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Use of p cifications with Bayesian
logic eludes preliminary phase issues in quality control:
an example in a hemostasis laboratory
Panagiotis Tsiamyrtzisa, Frédéric Sobasb and Claude Négrierb
The present study seeks to demonstrate the feasibility of

avoiding the preliminary phase, which is mandatory in all

conventional approaches for internal quality control (IQC)

management. Apart from savings on the resources

consumed by the preliminary phase, the alternative

approach described here is able to detect any analytic

problems during the startup and provide a foundation for

subsequent conventional assessment. A new dynamically

updated predictive control chart (PCC) is used. Being

Bayesian in concept, it utilizes available prior information. The

manufacturer’s prior quality control target value, the

manufacturer’s maximum acceptable interassay coefficient

of variation value and the interassay standard deviation value

defined during method validation in each laboratory, allow

online IQC management. An Excel template, downloadable

from journal website, allows easy implementation of this

alternative approach in any laboratory. In the practical case of

prothrombin percentage measurement, PCC gave no false

alarms with respect to the 1ks rule (with same 5% false-alarm
 Copyright © 2015 Wolters Kluwer
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probability on a single control sample) during an overlap

phase between two IQC batches. Moreover, PCCs were as

effective as the 1ks rule in detecting increases in both random

and systematic error after the minimal preliminary phase

required by medical biology guidelines. PCCs can improve

efficiency in medical biology laboratories. Blood Coagul
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Introduction
ISO standard 15189 (2012) says that ‘the laboratory shall

design internal quality control systems that verify the

attainment of the intended quality of results’ [1]. Internal

quality control (IQC) plans are primarily intended to

ensure respect of the specifications for which the method

was selected and validated [2,3]. Although it is generally

agreed that method acceptability should be assessed with

respect to the biological variability of the parameters

concerned, there is less agreement as to the actual set of

parameters [4–6]. Moreover, the laboratory must choose

control material concentrations equal or near to clinical

decision thresholds, to ensure the validity of decisions

made [3,7]. Finally, there must be no matrix effect vitiating

inference from results for patient samples [3,8]. Many

laboratories continue to use the 12s QC rule without

considering the relationship of analytical performance to

quality requirements [9,10]. The standard statistical pro-

cess control paradigm requires two phases in process read-

ing: model parameters [interassay standard deviation (SD)

and control chart target] are estimated during phase I

(‘preliminary phase’), while actual online testing starts

at phase II. In phase I, the process is assumed to be in

the in-control state, with independent identically distrib-

uted observations, which provide estimates of the under-

lying statistical model. The longer the phase I, the more

accurate the estimates, but also the more likely that the
process will deviate from the in-control state. In case of

alarms during phase I, standard practice implements an

iterative procedure, removing alarms and recalculating

control limits until alarms cease [11]. Phase II IQC man-

agement can be drawn and problems identified only once

phase I is completed. Isolated problematic data points in

phase I will impact phase II, which will be using contami-

nated parameter estimates [12–14]. Furthermore, control

chart construction is static, based on phase I data only,

despite the need to refine control limits as phase II data

come in [15].

Conventional statistical process control provides a variety

of tools for medication laboratories: Shewhart-type control

charts [16], Cumulative Sum (CUSUM) [17], or Exponen-

tially Weighted Moving Average (EWMA) [18,19]; in all

these methods, interassay SD and target control chart

value should be estimated in advance. A first estimate

of interassay SD is made during the method validation

phase, using at least 30 IQC results [14]. The target value

(mean value) of the control chart is determined using at

least 20 IQC results collected during overlap with the

previous IQC batch [15]. If the control material is not

changed between the validation phase and method start-

up (i.e. no change in IQC matrix), the preliminary phase

for the new IQC batch serves mainly to re-estimate the

control chart target value, without necessarily revising
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the interassay SD estimated in the method validation

phase [14].

Given the technical requirements of standard 15189 and

economic considerations, the most efficient attitude is for

laboratories to acquire analytic systems using the reagents

and equipment of a single manufacturer, thereby simul-

taneously acquiring pretested methods. Manufacturers

have robust knowledge of their analytic systems’ per-

formance, determined on multiple reagent batches. This

long assessment process enables them to estimate pre-

cisely the maximum allowable interassay SD on a method

using their own control materials. Before launching a

method, each laboratory should at the very least check

that its own interassay SD is lower than the manufac-

turer’s allowable value [1,8]. Manufacturers also deter-

mine precisely the target value expected on the control

material. The allowable prior analytic SD and control

material target value can serve as supports for specifica-

tions to be respected. The objection that the method is

not tailored to clinical and biological expectations does

not hold if methods are originally selected as precisely as

possible. This strategy implicitly fully acknowledges

biological and clinical specifications.

A Bayesian IQC plan ensures that the method is under

statistical control with respect to prior manufacturer

specifications, minimizing first-order risk that could lead

to false rejection, notably during the process startup phase

[20,21]. Using a Bayesian model in a concrete case, we shall

demonstrate that there is no need for a preliminary phase

to bring a method under control when introducing a new

IQC batch. We shall further demonstrate that the Bayesian

model is at least as effective as the 1ks rule (with same 5%

false alarm probability on a single control sample) in

detecting either a sudden rise in the random error or a

persistent shift during startup. The details of the descrip-

tion and mathematical construction of the Bayesian ‘pre-

dictive control chart’ are given in the Appendix.

Reagent and automated coagulation analyzer
for the case study
The manufacturer, Stago (Asnières, France), provided

m ¼ 20 prothrombin time (PT) values in percentages,

which they had determined in a preliminary phase on

one of their own STA R automated coagulation analyzers

[analyzer: STA R; reagents: STA – Neoplastine CI Plus

STAGO (Asnières, France); NB: STA-Unicalibrator

STAGO (Asnières, France)]. In France, PT is expressed

as seconds and as percentage. The present study uses

percentages, to enhance the discriminatory power of the

calculations and figures. Stago provides percentage cali-

bration of PT, with normal plasma as reference (STA –

Unicalibrator).

The control material was a normal control sample (STA-

COAG CONTROL N). The acceptability of the 20

control values was confirmed by the fact that they had
 Copyright © 2015 Wolters Kluwe
been collected during a phase of overlap with another

control batch with the same reference (STA-COAG

CONTROL N), which in turn had been collected with

respect to the 12s rule acceptation. In the batch in question,

the range given by Stago (prior range) was 76–102%, thus

with a prior target value of m̂ ¼ 89%. Stago also reported

that the coefficient of variation (CV) for this material

should not exceed 5% when the method has to be validated

in each individual laboratory. This means that the inter-

assay SD should not exceed 4.45 ðŝÞ for a normal control

sample (STA-COAG CONTROL N) for which the

expected target value is 89% PT. In point of fact, in the

checking phase, the interassay SD was 2.52 (t̂) for this

particular control (STA-COAG CONTROL N) [8,18].

Demonstration of how the preliminary phase
can be avoided
At the end of the preliminary phase, performed on the 20

values, the mean (x̄) was estimated at 82% and the

interassay SD at 2.53, while the control limits were set

at �3.016 so that a 5% false alarm probability (FAP) is

achieved for the whole sequence of the 20 values

(Fig. 1a). We will call this 13s method. To be equivalent

with the PCC we select the 13s chart that plots the control

limits at 3.01599 SD from the centerline, achieving a 5%

overall FAP.

PCC identified no outliers during a preliminary phase

well controlled by the overlap phase (Fig. 1b): that is,

PCC is not subject to false rejection with t̂ equal to 2.52

(Fig. 1b).

The experiment can be reproduced using the ‘PCC tem-

plate’ Excel spreadsheet, downloadable on the journal

website. First, the manufacturer’s data should be entered

as follows: ‘Manufacturer’s prior internal quality control

target value’ (manufacturer control materials with assigned

values): m̂ ¼ 89% in the case study, ‘Manufacturer’s maxi-

mum acceptable coefficient of variation (%)’ on methods,

with reagents and device both provided by the manufac-

turer (technical notices specifying the maximum accep-

table interassay CV): CV¼ 5% in the case study.

The spreadsheet automatically calculates the ‘Manufac-

turer’s maximum acceptable interassay SD (ŝ)’ (i.e.

ŝ ¼ m̂� CV ): ŝ¼ 4.45 in the case study. Next, you enter

‘Own interassay SD estimated at method checking phase

(t̂)’:

t̂¼ 2.52 in the case study.

The control results are already entered on the spread-

sheet by default. The spreadsheet also calculates the

mean value (target control chart value) from 20 of the

IQC results entered, excluding any associated with an

Alarm (Outliers). The laboratory can thus revert to a

conventional control chart, using the target value calcu-

lated from the PCC, safe in the knowledge that no

outliers (actually loss of statistical control) of have been
r Health, Inc. All rights reserved.
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Fig. 1
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(a) Shewhart chart constructed from the 20 consecutive prothrombin time (PT) (%) values collected during the preliminary phase (mean value¼82%
and inter assay SD¼2.5); lower and upper limits at mean�3.016 SD. (b) Predictive control chart (PCC) constructed from the 20 standardized
consecutive values calculated from the 20 consecutive PT (%) values collected during the preliminary phase with interassay SD (t)¼2.52 (see
theorem in predictive control chart construction).
included with respect to the manufacturer’s data and the

laboratory’s own environment (‘Own interassay SD’ esti-

mated at method checking phase).

Demonstration that the Bayesian model
maintains the method under control, taking
the concrete case of two types of shift
13s rule detected big and gradual shifts simulated after

the preliminary phase (Fig. 2a and 2b).

PCC and 13s rule detected big and gradual shifts simu-

lated after the preliminary phase with t̂ equal to 2.52. If t̂
exceeds 2.52, the PCC is no longer able to detect all

alarms like the 13s rule (Fig. 3a and 3b).

It is also possible to reproduce this on the ‘PCC template’

Excel spreadsheet (downloadable on the journal web-

site), where the same prior data have been entered (see

above). An alarm message is displayed when a control

point is not under control.
 Copyright © 2015 Wolters Kluwer
Discussion
It is possible to run a preliminary phase in advance, using

new control batches before actually changing batches.

Control values are collected using those acceptable for

the ongoing batch. As this step is very resource-costly,

given the large number of biological parameters to be

brought under control, it is generally kept as short as

possible [15]. There is considerable technical and

economic interest in getting round this preliminary phase

problem, especially when measurement series are not

frequent [20]. The laboratory may be thought to neglect

the patient by relying on manufacturer specifications to

define control value acceptability [2]; however, there is

no single definition of biological specifications [4–6]. It is

thus not unreasonable to use manufacturer specifications,

if the analytic system is a good one. Manufacturers’ prior

control material target values and allowable analytic

performance are derived from plentiful data harvested

from multiple machines and reagent batches. It may,

however, be objected that the laboratory’s own specific
 Health, Inc. All rights reserved.
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Fig. 2
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Shewhart chart with lower and upper limits at mean�3.016 SD. (b) Predictive control chart (PCC) with various choices of interassay SD (t): 2, 2.52,
3, and 4.45.
working environment is being neglected, although

required for a conventional approach [2,3]. However,

as new control values come in, the model will implement

the individual laboratory’s working conditions, conver-

sely reducing the weight of the manufacturer specifica-

tions. Indeed, at day 23 in scenario 1 (Fig. 2b), a control

value equal to the mean target value estimated from the

preliminary phase (i.e. 82%) gives a standardized PCC

value very close to 0 (i.e. �0.333).

Simulation studies show that the PCC has enhanced per-

formance in detecting occasional or persistent shifts com-

pared with 1ks control charts especially while in the

preliminary phase. It should be borne in mind that labora-

tories with good analytic practice (i.e. small interassay SD)

will benefit the most from PCCs (Figs 2b and 3b). They are

potentially in a better position to detect outliers than a

laboratory with poorer analytic performance. Laboratories

must therefore be as careful as possible in estimating prior

interassay SD in the method validation phase. However,

this prerequisite is well known and has been taken on board

by the community.
 Copyright © 2015 Wolters Kluwe
The present study is (to the best of our knowledge) the

first in the field of medical biology to focus on the

validity of the prior information supplied by manufac-

turers. A PCC is able to take account of the laboratory

environment so as to retarget the control chart (see

standardized value for day 23 in scenario 1 Fig. 2a and

b). On the contrary, the PCC approach demonstrates

the importance of estimating the laboratory’s particular

interassay SD (t) as precisely as possible so as not to

impair the prior information provided by the manufac-

turer’s maximum acceptable SD ðŝÞ. In other words, a

PCC founded on prior knowledge of manufacturer

information such as prior internal quality control target

and maximum acceptable interassay SD proves to be

appropriate and very useful during the method startup

phase.

Thus, both theoretically and practically, the laboratory is

bringing its method under control as soon as it begins

implementing its IQC values. This short-term Bayesian

model can serve as a complement to a conventional

approach, which can be reintroduced as soon as there
r Health, Inc. All rights reserved.
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Fig. 3
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(b) Predictive control chart (PCC) with various choices of interassay SD (t): 2, 2.52, 3, and 4.45.
are enough reliable IQC data for it to be able to detect

outliers during the process startup phase.
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Appendix: Predictive control chart description
Within the Bayesian approach, underlying parameters

are considered to be random variables and, as such, have

a distribution.

To control an unknown quality parameter u (e.g.

prothrombin time in a hemostasis laboratory), before

any data are observed, u will be modeled with a prior
 Copyright © 2015 Wolters Kluwer
distribution reflecting the uncertainty of the unknown

parameter. This can be elicited by manufacturer speci-

fications, prior knowledge of the process under study,

expert opinion and/or any archived data. We assume that:

pðuÞ�Nðm; s2Þ

There are several ways of estimating the nuisance

parameters m and s2 like experts’ opinion, prior data

or manufacturer specifications. For the latter let us

assume that, for a specific process, the manufacturer

provides a range of normally distributed values½L;U �,
where the data should have a high probability of being

within these limits if the process is under the in-control

state, along with a coefficient of variation CV. Then it is

straightforward to obtain estimates of m and s2 by:

m̂ ¼ LþU
2 and ŝ2 ¼ m̂� CVð Þ2

Once the prior distribution is set, data collection starts

sequentially, allowing the unknown quantity u to be

measured with a certain error.

Xiju� iid N u; t2
� �
 Health, Inc. All rights reserved.
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The parameter t2 refers to the measurement’s accuracy

and will depend on various laboratory factors: equipment

used, technician’s experience, and so on. t2 can be

assessed independently in advance during in-lab method

validation upstream of implementation, as the square of

the interassay SD [14]. Thus, interassay SD may differ

according to the degree of control over these nuisance

parameters. The following case study includes a sensi-

tivity analysis. As data arrive sequentially, they are com-

bined with the prior distribution to provide the posterior

distribution of the unknown parameter, via Bayes’ the-

orem. If the process performs acceptably, the posterior

distribution at any given time is the prior distribution for

the upcoming observation. That is, the prior distribution

is sequentially updated [22].

The goal is to derive a chart enabling online identification

of isolated or persistent shifts (loss of control state), even

with very few data points. This control chart is based on

the predictive distribution.

Predictive control chart construction
We first calculate the posterior distribution: at some time

k, we have the updated prior distribution p u x1; :::;j xk�1ð Þ
for the parameter and observe a data point xk with like-

lihood functionf xk ujð Þ. Bayes’ theorem then gives the

posterior distribution at time k:

p u x1; :::;j xkð Þ ¼ f xk ujð Þp u x1; :::;j xk�1ð ÞR
f xk ujð Þp u x1; :::;j xk�1ð Þdu

Next, the future observable will have the likelihood

f xkþ1 ujð Þ and, before xkþ1 is actually observed, we can

derive the predictive distribution [23] by:

f xkþ1 x1; :::;j xkð Þ ¼
R

f xkþ1 ujð Þp u x1; :::;j xkð Þdu

In the Normal prior – Normal likelihood scenario

adopted here, both posterior and predictive distribution

will be available in closed forms and can be obtained

recursively as the following theorem shows (for a proof

see [24]):

Theorem: If the initial prior distribution of the unknown

parameter is:

u�N m; s2
� �

and the data constitute a random sample with likelihood:

Xkju� iid N u; t2
� �

then the posterior distribution at time k ¼ 1; 2; ::: will be

given by:

ujX1;X2; :::;Xk�N ûk; ŝ
2
k

� �

and the predictive distribution will be:

Xkþ1jX1;X2; :::;Xk�N ûk; ŝ
2
k þ t2

� �
 Copyright © 2015 Wolters Kluwe
where

ûk ¼
ŝ2

k�1xk þ t2ûk�1

ŝ2
k�1 þ t2

¼ wkxk þ 1� wkð Þûk�1

ŝ2
k ¼

ŝ2
k�1t

2

ŝ2
k�1 þ t2

¼ wkt
2 ¼ 1� wkð Þŝ2

k�1

wk ¼
ŝ2

k�1

ŝ2
k�1 þ t2

; ŝ2
0 ¼ s2 and û0 ¼ m

The predictive mean combines information from the

prior setting and the incoming data; as k increases,

the effect of the prior distribution decays. Similarly,

the variance of the predictive distribution will decrease

as k increases, converging on t2 [24]. Thus, with the prior

distribution being dynamically updated, the effect of

prior choices will decay, as long as we avoid very extreme

choices for the variance parameters.

At each time k k� 1ð Þ, we know the predictive dis-

tributionXkþ1jX1; :::;Xk, for the future data point Xkþ1.

To construct a control chart, this predictive distribution

can be summarized using an interval. Specifically, we

obtain a 100 1� að Þ% coverage interval for the future

observable Xkþ1. The shortest possible interval (contain-

ing the more probable values) can be obtained, since the

predictive distribution is normally distributed, by taking

a=2 probability out of each tail, symmetrically around

the mean interval. The endpoints of this predictive

interval will provide the control limits for the upcoming

observationxkþ1. Note that the control limits obtained

from the predictive distribution are probabilistic (i.e. the

next observable has a probability of 1� a of being within

these limits). This is radically different from traditional

Shewhart-type chart control limits (e.g. 12s) that can be

used for testing a point null hypothesis: that is, we are

able to reject or not the null hypothesis that the unknown

parameter u equals some constant value [21].

As mentioned, the mean and variance of the predictive

distribution are constantly updated, the latter decreasing

as more data become available. The updated centerline

and control limits become available sequentially and

are used to draw the future observationxkþ1, once it

becomes available. To ease the procedure and provide

a chart with fixed control limits, we can standardize

the upcoming observation before plotting. Specifically,

since:

Xkþ1jX1;X2; :::;Xk�N ûk; ŝ
2
k þ t2

� �
)Zkþ1
¼ Xkþ1 � ûkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

k þ t2

q �N 0; 1ð Þ
r Health, Inc. All rights reserved.
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once Xkþ1 ¼ xkþ1 is observed, we calculate and plot the

standardized value:

zkþ1 ¼
xkþ1 � ûkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝ2
k þ t2

q

This allows fixed control limits throughout the process,

placed at �za=2. Thus, the steps in constructing the PCC

are as follows:
1. D
ecide the appropriate a value and plot the control

limits at �za=2 (centerline at zero).
2. O
nce a data point xk k� 1ð Þ becomes available,

calculate the predictive mean and variance of the

future observable Xkþ1jX1;X2; :::;Xk based on the

theorem.
3. O
nce xkþ1 becomes available, standardize it to obtain

zkþ1 and plot it in the control chart.
4. I
f zkþ1 falls

a. within the limits, then the data conform to the in

control scenario and the process will continue to

operate: that is, we replace k by kþ 1 as subscript

and move back to step 2;

b. outside the predictive limits, it is an outlier,

providing an alarm that the process has moved
away from the in control state.
The predictive distribution is first available right after x1

becomes available; thus, charting can start from the

second data point on. In the first step of PCC construc-

tion, we need to specify the appropriate a value. This

value will determine the performance of the control chart,

because its choice is a compromise between detection

power and false alarm rate.

We base our decision regarding a on the FAP perform-

ance metric [25], which is defined as the probability

of getting at least one false alarm in the m observations

of the preliminary phase. So, assuming independence

among successive times and setting the control limits

at �za=2 in a finite horizon of m� 1 observations (since

charting will not include the first data point), the value of

a as a function of FAP and the number of data points m
will be:

a ¼ 1� 1� FAPð Þ1= m�1ð Þ

The choice of the appropriate FAP (a) value will reflect

the laboratory’s policy with respect to the costs associated

with type I error (falsely rejecting the hypothesis that the

process is under control) and type II error (failing to reject

the hypothesis that the process is under control). If type I

error is quite expensive compared with type II, we will

select a small FAP (a) value, moving the control limits

away from the center line. On the contrary, if the con-

verse is true (i.e., type II is more important), we use a
 Copyright © 2015 Wolters Kluwer
large FAP (a) value, moving the limits closer to

the centerline.

The PCC can be easily implemented; an Excel template

is available as supplementary material http://links.lww.

com/BCF/A17.
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