
(see Eq. (1)).

Similarly to the result concerning phase actuators, an
intensity actuator relying on a material with small γmat will
have large insertion losses; conversely, if a material with
large γmat is employed, small insertion losses can be ob-
tained. If, for instance, an extinction ratio of 20 dB is
required, the limiting curve reported in Fig. 2b applies.
Again, the validity of the limit is confirmed by analyz-
ing the performance of the loaded-waveguide device, now
designed to act as an intensity switch, in the weak perturba-
tion approximation. Assuming that the complex refractive
index of the switching material is (n + iκ) in state I and
(n + �n + iκ + i�κ) in state II, under this approximation
it is straightforward to show that, to achieve an ER, the
insertion loss is IL = ER · κ/�κ , independent of the over-
lap factor � between the guided mode and the switching
material. We extracted a random set of quartets (n, �n, κ ,
�κ), and represent as a blue dot in Fig. 2b the correspond-
ing pair (γmat, IL). All the dots lie in the allowed region,
thus confirming the validity of Eq. (2) over a large span
of γmat.

The support for Eq. (2) reported above, however, relies
on a quite special device geometry and on the weak pertur-
bation approximation; these are also the reasons why the
allowed region is not completely filled by the blue points.
How to get closer to the forbidden region is systemati-
cally addressed in the next section; here instead we gain
further confidence in Eq. (2) by relying on theoretical and
experimental results reported in the literature. We have cho-
sen two cases for study: the phase-change materials VO2
and GST. These materials have attracted much attention in
recent years, since the huge contrast that characterizes the
optical responses of the two states allows the implemen-
tation of extremely compact devices, with footprints down
to submicrometer size. In addition, devices based on these
materials are interesting because of low energy consump-
tion, self-holding operation (in the case of GST), and inte-
grability of the switching material into existing platforms;
most markedly, into silicon photonics or in connection with
surface plasmons. However, most of these devices suffer
from quite large insertion losses, and the question naturally
arises as to whether these losses can be eliminated through
careful design of the devices and technology improve-
ment, or if they are inherent in employing phase change
materials.

In Fig. 2c we plot as dots the insertion losses versus the
extinction ratios of several VO2-based devices reported in
the literature. Empty symbols correspond to experimental
works and filled symbols to theoretical ones. All the rep-
resentative points lie in the allowed region of the graph. It
is worth noticing that the results of theoretical works, and
especially that of [7], lie very close to the forbidden region:
by relying on VO2, no further improvements are possible.
Here we employed the value γmat = 3, which follows from
the complex refractive indices reported in [7]; the values
reported in the other articles lead to slightly different γmat,

but we systematically checked that the corresponding (IL,
ER) values lay outside the related forbidden region. Simi-
larly, in Fig. 2d we show a set of IL–ER pairs taken from
the literature for GST. Here the forbidden region is nar-
rower, in consequence of the fact that GST has a larger γmat
with respect to VO2. Consistently, there are reports in the
literature of device performances close to the fundamental
limit [14].

Far from being a complete review of the switching ma-
terials employed in integrated optics and nanophotonics, the
analyses detailed above show the potentials and limitations
of two relevant phase change materials at telecommunica-
tions wavelengths, and provide further confirmation of the
validity of Eq. (2).

4. Resonant versus non-resonant amplitude
actuators

It will now be shown that a switching device whose working
principle is non-resonant wave propagation through a re-
gion loaded by the absorbing material may be quite far from
optimality. Consider, for instance, the family of devices
whose representative points are highlighted by a straight
line in Fig. 2c. These points lie on a straight line since they
follow from insertion losses and extinction ratio given per
unit length, the device being a plasmonic waveguide loaded
with the switching material. Despite the waveguide itself
is well optimized (the points are essentially tangent to the
curve which delimits the forbidden region), when devices
with larger and larger extinction ratio are desired, they turn
out to deviate more and more from the fundamental limit.
Clearly, this problem is not limited to the VO2-based de-
vice of Ref. [7]; rather, it concerns every switching device
based on light propagation through the switching region.
While this is not an issue as far as single actuators with low
extinction ratios are concerned, it may pose a problem in
applications where a cascade of actuators or large extinction
ratios are needed.

However, following the limit theory, there are no first-
principle limitations to realizing a device with insertion
losses smaller than those inherent to a component based
on wave propagation. Again, as observed above for phase
actuators, a key is to base the switch on a resonant el-
ement. In Fig. 3 we compare a device based on wave
propagation through a simple loaded waveguide with a
ring resonator where a section of the loop is replaced by
the loaded waveguide. The points describe realistic de-
vices based on a rib silicon waveguide loaded with VO2,
whose geometry is taken from [8]. This waveguide is char-
acterized by two complex effective indices, correspond-
ing to the two states of VO2: neff,I = 2.92, neff,I I = 2.68,
κeff,I = 0.025, κeff,I I = 0.112. For a fixed waveguide ge-
ometry, and consequently for a given pair of propagation
constants βI,I I = 2π (neff;I,I I + iκeff;I,I I )/λ0, the only rel-
evant device parameter in the propagation configuration is
the length. In the resonant configuration, however, there are



Figure 3 Performance of propagation-based and resonance-
based amplitude actuators in comparison with the fundamental
limit. The resonance-based device can perform better than the
propagation-based one, especially in the large ER region. Filled
and empty dots are obtained by randomly choosing the key pa-
rameters for the two geometries (see text). The point marked (i)
represents the minimum IL achievable at arbitrarily large ER with
the ring-based device. The point marked (ii) represents the min-
imum IL achievable at arbitrarily large ER for the most general
switching device relying on a material with γmat = 3.

two relevant parameters3: the loaded section length L and
the intensity coupling coefficient K . The total ring length
is fixed by imposing the resonance condition either in state
I or in state II. From the point distribution – which fol-
lows from a random set of the key parameters L and K
– it turns out that, in the large extinction ratio region, the
device based on resonance may perform much better than
that based on propagation, and that performances very close
to the fundamental limit can be obtained. This resonance-
mediated approach to the fundamental limit occurs even in
the case where the loaded waveguide design by itself is not
optimal, which may occur, for instance, due to fabrication
constraints. Consider again the data in Fig. 3. Here, the
line corresponding to the propagation-based device is not
tangent to the forbidden region (the line tangent to the for-
bidden region, given by IL = ER · (

√
1 + 1/γmat − 1)/2, is

highlighted as a dashed line close to the origin of the axes
in Fig. 3). Nevertheless, by embedding such a waveguide
into a resonant ring, performance much closer to the fun-
damental limit could be obtained.

Although for illustrative purposes here we analyzed a
VO2-based device, the idea that a resonant device is closer
to the fundamental limit than a device based on light prop-
agation is demonstrated in a general form in the following.
To this end, we notice that, in a resonant device, the large
extinction ratio regime is reached under the critical cou-
pling condition. Neglecting the bare waveguide transmis-
sion losses, one has ER → ∞ when the coupling between

3 A more refined model would include, for instance, reflection
and scattering at the unloaded/loaded waveguide interface, and
distributed backscattering. However, since these loss mechanisms
can be reduced by appropriate engineering, and since the aim is
here to analyze the intrinsic limits of actuators, these losses are
not included in the model.

the bus waveguide and the ring is matched with the trans-
mission loss through the loaded section. Consistent with
the notation of Fig. 2, the material state II is chosen as the
device “off” state; thus, the critical coupling condition is
written K = 1 − e−2β ′′

II L . Given this constraint, the inser-
tion loss at critical coupling is readily obtained in closed
form:

ILring,ER→∞ = −10 log10

×e−2β ′′
I L + e−2β ′′

II L − 2e−(β ′′
I +β ′′

II )L cos [(β ′
I − β ′

II)L]

1 + e−2(β ′′
I +β ′′

II )L − 2e−(β ′′
I +β ′′

II )L cos [(β ′
I − β ′

II)L]
.

(3)

It can be shown (see Supplementary Material) that this
expression is minimized when L → 0, i.e. when K → 0,
and that the limit value is

I L ring,ER→∞,min = −10 log10
(β ′′

I − β ′′
II)

2 + (β ′
I − β ′

II)
2

(β ′′
I + β ′′

II)2 + (β ′
I − β ′

II)2
.

(4)

The existence of this limit, and the fact that it is finite, is a
proof that a critically coupled ring resonator device always
outperforms a propagating-wave device, as long as large
extinction ratios are considered. The proof given in the
Supplementary Material also supports that this conclusion
is independent of the specific material under consideration.
For the specific case of the VO2-based device analyzed
above, this limit is shown as the point marked (i) in Fig. 3.
Consistently, this limit lies below all the points representing
the resonant devices at large extinction ratios, while it is
above the fundamental limit

ILfund,ER→∞ = −10 log10
γmat

1 + γmat
(5)

obtained from Eq. (2) and labeled (ii) in Fig. 3.
It should be noticed that the limit in Eq. (5) involves

the bulk material permittivity (in the case of Fig. 3, VO2),
while that in Eq. (4) involves the propagation constant of
the considered waveguide design (in the case of Fig. 3, that
of Ref. [8]). However, it is proved in the Supplementary
Material that the limit in Eq. (4) is always larger than that
in Eq. (5), independent of the specific choice of the switch-
ing material and of the waveguide geometry. As already
noted in Section 2 for phase actuators, the use of resonant
components has the drawback that the bandwidth is in gen-
eral reduced with respect to the case of propagation-based
devices. Anyway, as far as the optimality with respect to
insertion losses are concerned, the results given above to-
gether with those given in Section 2 support the conclusion
that the concept of resonance may play a crucial role in the
optimization of optical actuators. Although the discussion
in the present article deals with integrated optical waveg-
uides and ring resonators, the generality of the resonance
and critical coupling concepts allows extrapolation of the



present results also to other photonic platforms such as
photonic crystals and metamaterials [28, 29].

We conclude this section by noticing that the above
analysis does not depend on the choice of the material
“transparent” state as state I and “opaque” state as state
II, or vice versa. In the deduction of Eq. (2), indeed, this
assumption has not been made, and the designer is free to
choose the switching material “opaque” state for the device
“on” state (i.e. the device state which does not block light
flow), or the opposite. This fact may be exploited in view of
energy saving. Suppose that the need is to design a device
intended for normally-on operation, and that the switching
material has one of the two states which is power-hungry.
The device can be engineered to use the power-hungry
material state for the device “off” state, hence reducing
the overall energy consumption. While this conclusion is
general and holds for arbitrary device geometry, it can be
read out directly in the framework of a critically coupled
ring resonator by noticing that Eqs. (3) and (4) are invariant
for the exchange I ↔ I I .

5. Comparison of various materials
employed in actuators

The power of the limits expressed by the inequalities given
in Eqs. (1) and (2) is that it is sufficient to know the figure of
merit γmat of the (bulk) switching material to have signifi-
cant insights into the potentiality of a new material, prior to
directly designing specific devices. Furthermore, the limits
may be of help as far as an optimization is concerned, when
the decision whether to proceed with further optimization
steps has to be taken. It is clear that the inequalities given
above and the material figure of merit only provide infor-
mation on a single metric of the device performance, while
other issues like bandwidth, footprint, switching energy,
state retention, switching time, etc., are not encompassed
by γmat. Nevertheless, knowledge of γmat could be of help,
for instance, in choosing the material that is best suited for
operation in a certain wavelength range. Indeed, γmat only
depends on the permittivities, which are often known from
optical reflectometry or ellipsometry, from first-principles
structural calculations, or from other models.

In Fig. 4 we propose a spectral comparison, regarding
two phase change materials (GST and VO2), a transparent
conductive oxide (ITO), and a semiconductor (silicon). In
the phase change materials, the permittivity change is in-
duced by a structural transition – amorphous to crystalline
in the case of GST and from a monoclinic to a rutile struc-
ture in the case of VO2. The dielectric functions are retrieved
from [30,31]. In the case of ITO, the plasma dispersion ef-
fect modeled by a Drude contribution to the permittivity is
responsible for the modulation effect. Here, typical parame-
ters for the dielectric response are taken from [18,19,32–34]
and correspond to a mobility of 15 cm2/(V s). In contrast to
the phase change materials, whose response is intrinsic to
their structure (a change in certain optical matrix elements
for GST [35] and a semiconductor–insulator Mott transi-
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Figure 4 Spectral dependence of the figure of merit γmat for four
materials employed in nanophotonics, whose working principles
are different. Dielectric modulation in VO2 and GST is due to a
phase transition, while in ITO and silicon the plasma effect due
to free carriers is considered. In silicon, for wavelengths longer
than the bandgap, extrinsic losses due to waveguide scattering
are included.

tion for VO2 [36]), the plasma effect in ITO can be tuned
through the electron population injected or accumulated in
the active region. It turns out that the material figure of merit
γmat significantly depends on that parameter, gaining more
than one order of magnitude over a wide spectral range for
an order-of-magnitude change in the electron density.

The plasma dispersion effect is also at the origin of the
response of silicon [37], and is here quantified assuming a
mobility of 1500 cm2/(V s), and an injected electron den-
sity of 1018 or 1019 cm−3. By introducing also the effect of
holes the figure of merit is increased by a factor ∼ 2. As
opposed to the other materials, which have a flat response
in a wide spectral range, silicon strongly feels the effect of a
bandgap. If the bulk silicon permittivity is employed, in the
“undoped” state the material is well transparent, implying
values of γmat larger than 106 above a wavelength of 1.2 μm.
However, when silicon is employed for optical waveguides,
extrinsic losses due to roughness scattering and surface state
absorption always occur. These losses, despite being extrin-
sic to the bulk material, and rather connected to the device
itself, can however be accounted for in the material figure
of merit, defining a γmat for an effective “waveguide sil-
icon” material. Assuming a loss of 1 dB/cm [38], values
of γmat = 104–105, flat in the whole near-infrared spectral
range, are obtained. If instead a low-loss 0.1 dB/cm silicon
waveguide is considered [39], the material figure of merit
increases by an order of magnitude. As for ITO, also for
silicon the figure of merit depends significantly on the in-
jected charge density. Hence, provided that the mobility is
not reduced when a large charge density is involved, it is
convenient to work in this regime. This is a consequence
of the balance between the real and imaginary part of the
permittivity given by the Drude model, and applies to every
material whose switching action relies on this mechanism.



6. Conclusions and perspectives

In conclusion, we derived fundamental limits on the losses 
of arbitrarily shaped two-port amplitude and phase optical 
actuators. Finding their roots in a simple manipulation of 
Maxwell’s equations for linear and reciprocal dielectrics, 
the validity of these limits extends to a wealth of linear 
switching devices, and in particular to integrated optics 
devices regardless of the specific geometric configuration. 
The key role is played by the switching material, whose ef-
fectiveness is quantified by a material figure of merit simply 
defined in terms of the permittivities. While the introduced 
figure of merit does not give insights into certain metrics 
like switching time, footprint, state retention, switching en-
ergy, etc., it sets clear limits on the optical performances 
of any device which relies on a given material. Further, 
we observed a peculiar connection between the ability to 
reach the fundamental limit and the presence of resonance 
and of critical coupling in the operation principle of a de-
vice. We believe that the present theory provides an im-
portant metric tool which will direct researchers towards 
high-performance optical devices and materials.
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