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Abstract—The paper addresses the problem of passive crowd
sensing in an indoor space by processing baseband radio signals
originated from a dense WiFi network. Focusing on unmodi-
fied WiFi devices equipped with multi-antenna OFDM physical
radio interfaces (IEEE 802.11n/ac), we investigate the selection
of statistical features to measure the body-induced alterations
of the channel state information (CSI) and we analyze their
dependency over the space (antennas) and frequency domains.
Different machine learning methods are compared and optimized
to discriminate up to 5 people moving inside the smart space. We
compare different solutions for classification and target counting
based on feed-forward and recurrent neural networks based on
long short term memory architecture (LSTM). Experiments with
real subjects are conducted to validate the proposed approach.
Results confirm that CSI feature selection is crucial to optimize
the counting performance and space-frequency diversity needs to
be exploited to provide high-accuracy sensing in complex indoor
environments

I. INTRODUCTION

The use of built-in radio devices for device-free human
body sensing is becoming attractive in many fields, such
as smart living and industrial automation. Comparing with
camera based solution, device-free radio sensing provides
privacy-preserving monitoring with increased robustness to en-
vironmental conditions such as fire or variable light condition.
In this paper, we target the problem of people counting in a
confined indoor space. As depicted in the scenario of Fig.
1, detection and counting of subjects is based on real-time
processing of the radio channel that is measured by a network
of WiFi devices configured to transmit and receive in multiple-
input-multiple-output (MIMO) configurations. Target counting
is useful for retailers, space management professionals, leisure
and tourism operators, passenger hubs and transport operators,
to provide services for improving urban livability, workability
and sustainability. For example, as transport infrastructure
evolves, data from automatic passenger counting systems can
help to assess the impact of any change occurred in a station
or terminal, and to indicate where modifications to passenger
paths are necessary to improve safety or efficiency. The use of
existing wireless networks as a passive counting technology is
in turn a practical way to get a clear picture of pedestrian oc-

Fig. 1: Experimental network of MIMO WiFi devices. It
includes 1 transmit (TX) node (serving as access point) with
Mt = 3 antennas and 9 receive (RX) WiFi nodes with 3
antennas each for a total number of Mr = 27 receiving
antennas and L = 3× 27 = 81 sensing links.

cupancy and flow. Similarly, in retail applications, monitoring
the customer traffic can help to improve the performance of
stores by increasing retail conversion rates.

The proposed counting system builds upon a device-free
radio sensing technology that uses receive-side measurements
of the channel quality in a wireless network to detect and
track any variation as possibly induced by people motion or
scene alterations inside the radio coverage area. Induced fading
can be detected based on the CSI estimated at the receiver
side. However, learning the perturbation generated by people
dynamics in complex environments is very challenging and
it is thus essential to explore all the available CSI domains
to maximize the sensing capability, including space (i.e.,
antennas), frequency and time. This motivates the employ-
ment of a MIMO WiFi IEEE 802.11n/ac physical interface,978-1-5386-6436-0/18/$31.00 c©2018 IEEE
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which provides channel amplitude and phase information on
contiguous sub-carriers of the Orthogonal Frequency Division
Multiplexing (OFDM) modulation system, for every transmit-
receive antenna pairs, enabling the ability to discriminate
accurately the multipath characteristics.

In this paper, we consider people counting based on CSI
measurements taken over multiple sub-carriers and antenna
pairs (here called links) in a dense network of WiFi devices.
We evaluate the performance and scalability of different
machine learning (ML) methods using various CSI-related
features, including common time-domain statistical features
such as mean and variance [1], [2]. Numerical results show that
increasing the number of people deeply affects the correlation
of CSI samples observed over different antennas and/or OFDM
subcarriers. We thus analyze application-specific features to
effectively track the space and the frequency-domain fading
correlation properties as induced by concurrently body move-
ments. The proposed system is corroborated by experiments:
we deploy a network of multi-antenna WiFi devices to monitor
a whole room with the goal of counting up to 5 people inside
the area. Devices collect CSI data measured at 5 GHz WiFi
bands. Finally, we propose a cloud based data processing
architecture that manages the CSI features collected from the
dense WiFi deployment and complies with the JSON-REST
web-of-things (WoT) framework. The cloud section is used
to collect and classify the low-level CSI features obtained
independently by the WiFi devices in real time.

The paper is organized as follows; Section II reviews the
literature on target occupancy detection and counting. Section
III describes the problem statement, including the MIMO radio
interface and the corresponding counting problem. In Section
IV, occupancy detection and counting is validated through
experimental measurements. Finally, concluding remarks and
open issues are summarized in Section V.

II. RELATED WORK AND ORIGINAL CONTRIBUTIONS

Emerging technologies for radio tomographic imaging [1]
and radio vision [3] rely on radio-frequency (RF) signal
processing for passive (also known as device-free) localiza-
tion [4]–[6] and activity recognition [7]. Human sensing is
generally achieved by the analysis of ambient RF signals
captured by densely deployed short-range wireless devices
[8]. These signals are usually maintained continuously, or
almost continuously, across an area of interest to enable
communication tasks. Inference methods extract CSI metrics
from the RF measurements to detect perturbations (due to
diffraction, shadowing or scattering effects) induced by the
movements of the monitored subject(s), such as people or
assets [9], [10].

Similarly to imaging and localization methods, device-free
crowd counting relies on the analysis of CSI data extracted
at either the PHY or upper layers of a set of wireless devices
inside a monitoring area [11], [12]. In [13], Wi-Fi CSI features
(mean and standard deviations, or moving variance) are ex-
ploited over 30 sub-carriers for 2×2 transmit-receive antenna
pairing, along with a neural network based classifier, to count
up to nine people in indoor scenarios. Compared with MAC-
layer received signal strength information (RSSI), PHY-layer

CSI profiles are shown to be more effective in discriminating
the number of targets in the area. Authors in [14] propose an
approach to solve the key issue of the mismatching between
the feature distribution during the training and testing phases,
due to changing environmental conditions. They investigate
feature selection considering statistics (e.g., mean, entropy),
transformation based (e.g., fast Fourier transform and discrete
wavelet transform) and shape based (e.g., dynamic time warp-
ing) features. Main conclusion is that redundant features not
only reduce the classification accuracy but also increase the
computational complexity.

In this paper, we analyze the effect of people movements
and group size/dynamics on the CSI statistics obtained form
a dense network of WiFi devices. In particular, we analyze
the CSI over multiple antennas (27 antennas) and subcarriers
(30 subcarriers). People counting, or group size estimation, is
based on the analysis of CSI features, that are low dimensional
representations of raw samples [15]. Differently from previous
works, CSI features are here optimized considering now a
MIMO-OFDM physical radio interface. Focusing on a real-
time implementation, we thus consider the problem of CSI
data processing over space (i.e., over multiple antennas) and
frequency (i.e. across OFDM subcarriers) domains separately,
and select the CSI features that are more sensitive to people
motions and group size. In particular, we track the average
of the CSI extra attenuation induced by the crowd move-
ments with respect to the empty environment, in both space
and frequency domains. We also introduce a new feature
called antenna and sub-carrier correlation extracted from real
CSI data obtained from a WiFi implementation. Finally, we
propose a method based on both Feed-Forward (FF) and
Recurrent Neural Networks (RNN) to count the targets using
the above mentioned features. Experimental results show that
an optimized design of the device-free counting methodology
can reach an high accuracy (above 90%).
Best intro ever!

III. PROBLEM STATEMENT

In this section, we discuss CSI modeling in MIMO-OFDM
radio interfaces and we propose some relevant CSI-based
features for occupancy inference. Data processing on CSI
reports gives the opportunity to exploit both frequency and
space-domain manipulation of time-series. In-fact, OFDM
devices use multiple contiguous pilot sub-carriers from which
CSI can be estimated at the receiver side. In addition, MIMO-
enabled devices can extract CSI measurements from multiple
transmit-receive antenna pairs to leverage on spatial diversity.

A. MIMO-OFDM channel for occupancy inference

In what follows, we focus on the problem of obtaining
information on the number C ∈ {0, 1, . . . , N} of human
targets moving in an area X served by a broadband multi-
carrier MIMO network adopted for high-throughput commu-
nication. As illustrated in Fig. 1, we consider a MIMO system
with an overall number of Mt transmitting antennas and
Mr receiving antennas. Each target moving inside the area
modifies the radio propagation between the devices and is
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Fig. 2: Signal attenuation and perturbation profiles in the space-frequency domain for number of targets ranging from C = 1
to 5. Links labeled as NLOS are obstructed by people, while LOS links are not. In the highlighted example, standard deviation
for NLOS link ranges from 2 dB (C = 1) to 7 dB (C = 5) and attenuation from 12 to -10 dB, showing a significant sensitivity
to the number of target.

expected to affect the CSI in terms of mean power, fading
and also space-frequency selectivity. We thus propose to use
the time-varying baseband channel response over the space-
frequency domain to capture information about the presence
and number of targets in the area. We assume that the MIMO
channel can be estimated at the receiver devices at the discrete
time instants t ∈ T = {1, 2, . . . , T}, spanning over T different
OFDM symbols (or frames). These observations are expected
to embed a characteristic footprint of the channel variations
induced by the people movement in the sensed area.

Using a conventional channel estimation method based
on standard-defined pilot sub-carrier arrangement [16], the
MIMO channel response is monitored in the frequency do-
main over K pilot sub-carriers f ∈ F = {f1, f2, . . . , fK}.
Training/reference OFDM symbols for channel estimation are
usually multiplexed with information symbols and embedded
in each data frame according to the adopted WiFi standard.
The complex baseband channel response observed on fre-
quency f ∈ F , over the link ` = `(at, ar) between the
transmitting antenna at = 1, . . . ,Mt and receiving antenna
ar = 1, . . . ,Mr, at time t ∈ T , is denoted as Hf,`,t, where
the index ` ∈ L = {1, 2, . . . , L} ranges over the L = MtMr

radio links. The MtMr×1 space-domain channel response for
the subcarrier f is Hf

t = {Hf,`,t}`∈L, the K × 1 frequency-
domain response for the link ` is H`

t = {Hf,`,t}f∈F , while the
overall space-frequency CSI is Ht = {{Hf,`,t}f∈F}`∈L. CSI
samples are expected to embed information about the number
of targets C and are thus used in next section to extract features
for target counting.

B. Log-normal model of RSS

Features are built based on the CSI strength, or PHY-layer
equivalent of the RSS, observed over the space-frequency

domain. The instantaneous channel power observed at time
t ∈ T on sub-carrier f ∈ F and link ` ∈ L, is defined
in dB scale as sf,`,t = |Hf,`,t|2dB. A stochastic log-normal
model is adopted to relate the perturbations of the PHY-layer
RSS measurement to the target(s) number C. Considering one
link and subcarrier, the instantaneous channel power can be
modelled as Gaussian random variable [6]

sf,`,t =

{
µf,`(/O) + wf,`,t(/O), if C = 0

µf,`(C) + wf,`,t(C), if C ≥ 1.
(1)

In the empty scenario case, the RSS has a deterministic
mean µf,`(/O) = µ

(p)
f,`(/O) + µ

(m)
f,` (/O) that accounts for path-

loss µ
(p)
f,`(/O) and static multipath effects µ

(m)
f,` (/O), while

wf,`,t(/O) ∝ N (0, σ2
f,`(/O)) models the random fluctuations

due to measurement errors or small variations in the envi-
ronment. For C ≥ 1, subjects moving inside the area mod-
ify the propagation by introducing diffraction and diffusive
components, µf,`(C) = µ

(p)
f,`(/O) − ∆µ

(p)
f,`(C) + µ

(m)
f,` (C),

where ∆µ
(p)
f,`(C) is the attenuation caused by the target(s) and

µ
(m)
f,` (C) describes the body-induced multipath effects. When

the targets are moving inside the sensitivity area, the received
signal is also subject to an increased fluctuation due to the
random term wf,`,t(C) ∼ N (0, σ2

f,`(C)). The target-induced
attenuation µf,`(C) and standard deviation σf,`(C) are

µf,`(C) = µf,`(/O)−∆µf,`(C) (2)
σf,`(C) = σf,`(/O) + ∆σf,`(C) (3)

where ∆µf,`(C) = ∆µ
(p)
f,`(C)+µ

(m)
f,` (/O)−µ(m)

f,` (C) highlights
the changes induced by the target presence with respect to the
empty scenario, while ∆σf,`(C) ≥ 0 denotes the correspond-
ing increase of the RSS fading due to target movement. Note
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that RSS observations are continuously sampled over a finite
time interval (e.g., 10 ms for system validation of Sect. IV)
that depends on the device duty-cycle. During this interval,
targets can freely move, turn or change posture and position.

Fig. 2 shows the target-related features ∆µf,`(C) (on top)
and 4σf,`(C) (at bottom) in the space-frequency domain for
varying number of subjects ranging from C = 1 to C = 5.
Considering as an example the link ` = 20, it can be seen that
the RSS attenuation increases from 5 to -40 dB for C = 1 to
C = 5. Increasing the number of people causes incremental
alterations of the propagation environment. These maps on
increased RSS attenuations and standard deviations and affect
the majority of the MIMO links and sub-carriers.

C. CSI features

In this section we highlight relevant CSI features that can be
used as input for counting and crowd size classification. Body
movements are expected to modify the multipath propagation
(e.g., the power-delay profile) and the related correlation over
the space-frequency domain (e.g., the coherence bandwidth).
Thereby, we consider the CSI power-frequency profile as the
frequency-domain RSS vector at time t

s`,t = [sf1,`,t · · · sfK ,`,t]
T (4)

that collects the measurements of the channel response over all
the subcarriers for link ` ∈ L, and, similarly, the space-domain
RSS vector

sf,t = [sf,1,t · · · sf,L,t]
T (5)

collecting the channel measurements over all active MIMO
links, for the pilot sub-carrier f ∈ F . Based on log-normal
modelling of individual RSS terms (1), both the frequency (4)
and the space-domain (5) RSS measurements are described
as multivariate Gaussian s`,t ∼ N (µ`,R`), while µ` and R`

are the mean and covariance in frequency domain and sf,t ∼
N (µf ,Rf ). µf and Rf are the mean and covariance in space
domain . Based on such framework, learning is applied to the
following CSI features:

µ` = [µf1,`(C) · · ·µfK ,`(C)]T,
µf = [µf,1(C) · · ·µf,L(C)]T,

Σ` = diag[σ2
f1,`

(C) · · ·σ2
fK ,`(C)],

Σf = diag[σ2
f,1(C) · · ·σ2

f,L(C)].

(6)

In addition, the corresponding matrices of CSI correlation
coefficients across selected sub-carriers (frequency) Γf and
link pairs Γ` are also analyzed as additional CSI feature inputs
for classification. These are defined as

Γ` = Σ
−1/2
` R`Σ

−1/2
` ,

Γf = Σ
−1/2
f RfΣ

−1/2
f .

(7)

Effects of body movements on space- and frequency-domain
channel correlation is still unexplored in the literature (see
Sect. II). In the following sections, we deepen the topic by
proving that, compared to the unobstructed environment, the
presence of the target(s) affects both space- and frequency-
domain channel correlation, and such alterations can be ex-
ploited as reliable features for occupancy inference.

Fig. 3: Experimental layout with 1 TX and 9 RX devices. Each
device has 3 antennas. The number of persons inside the area
ranges from C=1 to C=5. The C persons enter the area in a
tight formation as in the figure, moving along a straight line
from top to bottom. In LOS scenario (a), TX is not obstructed,
while in NLOS scenario (b) TX is obstructed by people.

IV. OCCUPANCY DETECTION AND COUNTING VALIDATION

The experimental activities have been conducted inside the
indoor lab environment shown in Fig. 3. The network is
composed of 10 WiFi devices equipped with 3 antennas each,
1 device acting as TX and 9 as RX, distributed over an
area with 6 × 4 m2 size. As shown in Fig. 3, the WiFi
devices are arranged to cover the whole monitored area and
to capture signals obstructed by moving objects accurately.
The overall number of TX and RX antennas is Mt = 3 and
Mr = 27, respectively. The CSI data are collected over 30
sub-carriers. Up to N = 5 people are moving inside the
room as shown in Fig. 3. each record is registered The MIMO
links whose line-of-sight path is obstructed by the body are
referred to as non-line-of-sight (NLOS), those that are not
obstructed are labeled as LOS. We employed a network of
MIMO-OFDM WiFi devices configured in monitor mode and
working in the 5.32GHz band (i.e., WiFi band 2, channel 64,
sub-carrier spacing 312.5 kHz and nominal bandwidth equal
to 20 MHz). The monitor mode allows the receiver to observe
the WiFi CSI on the considered channel without explicit
IP handshaking procedures. One TX device is programmed
to inject (or transmit) custom IEEE 802.11n PHY protocol
data units (PPDU) structured as standard high-throughput
(HT) greenfield WiFi format [17] including preamble, MAC
addresses, header, and payload: injected frames are sent at
regular time intervals of 10 ms. In our tests, the TX device acts
as access point node while the RX devices are collecting and
measuring CSI reports. Modified chip-set firmware and kernel
[18] have been used to obtain the CSI samples of received
IEEE 802.11n data frames. The adopted chipset is the Intel
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Fig. 4: Cloud platform for target counting (JSON REST
interface).

Wireless Link 5300 working as a MIMO-OFDM baseband
modem. The modified driver allows to extract the standard
CSI reports for uni-cast/broadcast packets. As shown in the
demonstration scenario depicted in Fig. 3, all WiFi devices
are installed on low-power single board computers (SBC)
supporting battery powered operations. Focusing on the 20
MHz bandwidth with 64 available sub-carriers, that include
data, pilot and null sub-carriers, the PHY layer reports CSI
data for K = 30 sub-carriers, with WiFi grouping number
Ng = 2 and effective bandwidth equal to 18.75MHz.

The TX device multiplexes 3 spatial streams. The mod-
ulation and coding scheme (MCS) adopted for the injected
frames is MCS 17, corresponding to the QPSK modulation
with coding rate 1/2 [19]. Focusing on CSI estimation, a single
probe transmitted from all the antennas is used at the receiver
side to provide an estimate of the frequency-domain CSI terms
[20] for each pilot sub-carrier, Ĥf

t = WHf
t , multiplied by

the corresponding spatial pre-coding terms W. To obtain the
CSI vectors Hf

t to be used for occupancy inference, we post-
multiply the obtained estimates Ĥf

t as Hf
t = W−1Ĥf

t . Pre-
coding W is extracted from the beam-forming information
and typically depends on the chip-set used [18].

In what follows, we first describe the CSI feature computing
architecture, based on a REST framework (Sect. IV.A). Next
we present the validation of the counting system (Sect. IV.B).

A. Cloud computing architecture

As depicted in Fig. 4, the deployed cloud platform exposes
a set of representational state transfer (REST) application
programming interfaces (APIs) that are used by the RX WiFi
devices to send the CSI features encoded in a Java script
object notation (JSON) format. The collection of CSI data
that the cloud platform receives is thus a JSON array that
contains the selected CSI features (Sect. III), as well as an
indicator of frequency or space domain data structure in use. In
particular, the Jax RESTful web services (Jax-RS) are adopted
for exposing resources, and use the Jersey-Maven implemen-
tation. JSON parsing adds additional computation and size

Fig. 5: Target counting results in terms of recall, precision,
false positive and false negative rates, using FF-NN (a) and
LSTM (b) methods, based on CSI features extracted over the
frequency (left) or space (right) domains, including mean,
standard deviation and correlation. The identified 6 classes
correspond to the empty environment C = 0 (class labelled
as ’1’) or crowd size of C = 1, 2, 3, 4, 5 people (class labels
’2’,’3’,’4’,’5’,’6’).

overhead as the result of object serialization/deserialization
stages, however many open source libraries can be found to
optimize the performance [22].

Once the cloud platform has received the CSI features, it
unpacks and sends them to a database which is used by the
target counting methods as described in Sect. IV.B. Finally,
the cloud platform exposes some application programming
interfaces (APIs) to query the system and to obtain aggregated
CSI data for debugging.

B. Counting results and validation

In this section, experimental results are presented according
to the layout described in Sect IV. For the purpose of training
the crowd sensing system, we collected 600 CSI samples
over a time window of 10 secons, for each antenna pair
and each of the K = 30 sub-carriers. Two neural network
(NN) methods are applied and compared for people counting
inside the monitored indoor space using as inputs the features
described in Sect III-B. In particular, we compared Feed-
Forward (FF-NN) and Recurrent NN (RNN) approaches. The
FF-NN is a practical solution that can be used for conventional
classification problems. The input layer takes features defined
in (6), namely the frequency-domain (µ`,Σ`) or the space-
domain (µf ,Σf ) means and deviations, or the corresponding
correlation corefficients (Γ`,Γf ) in (7). Input layer is followed
by a single hidden layer with 10 neurons, a softmax layer and
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an output classification layer with 6 classes, for counting up
to N = 5 people moving in the monitored area (including
unoccupied room). The RNN is implemented using an LSTM
architecture. This is specifically designed to model tempo-
ral sequences and, differently from hidden Markov models,
includes long-range dependencies. LSTM architectures have
been explored for large-scale acoustic modeling in speech
recognition, language translation, and handwriting recognition
[23]. The methodology is here used to track long and short-
term dependencies on temporal sequences of CSI features
(i.e., over space and frequency domains). Based on the fea-
tures defined in (6), the LSTM input layer extracts temporal
sequences by applying time averaging sequentially over a
moving window of T = 100 samples.

For both FF-NN and LSTM, 80% of data is used for training
the network, 10% for validation and 10% for testing the
classifiers. Fig. 5 shows the classification results in terms of
recall, false negative rate (FNR), precision and false positive
rates (FPR) [5] based on frequency and space domain inputs
for the FF-NN (Fig. 5(a)) and LSTM (Fig. 5(b)). In particular,
focusing on the detection of the empty environment by FF-
NN in Fig. 5(a), the recall results for the method using mean,
standard deviation and correlation features are 95%, 61% and
57% in frequency domain and 90%, 76% and 97% in space
domain, respectively. Tracking of antenna correlations (over
space domain) gives the best result for the considered settings.

Notice that, the computation of the correlation coefficients
of all sub-carrier and antenna pairs would increase the com-
plexity compared with mean and deviation features. We thus
apply an optimization policy to select an optimal group of sub-
carriers and antenna (links) pairs for which correlations are
extracted and processed. In particular, the considered antenna
pairs are `(at = 1, ar = 1), `(at = 2, ar = 2) `(at = 2, ar =
14), sub-carriers are f5, f15 and f30.

Considering LSTM, data processing automatically extracts
long to short-term time-domain correlations in the input fea-
tures: correlation features (7) are thus not used as network
inputs. As shown in Fig. 5 (b), LSTM improves recall value
to about 99% in frequency domain and 98% in space domain
respectively. Also, LSTM gives more reliable results in terms
of recall, FNR, precision and FPR. As far as counting problem
is considered, the results highlight that space diversity provides
higher accuracy. Moreover, correlation information is the most
reliable feature for target counting using FF-NN while LSTM
has better performance in terms of recall, FPR, FNR and
precision values with respect to FF-NN.

V. CONCLUSION

This paper proposes CSI feature selection over the sub-
carriers and multiple links of dense indoor WiFi MIMO-
OFDM networks, along with machine learning methodologies,
for device-free crowd sensing applications, namely for people
counting. Statistical features including mean, standard devia-
tion and correlation coefficients, are extracted from channel
observations taken over the space-frequency domain, and they
are used as input for FF-NN and LSTM learning methods.
Experimental tests have been carried out using a WiFi MIMO

infrastructure to evaluate the performance of the proposed
methods. A cloud-based computing platform has been devel-
oped to manage the aggregation of the CSI features from the
dense WiFi network. Future work will focus on integration
with high-frequency technologies for monitoring of larger
population sizes.
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