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1 Introduction

The analysis of the interaction of sound waves with the director field still challenge our 
present understanding of the dynamics of nematic liquid crystals (NLC). For instance, there 
is no broadly accepted theoretical framework for the description of the sound velocity and 
the sound attenuation, in particular with respect to their anisotropic features and their 
frequency or temperature dependence. Other interesting effects, yet not fully understood, 
include the acousto-optic effect and the acoustic generation. The former is observed when a 
ultrasonic wave, injected into a NLC cell, changes the refractive index of the NLC thus 
altering the optical transmission properties of the cell. Recently, this acousto-optic effect 
has attracted renewed interest, due to its potential for application to acoustic imaging 
[18,19]. A second manifestation of the coupling between acoustic waves and nematic order 
is the phenomenon of acoustic generation observed in a NLC cell undergoing Freedericksz 
transitions triggered by an external electric field [11].

Recently, the attempts at a thorough explanation of these phenomena have led to two 
theories, rather different in nature. The first models the NLC as an anisotropic second-

gradient (or Korteweg) fluid [10,13,20,24]. Therefore, it puts forward a free-energy density 
containing a term proportional to (n · ∇ρ)2, thus postulating a coupling between the spatial 
gradient of the mass density, ∇ρ, and the nematic director, n. By contrast, the second is a 
first-gradient theory characterised by a hyperelastic anisotropic response from an evolving 
relaxed configuration [2] and the free energy is adapted from the standard



theory of nematic elastomers [3,25,26]. In this paper, we adopt the perspective of the latter

theory.

In the example studied in [2], a number of simplifying assumptions were introduced.

In particular, the director field was supposed fixed by a suitable external action and

viscosities, other than that associated with the relaxation mechanism, were neglected.

Here, we relax one of these assumptions and extend the analysis to include the director

vibrations induced by the propagation of the sound wave. An analogous study for the

second gradient theory can be found in [5].

This paper is organised as follows. Sec. 2 reviews the theoretical background. Namely,

the Cauchy stress tensor, the molecular field and the appropriate balance laws are dis-

cussed. Furthermore, the key concept of relaxed configuration and the equation governing

its evolution are introduced. The liquid crystal is presented as an anisotropic neo-Hookean

elastic material where the relaxed configuration is allowed to evolve. Intuitively, the relaxed

configuration is dragged by the present configuration of the fluid, with a characteristic

relaxation time which is usually considered to be fast with respect to all the other relax-

ation times. The following Sec. 3 deals with the perturbation analysis of the governing

equations in the linear acoustic approximation. Here, the main features of the director

vibrations induced by the injected sound wave are derived. Sec. 4 contains a discussion,

where the subtle interplay of the director motion with the sound wave is further analysed.

Some computational details, possibly useful to the reader, are reported in Appendix.

2 Theoretical background

In this section, we review the theoretical paradigm developed by Biscari, DiCarlo and Turzi

in Ref. [2], suitably extended to incorporate the director motion. In essence, this theory

models nematic liquid crystals as relaxing nematic elastomers, i.e., materials characterised

by an anisotropic neo-Hookean elastic energy and a fast molecular rearrangement. This

microscopic reorganisation, while not affecting the macroscopic deformation, drives the

liquid to lower elastic energy states. Thus, in addition to the reference configuration, B0,

and the actual configuration, B, a relaxed configuration, Brel, is introduced; this evolves

so that the shear stress vanishes on it. Intuitively, the relaxed configuration is dragged by

the actual configuration of the fluid, with a relaxation time which is usually considered

to be fast with respect to all the other characteristic times in the system. In doing so, the

theory is reconciled with the expectation that a liquid crystal is able to flow.

In mathematical terms the molecular reorganisation can be described through an

evolution equation for the relaxed, or natural, configuration Brel of the nematic liquid

crystal. There is a vast literature which deals with this accommodating evolution. For

our present purposes we will here mainly refer to the inelastic evolution theory proposed

by DiCarlo and co-workers [6, 8, 9] or Rajagopal and Srinivasa [15, 16]. As indicated in

Figure 1, we can measure the deformation from the relaxed configuration through the

effective tensor Fe, while the relaxing deformation from the reference configuration is

described by the tensor G, so that a multiplicative decomposition holds: F = FeG. We

remark that the map G may be, but it is not required to be, the gradient of some virtual

displacement field, as different material elements may undergo an incompatible evolution.

The elastic energy stored in any single material element does not explicitly depend on



Figure 1. Decomposition of the deformation gradient into its accommodating and elastic parts.

the deformation gradient F, as this latter measures how much the distorted configuration

departs from the original reference configuration B0, which in general does not coincide

with the relaxed configuration. We assume instead that the elastic energy depends on

Fe = FG−1, which measures the distortion of the present configuration with respect to

the relaxed configuration. Moreover, frame invariance implies that the free energy may

depend only on the effective left Cauchy-Green strain tensor

Be = FeF
�
e = FHF�, (2.1)

where we have defined the inverse relaxing right Cauchy-Green strain tensor

H = (G�G)−1. (2.2)

Experimental evidence suggests that not all the strains may be recovered by simply

reorganising the natural configuration. In particular, fluids are not able to relax density

variations, as each fluid possesses a reference density dictated by the microscopic fact that

each molecule occupies on average a well defined volume. As a consequence, a necessary

feature of a physically meaningful model of an accommodating fluid is that the energy

cost of any density variation should not be compensated by the microscopic relaxation.

Therefore, we impose the constraint det H = 1 to the relaxation strain tensor and we

define the isochoric (i.e., unit determinant) tensors as:

F̊ = J−1/3F, (2.3a)

F̊e = J−1/3Fe, (2.3b)

B̊e = F̊eF̊
�
e = F̊HF̊� , (2.3c)

where J = det F = det Fe.



2.1 Elastic energy

Liquid crystals have a natural preferred microscopic direction, i.e., the director n. It is

then natural to expect that the distribution of the centres of mass of the molecules is

affected by the director. This has also been confirmed since the very first realistic Monte-

Carlo simulations of the nematic-isotropic-smectic phase transition [1]. More precisely, in

the presence of elongated molecules, the average distance of the centres of mass of the

molecules in a nematic phase depends on the angle between the direction in which it is

measured and the director. We assume that the equilibrium distribution of the centres

of mass can be described to first approximation by a symmetric second-order tensor

L(ρ, n), resembling the shape tensor usually introduced in nematic elastomers [3, 7, 25,26].

Since we aim at modelling a slightly compressible fluid, the shape tensor L is assumed

to depend explicitly on the density ρ, a hypothesis that will turn out to be fundamental.

More precisely, we posit

L(ρ, n) = a(ρ)2n ⊗ n + a(ρ)−1(I − n ⊗ n) , (2.4)

where the tensor product of two vectors, a and b, is the double tensor a ⊗ b such that

(a ⊗ b)u = (b · u)a for all u (i.e., (a ⊗ b)ij = aibj). The material parameter a(ρ) provides

a quantitative measure of how the onset of nematic order induces an anisotropy in the

radial correlation function. The shape tensor is spherical, prolate or oblate respectively

for a(ρ) = 1, a(ρ) > 1 or a(ρ) < 1.

In the following we consider a free energy functional which, in addition to the usual

Frank potential σFr(ρ, n,∇n), includes an elastic term σe(ρ, B̊e, n). We neglect for simplicity

the effect of external actions, as well as any dissipation effect. Furthermore, σe(ρ, B̊e, n)

comprises two terms, intended to penalise two different types of distortions. Like all

fluids, perturbations of the local average density of molecules involve significant energy

variations in NLCs. In view of the quasi -incompressible character of nematic liquid

crystals it is to be expected that this energy contribution will be the most significant.

Energy may be lost/gained if the deformation induces a stretching/compression of the

local available area in the direction orthogonal to the director. Therefore, even volume-

preserving deformations induce energy variations if they, for example, locally squeeze the

material in the directions orthogonal to n, while suitably elongating it in the direction of

the director. Under such assumptions the free energy functional in a spatial domain B is

given by

F :=

∫
B

(
1
2
ρv2+ρσe(ρ, B̊e, n)+ρσFr(ρ, n,∇n)

)
dV (2.5)

where the strain energy density per unit mass is

σe(ρ, B̊e, n) := σiso(ρ) + 1
2
μ(ρ) tr

(
L(ρ, n)−1B̊e − I

)
, (2.6a)

and we use the one-constant approximation for the Frank potential

σFr(ρ, n,∇n) = 1
2
K(ρ)|∇n|2. (2.6b)

In the following, we refer to σ = σe + σFr as the elastic energy density, per unit mass.



The isotropic contribution σiso(ρ) to (2.6a) penalises density (and volume) variations

and is assumed to dominate the elastic energy. The second term in (2.6a) couples the

elastic properties of the material with the nematic director. Equation (2.6a) mimics the

classic elastic energy of nematic elastomers [3, 7, 25, 26] but it differs with regard to two

distinguishing features. First, it implements the constitutive prescription that the nematic

liquid crystal is able to relax the strain-elastic terms, proportional to the shear modulus

μ, through suitable evolution of the relaxed configuration, as this term depends only on

the effective strain tensor Be. Secondly, the shape tensor depends explicitly on the density,

contrary to the standard theories of nematic elastomers, even in the compressible case.

Finally, it is worth noticing that the equilibrium configuration is achieved by the

minimum of the elastic energy, namely

ρ = ρ0, v = 0, n = const., B̊e = L . (2.7)

2.2 Balance equations

As usually assumed in the continuum description of nematic liquid crystals, the motion

of the system is governed by the balance of momentum and the balance of angular

momentum at each point of the system. In the absence of body forces and body couples

and neglecting the rotational inertia of the director, these two equations are (see [4, 23]

and Appendix A)

ρv̇ = divT and n × h = 0. (2.8)

Here, a superimposed dot indicates the material derivative, × denotes the cross product, v

is the macroscopic velocity of the fluid, T is the Cauchy stress tensor and h is usually called

the molecular field. In a hyperelastic material T and h can be derived from the elastic

energy density σ = σe + σFr using the Rayleigh method, suitably extended to continuous

bodies [21, 22]. In this method, the material time derivative of σ is calculated and T, h

are then identified with the generalised forces conjugated to the velocity fields ∇v and

ṅ, respectively. For the interested reader, more details on this derivation are reported in

Appendix A. Since σe only depends on ρ and F̊e, and in view of the identity

∂σ

∂F̊
F̊� =

∂σ

∂F̊e

F̊�
e, (2.9)

we finally obtain

T = −ρ2 ∂σ

∂ρ
+ ρ dev

( ∂σ

∂F̊e

F̊�
e

)
− ρ(∇n)�

∂σ

∂∇n
, (2.10a)

h = ρ
∂σ

∂n
− div

(
ρ

∂σ

∂∇n

)
, (2.10b)



where dev is the deviatoric projector: dev L := L − 1
3
tr(L)I. The substitution of (2.6) into

(2.10) then yields

T = − p̂ I + ρ μ(ρ) dev
(
L(ρ, n)−1B̊e

)
− ρK(ρ)(∇n)�(∇n), (2.11a)

h = ρμ(ρ)
(
a(ρ)−2− a(ρ)

)
B̊en − div

(
ρK(ρ)∇n

)
, (2.11b)

where the pressure-like function is

p̂ = ρ2
(∂σiso

∂ρ
+ 1

2
μ′(ρ) tr

(
L(ρ, n)−1B̊e − I

)

− 3
2
μ(ρ)

a′(ρ)

a(ρ)
dev(n ⊗ n) · (L(ρ, n)−1B̊e) + 1

2
K ′(ρ)|∇n|2

)
.

(2.12)

2.3 Evolution of the relaxed configuration

Depending on the level of detail we wish to introduce into our model, the microscopic

evolution may be characterised by a single or a set of relaxation times. In any case,

perfect fluid behaviour is recovered when accommodation is much faster than macro-

scopic dynamics. In contrast, asymptotically pure elastic behaviour is obtained when the

macroscopic dynamics is so fast that the system is in practice unable to accommodate

in time. A complete set of dynamic equations requires an explicit evolution equation for

the tensor H. Since H belongs to the manifold M of double symmetric tensors with unit

determinant, this evolution is constrained to M. Furthermore, it has to be consistent with

the dissipation principle establishing that the power dissipated – defined as the difference

between the power expended and the time derivative of the free energy – should be

non-negative, for all body-parts, at all times. This latter condition localises into [17]:

T · ∇v − ρσ̇ � 0. (2.13)

The use of equations (2.8) and (2.10) then simplify this inequality into

∂σe

∂H
· Ḣ � 0 . (2.14)

The simplest possible way to fulfil the requirement (2.14) is to assume a viscous-like

dynamics for the inverse relaxing strain, described by a gradient-flow equation. However,

the flow must preserve the symmetry of H and the constraint det H = 1. All these

conditions are satisfied, as described in Ref. [2], if we prescribe the following evolution

equation

γ Ḣ = − �H
∂σe

∂H
. (2.15)

The scalar coefficient γ>0 acts as a viscosity modulus, and �H is the orthogonal projector

from the space of double tensors onto the subspace tangent to M at H:

�H = � − H−1 ⊗ H−1

‖H−1‖2
, (2.16)



with � the fourth-order identity tensor.

On account of (2.6a) and (2.1), we obtain explicitly

∂σe

∂H
= 1

2
μ(ρ)F̊�L(ρ, n)−1F̊ (2.17)

which, substituted into (2.15), yields

γḢ − 1
2
μ(ρ)

(
F̊�L(ρ, n)−1F̊ · H−1

) H−1

‖H−1‖2
= − 1

2
μ(ρ)F̊�L(ρ, n)−1F̊ . (2.18)

3 Sound wave and director motion

We now examine the propagation of a sound wave by studying the fluid motion and the

director vibrations which arise from a slight perturbation of the homogeneous equilibrium

configuration. In contrast to Ref. [2], where the director was held fixed by a suitable

external action, we allow the director to vibrate according to the angular momentum

equation (2.8)2. It is to be noticed that, by virtue of the peculiar structure of acoustic

perturbations, it is to be expected (and it is indeed the case in second-gradient theories [5])

that the induced vibration of the nematic director is a higher-order effect. This is also

confirmed by experiments, where high acoustic intensities are required to observe an

acousto-optic response of the liquid crystal [10, 13, 20]. As we shall see, this can be

interpreted in our model as an indication that the shape tensor at equilibrium is close to

the identity tensor, i.e., the distribution of the centres of mass is nearly spherical.

3.1 Nearly incompressible and slightly anisotropic fluid

We need to be more specific on the constitutive assumptions related to the functions

σiso(ρ) and a(ρ) if we want to describe the effects of a propagating density wave on the

director field. To this end, in agreement with Ref. [2], we introduce the scaled density

variation and the isotropic pressure as follows

ξ = (ρ − ρ0)/ρ0, piso(ρ) = −ρ2 ∂σiso

∂ρ
. (3.1)

We then posit

piso(ρ0(1 + ξ)) = p0 + ρ0p1ξ + o(ξ) , (3.2)

μ(ρ0(1 + ξ)) = μ0 + μ1ξ + o(ξ) . (3.3)

The assumption ξ � 1 accounts for the nearly incompressibility of the liquid crystal,

while small anisotropy implies that the shear modulus ρ0μ0 is much smaller than the bulk

modulus ρ0p1. Therefore, we introduce a small parameter η as follows

η :=
μ0

p1
� 1 . (3.4)



Furthermore, we formalise the hypothesis that the anisotropic aspect ratio a(ρ) differs

slightly from 1 by positing

a(ρ) = a(ρ0(1 + ξ)) = 1 + α0 + α1ξ + o(ξ) (3.5)

and assuming a small “asphericity factor”: |α0| � 1. In contrast to α0, the sensitivity

coefficient α1 = ρ0a
′(ρ0) is not required to be small.

3.2 Perturbation analysis

The equilibrium configuration, minimum of the free energy, is characterised by a zero

velocity field (v0 = 0), a density ρ0, a uniform director field n0, i.e., such that ∇n0 ≡ 0, and

an effective strain tensor (B̊e)0 = L(ρ0, n0). On account of equation (3.5) the equilibrium

shape tensor and effective strain tensor B̊e are

(B̊e)0 = L(ρ0, n0) = I + 3α0 dev(n0 ⊗ n0) + o(α0), (3.6)

which, if we retain only the dominant O(1) order in α0, leads to an equilibrium deform-

ation gradient F = I + O(α0). Therefore, within this approximation, we can perturb the

equilibrium configuration just identified by simply considering motions of the type

x(X, t) = X + ε aRe(eiϕ(X,t)), (3.7a)

n(x, t) = n0 + ε n1(x, t) , (3.7b)

where X is the position vector of a point in the reference configuration, ϕ(X, t) = k̂ ·X−ωt

is a complex phase, k̂ = kr + iki is a complex wave vector, ε � 1 is a dimensionless small

parameter that scales the amplitude of the wave, and the vector a determines the amplitude

and the character of the wave (e.g., longitudinal/transversal if a is parallel/orthogonal to

kr). Since |n| = 1, the first-order correction to the director field must satisfy n1 · n0 = 0.

For later convenience in the calculations, we will retain the complex notation with the

implicit understanding that only the real part of the equations has a physical meaning.

The linearised balance law (2.8)1 to order O(ε) yields the anisotropic sound velocity

and attenuation. As we shall see, the director oscillations only contribute to the higher-

order corrections to the anisotropic velocity and attenuation. Hence, the results reported

in Ref. [2] continue to hold to leading-order also in the presence of director motion.

However, we are here mainly concerned with a complementary problem: we want to

study to what extent the director field is influenced by the macroscopic velocity field of

the fluid. In this case, the governing equation is obtained from the O(ε) approximation of

the torque balance (2.8)2.



Neglecting O(α0) terms, and to order O(ε), equations (3.7a), (2.4) and (3.5) yield

v̇ = −ερ0ω
2 eiϕ a, (3.8)

F = I + iε eiϕ(a ⊗ k̂), (3.9)

det(F) = 1 + iε eiϕ(a · k̂), (3.10)

ξ = −iε eiϕ(a · k̂), (3.11)

F̊ = I + iε eiϕ dev(a ⊗ k̂), (3.12)

L = I + 3α1ξ dev(n0 ⊗ n0) . (3.13)

After writing H = I + εH1, the evolution equation (2.18) can be linearised to give

τḢ1 + H1 = −i eiϕ dev
(
a ⊗ k̂ + k̂ ⊗ a + 3α1(a · k̂)(n0 ⊗ n0)

)
(3.14)

with solution (modulo an exponentially decay transient)

H = I − iε
eiϕ

1 − iωτ
dev(a ⊗ k̂ + k̂ ⊗ a + 3α1(a · k̂)(n0 ⊗ n0)), (3.15)

where τ = 2γ/μ0. This allows us to calculate the isochoric effective strain tensor

B̊e = I + iε eiϕ dev
( −iωτ

1 − iωτ
(a ⊗ k̂ + k̂ ⊗ a) − 3α1

1 − iωτ
(a · k̂)(n0 ⊗ n0)

)
, (3.16)

and its product with the inverse shape tensor

L(ρ, n)−1B̊e = I + iε eiϕ
−iωτ

1 − iωτ
dev((a ⊗ k̂ + k̂ ⊗ a) + 3α1(a · k̂)(n0 ⊗ n0)). (3.17)

One remarkable consequence of equation (3.17) is that the first-order perturbation to the

director field, i.e. εn1, does not enter the calculation of the Cauchy stress tensor to the

considered order of approximation. Therefore, the balance law (2.8)1, which leads to

the anisotropic speed of sound and attenuation, is not affected by the small oscillations

of the director field as these yield only second-order corrections. Thus, the O(η) solution

of the balance of linear momentum (2.8)1, where η := μ0/p1, is found to be in the form of

a longitudinal plane wave with anisotropic velocity given by

vs√
p1

= 1 + ηf(ωτ)
(

2
3

−α1+
3
2
α2

1 + 3α1(cos θ)2
)
, (3.18)

where vs is the speed of sound, θ is the angle between the propagation direction e and the

uniform director field n0, and the function f(x) is

f(x) =
x2

1 + x2
(x � 0). (3.19)

The attenuation vector then reads

√
p1 ki =

η

τ
f(ωτ)

((
2
3

−α1+
3
2
α2

1 + 3α1(cos θ)2
)
e + 3

2
α1(sin 2θ)t

)
, (3.20)



where t is a unit vector orthogonal to e in the plane span{e, n0} and such that n0 · t > 0.

We refer the reader to Ref. [2] for a more detailed derivation of these results and for the

comparison of equations (3.18) and (3.20) with the experimental data reported in [12,14].

We now turn the attention to the balance of torques (2.8)2 in order to derive the leading

approximation to the director motion. After some algebra which we omit for brevity, we

find

B̊en × n = iε eiϕ
−iωτ

1 − iωτ

(
(k̂ · n0)(a × n0) + (a · n0)(k̂ × n0)

)
, (3.21)

div
(
ρK(ρ)∇n

)
× n = ερ0K(ρ0)(Δn1) × n0. (3.22)

So far, the validity of our approximation has been limited to zeroth-order in α0 and to

first-order in ε. However, in view of the fact that B̊en × n = O(ε) and that

a(ρ)−2 − a(ρ) ∼ −3(α0 + α1ξ) = −3α0 + 3iε eiϕ α1(a · k̂), (3.23)

we gather that the torque balance (2.8)2, with h as given in (2.11b), is valid also to

first-order in α0. In fact, the O(α0) corrections to B̊e do not contribute to this equation as

B̊en × n is to be multiplied by (3.23), which is a small coefficient in our approximation.

Therefore, it is apposite to keep terms up to O(α0) in the O(ε) approximation to the (2.8)2
which then reads

K0(Δn1) × n0 + 3α0μ0i e
iϕ −iωτ

1 − iωτ
((k̂ · n0)(a × n0) + (a · n0)(k̂ × n0)) = 0, (3.24)

where K0 = K(ρ0). We now look for oscillating solutions of (3.24) and posit

n = n0 + εn1 = n0 + εRe(eiϕ Ŵ)n0, (3.25)

where Ŵ = Wr + iWi is a complex matrix and Wr , Wi are skew-symmetric matrices to

account for the constraint n1 · n0 = 0. This implies that

n1 = eiϕ Ŵn0 (3.26)

Δn1 = −(k̂ · k̂) eiϕ Ŵn0, (3.27)

where, consistently with the previous notation, we implicitly consider only the real part

of this expressions. Furthermore, the results of Ref. [2] show that to leading-order the

sound wave is purely longitudinal, with vanishing imaginary wave vector. Thus, we posit

kr =
2π

λ0
e, ki = 0, a = a0e, (3.28)

where λ0, a0 are respectively the wavelength and the amplitude of the sound wave, and e

is the unit vector which identifies the propagation direction. Equation(3.24) then simplifies

to

Ŵn0 × n0 =
3

π
α0

λ0

δ0

ωτ

1 − iωτ
(e · n0)(e × n0), (3.29)



where we have introduced the correlation length δ0, defined as

δ0 =
K0

μ0a0
, (3.30)

which is to be compared to the wavelength λ0. When λ0 � δ0 the director oscillations are

small since the elastic distortions induced by the sound wave are balanced by the high

energy cost associated with the Frank potential. By separating the real and the imaginary

parts of (3.29), the following solutions are found

Wrn0 =
3

π
α0

λ0

δ0

ωτ

1 + (ωτ)2
sin(2θ) n⊥

0 , (3.31a)

Win0 =
3

π
α0

λ0

δ0

(ωτ)2

1 + (ωτ)2
sin(2θ) n⊥

0 , (3.31b)

where n⊥
0 is the unit vector in the plane span{e, n0} orthogonal to n0 such that the

propagation direction e is decomposed as: e = cos θ n0 + sin θ n⊥
0 . We recall that, due

to the assumption (3.25), Wrn0 and Win0 have to be multiplied by cosϕ and sinϕ,

respectively, to yield the director oscillation n1. Therefore, after some algebra, we can

convert these two orthogonal oscillations into an amplitude and phase representation to

obtain

n1 =
3

2π
α0

λ0

δ0

ωτ√
1 + (ωτ)2

sin(2θ) n⊥
0 cos

(
k · x − ωτ + β(ωτ)

)
, (3.32)

where β(ωτ) = arctanωτ measures the phase delay of the director oscillation with respect

to the sound wave.

4 Discussion

Nematic liquid crystals consist of organic molecules that interact weakly; as a result,

molecular order is easily perturbed and quite modest fields or boundary effects are

sufficient to cause a quite massive reorganisation and to influence strongly their structure

and macroscopic properties. As such, external actions, such as magnetic or electric field,

generally modifies greatly the director field. By contrast, the dynamics of defects in NLCs

is often studied under the no-backflow approximation where the director rotation induced

by the presence of a macroscopic flow (and vice versa) is neglected. Thus, the interaction

of the director with the underlying fluid is seen as a higher-order effect.

When a sound wave propagates in a NLC cell, it induces an undulatory macroscopic

motion that interacts with the orientational order of the NLC. Given the above remarks

on the no-backflow approximation, it is maybe not surprising that the director field is

not perturbed to leading-order by the fluid motion. This is especially true because we

have explicitly neglected all the viscosities except that associated with the evolution of

the relaxed configuration. Therefore, the anisotropic speed of sound (3.18) and the wave

attenuation (3.20), as derived in [2] under the simplifying assumption that the director is

held fixed by an external action, continue to hold to first-order also when the director is

free to vibrate.

Strictly speaking these considerations apply when the asphericity factor α0 is vanishingly



small. However, when α0 is small but not negligibly small, we can push the perturbation

analysis further to include the O(α0) corrections. An immediate consequence of (3.32) is

that the director oscillation amplitude is proportional to α0, thus providing an indication

that an anisotropic molecular distribution, i.e., an anisotropic equilibrium shape tensor,

could be responsible for more sensitive acousto-optic responses. As far as the angular

dependence is concerned, (3.32) shows that the amplitude is maximum when θ = π/4,

while it vanishes for either the propagation direction, e, parallel or perpendicular to the

director.

More subtle is the discussion of the frequency dependence. If the perturbation to the

equilibrium configuration is slow enough, the fluid is able to relax its natural configur-

ation so as to avoid storing any elastic energy. This corresponds to an “instantaneous”

attainment of the equilibrium configuration L−1B̊e = I which, in the small-frequency limit,

leads to vanishing anisotropic effects. Mathematically, this limit is achieved by fixing ω

(in order to fix also λ0) and let τ → 0 such that ωτ � 1. We gather from (3.32) that

the director oscillations also disappear in this limit. At the other extreme, when the wave

period is much shorter than the relaxation time (ωτ → +∞), the nematic liquid crystal

behaves effectively as an anisotropic elastic solid, as it has no time to rearrange its natural

configuration. In this limit, the anisotropic effects on the sound speed, the attenuation and

the director motion become frequency-independent and saturate to a maximum value.

It is to be remarked that the fact that the attenuation saturates to a maximum value

in the high-frequency regime is a consequence of the approximation in which we have

neglected the usual nematic viscosities, whose effect would have resulted in an unbounded

attenuation.

As a final comment, we note that both the theory presented here and the second-

gradient theory as developed in [5, 24] predict the same functional dependence of the

sound speed and of the attenuation on the angle θ. Furthermore, both theories also find

that the director motion is only slightly affected by the sound wave, to first approximation.

Therefore, on the basis of these effects, it does not seem possible to find experimental

evidence which can support one theory with respect to the other. However, the two

theories differs in their prediction of the frequency dependence of these effects. If the

same experiment repeated at different frequencies only requires small adjustments to the

phenomenological parameters to fit the data, then the theory can be assumed to correctly

capture the underlying physical mechanism. In this respect, the theory that requires the

“least dependence” on frequency of the phenomenological parameters appears to be the

most accurate.
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Appendix A Generalised forces in nematic liquid crystals

Here, we show explicitly how to identify the generalised forces in a nematic liquid crystal

and thus determine the formulas for the Cauchy stress tensor and the molecular field as

given in equations (2.10a) and (2.10b). To this end, we can resort to the method described

in [21,22]. For simplicity we neglect the effect of external actions, as well as any dissipation

effect, and the kinetic contribution which stems from the molecular rotation. Under such

assumptions, the free energy functional in a spatial domain B is given by

F =

∫
B

(
1
2
ρv2 + ρσ(ρ, F̊, n,∇n)

)
dV (A 1)

with σ = σe(ρ, F̊, n) + σFr(ρ, n,∇n). We now compute the time-derivative of the free energy

in order to identify the generalised forces. By making use of Reynolds’ Transport Theorem

and with the aid of the identity (∇n)· = ∇ṅ − (∇n)∇v, we obtain

Ḟ =

∫
B
ρv · v̇ + ρ

( ∂σ

∂F
· Ḟ +

∂σ

∂n
· ṅ +

∂σ

∂ρ
ρ̇ +

∂σ

∂n
· ṅ +

∂σ

∂∇n
· (∇ṅ − (∇n)∇v)

)
dV . (A 2)

Let us now compute separately the different terms in equation (A 2):

ρ
∂σ

∂F
· Ḟ = ρ

∂σ

∂F
F� · ∇v = dev

(
ρ

∂σ

∂F̊
F̊�

)
· ∇v, (A 3)

ρ
∂σ

∂ρ
ρ̇ = −ρ2 ∂σ

∂ρ
I · ∇v, (A 4)

ρ
∂σ

∂∇n
· (∇n)∇v = ρ (∇n)�

∂σ

∂∇n
· ∇v, (A 5)

where, in (A 4), we have used the mass balance equation:

ρ̇ + ρ div v = 0. (A 6)

We can further simplify equation (A 2) if we consider the following identities

ρ
∂σ

∂∇n
· ∇ṅ = div

(
Γ�ṅ

)
− (div Γ) · ṅ, (A 7)

Q · ∇v = div
(
Q�v

)
− (div Q) · v, (A 8)

where Q is an arbitrary tensor and we have introduced the couple tensor Γ = ρ(∂σ/∂∇n).

If we now define the Cauchy stress tensor T and the molecular field h as in equation

(2.10), we find

Ḟ =

∫
B

(ρv̇ − div T) · v + h · ṅ dV +

∫
∂B

Tν · v + Γν · ṅ da, (A 9)

where use has been made of the Divergence Theorem, and ν denotes the outer unit normal

to ∂B. We finally remark that, since n is a unit vector, its time derivative ṅ is orthogonal

to n. In fact, a vector ω can be defined such that ṅ = ω × n. We can therefore rewrite



equation (A 9) as

Ḟ =

∫
B

(ρv̇ − div T) · v + n × h · ω dV +

∫
∂B

Tν · v + n × Γν · ω da. (A 10)

The use of the Rayleigh method [21, 22] and the observation that v and ω in (A 10)

may attain arbitrary values leads to the evolution equations of hyperelastic nematic liquid

crystals, which (in the absence of viscous forces, body forces and body couples) are

ρv̇ = divT and n × h = 0. (A 11)

Analogously, it emerges that the stress Tν and the torque n × Γν are to be balanced by

external actions applied on ∂B.
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