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Biofeedback Arrests Sympathetic and
Behavioral Effects in Distracted Driving
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Abstract—Operating machinery while distracted is a dangerous behavior, often habitual, which is the source of accidents. Distracted

driving in particular has assumed the form of an epidemic, fueled by the ubiquity of smartphone usage and the tendency to slip into

absent-mindedness in tedious commutes. Here we show that a method capable of detecting and communicating overarousal trends

associated with the onset of distractions, can pull the driver out of a downward psychophysiological spiral. The method is reliable,

unobtrusive, and subtle in its intervention - all important characteristics for real-time corrections on human handling of critical

machinery. Arousal estimation is performed by a conservative statistical filter acting upon the driver’s perinasal perspiration signal, as

this is continuously extracted from a thermal imaging feed. Overarousal notices are communicated via a visual indicator placed in the

driver’s peripheral vision. Using this method, we conducted a parallel group experiment, where a control CL (n = 23) and a

biofeedback BF (n = 24) cohort were distracted mentally and physically while driving, with only the biofeedback group receiving the

benefit of overarousal notification. Results show that heeding biofeedback notices, cuts dramatically the time BF subjects are engaged

in distractions with respect to the control group, significantly reducing their arousal levels and improving their driving behaviors in the

context of a typical commute.

Index Terms—Biofeedback, distracted driving, sympathetic arousal, perspiration, thermal imaging, affective computing, cusum.

✦

1 INTRODUCTION

D ISTRACTIONS account for an increasing number of
crashes and fatalities on roadways [1], in aviation [2],

[3], and in railways [4], [5], [6], taking the form of an
epidemic across the transportation sector. In this research,
we focus on driving distractions. In the United States alone,
3,477 people were killed and 391,000 were injured by dis-
tracted driving in 2015 [7]. As bad as the official statistics
are, the actual problem is likely worse, because esoteric dis-
tractions, such as absent-mindedness, are difficult to be ac-
counted for while physical distractions involving electronic
devices are likely to be underreported [8]. Studies have also
shown that although people feel very unsafe when riding
as a passenger with another driver who is physically dis-
tracted, they do not believe that their own driving is affected
when they use electronic devices [9]. The latter reveals a
deep-seated assertive behavioral pattern that is difficult to
reverse with policing actions alone. Moreover, such policing
actions are not always feasible. This state of affairs identifies
a compelling need to develop a method that would act as
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both short- and long-term behavioral orthotic. Given that
distractions are associated with sympathetic arousal [10],
[11], biofeedback has the potential to fulfill such an orthotic
role, because it can enhance drivers’ self-awareness while
keep undermining the misplaced confidence they have on
their multitasking abilities.

In this direction, we introduce a contact-free biofeedback
method for controlling both esoteric and physical forms of
distractions while driving. The method is based on detect-
ing the sympathetic state of the driver through perinasal
perspiration. The perinasal perspiration signal is extracted
via thermophysiological imagery [12] and is monitored for
significant persistent increases through a statistical filter. An
over-arousal alert from this filter is communicated to the
drivers’ peripheral vision as a pink light in the steering
wheel emblem (Fig. 1). This serves as feedback to the drivers
that are not only distracted (esoterically or physically), but
also are exceeding their capacity to drive safely - despite
their inflated sense of capability to do so. The suggested
action is for drivers to disengage from the stressor and
apply mindfulness, to lower their sympathetic signal, thus
switching off the pink light.

To test the fitness of biofeedback as a ‘on the spot’ solu-
tion to the problem of distracted driving, we ran a parallel
group experiment on a driving environment simulator. One
group consisted of control subjects that underwent cognitive
and physical distractions while driving without the benefit
of any feedback mechanism; the other group were inter-
ventional subjects given a physiology-driven overarousal
notification in the course of distractions, to which they were
asked to respond accordingly. The cognitive and physical
distractions were moderate and took place on a 7 − 8 km
roadway section, which is the length of the typical daily
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Fig. 1: Experimental setup. Subject SBF
69 driving on the simulator while performing mental arithmetic. The biofeedback

indicator, located in the steering wheel emblem, is on, suggesting the onset of overarousal.

commute in the United States [13]. The results demonstrated
the capacity of biofeedback to arrest driving distractions
just as they became sympathetically overbearing and be-
haviorally dangerous, bringing down arousal levels and
improving driving performance in good time.

2 METHODS

2.1 Subjects.

Human subject protocols were approved by the Institutional
Review Boards of the Texas A&M University and the Uni-
versity of Houston. The study was conducted according to
these approved protocols, using methods that adhered to
the relevant guidelines and regulations. We recruited sub-
jects from the Bryan and College Station, TX communities
(population about 250, 000) through email solicitations and
flyer postings. Subjects possessed a valid driving license
and had normal or corrected to normal vision. We restricted
admission to individuals with at least one and a half years of
driving experience who were between 18 and 27 years of age
(young) or above 55 years of age (old), trying to maintain
balances with respect not only to age group but also sex
(female vs. male). We excluded subjects on medications af-
fecting their ability to drive safely. A total of n = 69 subjects
conforming to the inclusion-exclusion criteria volunteered
for the study providing informed consent.

Sophisticated software, coordinating the driving simula-
tor with a contact-free biofeedback system, was developed
and used for the first time in this experiment. Technical
problems afflicted the early phase of the study, until all the
bugs were worked out. As a result, recordings for 20 subjects

suffered catastrophic losses. In addition, one subject was not
run due to scheduling issues, and one subject opted to stop
the study before the completion of the experiment because
of motion sickness. Hence, data for only n = 47 subjects
were largely complete and suitable for consideration.

2.2 Experimental Protocol.

In a high fidelity driving environment simulator manu-
factured by Realtime Technologies, Inc (Fig. 1), we ran a
parallel group experiment, featuring two groups: Control
(CL) and Biofeedback (BF ). The grouping related to the
absence or presence of the biofeedback intervention during
distracted driving. Upon signing the consent form, the sub-
jects completed four questionnaires:

Biographic Questionnaire: It identified key facts about the
subject, including sex, age, and driving record.

Trait Anxiety Inventory [14]: Long-standing stress might
have an effect on sympathetic responses and thus,
scoring trait anxiety was of potential interest to this
study.

Personality Type A/B: This was a modified version of the
Jenkins Activity Survey [15]. Some studies have shown
association between type A personalities and specific
driving behaviors [16]; thus, scoring of type A/B per-
sonalities was also of potential interest to this study.

Attentional Control: Biofeedback involves notification
amidst a potentially dangerous situation. Attentional
control is known to regulate sympathetic responses in
such cases and for this reason we wanted to check for
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any biases in the sample using a relevant instrument
[17].

Next, the subjects went through the following five experi-
mental sessions:

1: Baseline Session BL: The subjects sat quietly in a dimly
lit room, listening to soothing music for 5 min. The
purpose of this non-driving baseline session was to
bring all subjects to a tonic sympathetic level prior to
the start of the experiment.

2: Preparation Drive DP : The subjects familiarized them-
selves with the simulator by driving on a 8 km straight
section of a four-lane highway at posted speeds; two
lanes were dedicated to traffic in each direction, with
the subject’s car traveling in the right lane (R); the speed
limits changed approximately every 3 kilometers (80
km/h→ 50 km/h→ 100 km/h) - Appendices/Fig. S1.

3-5: Drives Each drive was uniquely characterized by a
distraction or absence thereof, featuring the same non-
challenging driving conditions. We randomized the or-
der of the two distracted driving sessions. This distrac-
tion assumed the form of a secondary activity that was
forced during the middle phase of the drive. All drives
were on the same 11 km section of a four-lane highway
with posted speed limit of 70 km/h; two lanes were
dedicated to traffic in each direction, with the subject’s
car traveling in the right lane (R). The drives featured
traffic only on the oncoming lanes. Importantly, the
drives consisted of three segments, called phases, de-
lineated by mile markers: Phase P1 ∼ 1.20 km; Phase
P2 ∼ 7.25 km; Phase P3 ∼ 2.55 km. In more detail, the
drives were as follows:

• Drive with No Distractions D∅: Subjects concen-
trated on the driving task only - Appendices/Fig. S2.
This meant to serve as the driving baseline, against
which the effects of the planted distractions could be
gauged.

• Drive with Cognitive Distractions DC : Subjects
were driving under a cognitive distraction - Appen-
dices/Fig. S3. Upon entering P2, the experimenter
asked the subjects to sequentially subtract the num-
ber 13 from 1,022, requesting them to start over
each time they made an error. Upon exiting P2, the
experimenter asked the subjects to stop the sequential
subtraction. In the BF group, if the subjects received
biofeedback notification, they were advised to stop
subtracting, irrespective of whether the end of P2 was
reached or not.

• Drive with Sensorimotor Distractions DM : Subjects
were driving under a sensorimotor distraction - Ap-
pendices/Fig. S3. Upon entering P2, the experimenter
asked the subjects to text back words, sent one by
one to the subjects’ smartphones. Upon exiting P2,
the experimenter asked the subjects to stop texting.
In the BF group, if the subjects received biofeedback
notification, they were advised to stop texting, irre-
spective of whether the end of P2 was reached or not.

There was a 2 min break between the drives. During each
break, subjects were completing the NASA Task Load In-
dex (TLX) for the preceding drive. NASA-TLX is a sub-
jective workload assessment tool that complements the

objective assessment of task-induced sympathetic arousal,
captured via thermal imaging. NASA-TLX features a multi-
dimensional rating procedure that derives an overall work-
load score based on a weighted average of ratings on six
sub-scales. These sub-scales include Mental Demand, Phys-
ical Demand, Temporal Demand, Own Performance, Effort,
and Frustration [18].

2.3 Design of Biofeedback Indicator.

A critical design consideration for the intervention was the
placement and color of the biofeedback indicator. We chose
to put the indicator in the steering wheel emblem, a position
falling in the driver’s peripheral visual field; thus, its status
change would be perceptible but minimally distracting. We
also chose the indicator’s LED color to be pink. According
to standard ergonomic principles the red color is reserved
for communicating potentially dangerous state [19], [20].
Choosing a light shade of red, we were still in compliance
with standard ergonomic guidelines, but refraining from
instilling a sense of panic. To ascertain the goodness of our
usability choices, we included three relevant questions in
the post-study survey:

• Noticeability: Did you notice when the biofeedback
indicator light turned on?

• Color: How do you feel about the biofeedback indicator
light color?

• Location: Do you think the biofeedback indicator light
is in a good location?

The BF driver responses were overwhelmingly positive
in all three questions - 93.31%, 95.83%, and 87.5%, corre-
spondingly (p < 0.001, proportions test in all cases) - Fig.
2.
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Fig. 2: Usability results for the biofeedback indicator
based on the survey responses of the BF cohort at the end
of the experiment. For the color and location questions two
subjects did not answer, and their inputs were treated as
missing values.

2.4 Data Acquisition.

During the baseline session and all the subsequent drives,
we continuously imaged the subject’s face with a ther-
mal camera. We used the Tau 640 thermal camera (FLIR
Commercial Systems, Goleta, CA); it features a small size
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(44 × 44 × 30 mm), and adequate thermal (< 50 mK) and
spatial resolution (640× 512 pixels). These thermal imaging
sequences were subjected to algorithmic processing for the
real-time extraction of the perinasal perspiration signal. At
the same time, we programmed the simulator to save a
record of the evolving driving parameters. These parame-
ters included speed, steering angle, and lane position. The
maximum value of the lane position signal in each drive
defined the tendency to veer off the road.

2.5 Data Quality.

To carry out the pre-planned hypothesis tests, we measured
four variables (distracted segment of P2, mean perinasal
perspiration, mean absolute steering angle, and maximum
lane departure) in three drives (D∅, DC , DM ) for n = 47
subjects. Hence, the total number of measurements should
have been 4 × 3 × 47 = 564. However, only 534 measure-
ments were usable. The remaining 30 measurements were
marred by technical problems and experimenter errors. The
missing data is a very small portion of the total dataset
(∼ 5.32%), and represent a typical loss in such a complex
multimodal study. In addition, due to the conservative na-
ture of the biofeedback algorithm, the biofeedback indicator
either came on at the end of phase P2 or did not come at
all in five cases in the DC drive and in another five cases
in the DM drive. For these cases, we were not able to test
any biofeedback effects in the commuting itinerary under
consideration. Altogether, we were able to run the full set
of tests on 29 subjects; 8 subjects missed participation in at
least one test due to a missing piece of data; and, 10 subjects
missed participation in half of the tests due to biofeedback
non-responsiveness in one of the two distracted drives. In
Table 1a, the n numbers for each group are given explicitly.
In Table 1b, the n numbers, which can be easily deduced
from the (d.f.) numbers, indicate the fully paired subject
measurements available in each case.

2.6 Thermal Imaging Algorithms.

Algorithmic processing of the thermal imagery yielded a
signal that quantified perinasal perspiration. The algorithm
included a virtual tissue tracker that kept track of the
region of interest, despite the subject’s small motions. This
ensured that the physiological signal extractor operated on
consistent and valid sets of data over the clip’s timeline.

Tissue Tracking: We used the tissue tracker reported in
Zhou et al. [21] On the initial frame, the user initiates
the tracking algorithm by selecting the upper orbicu-
laris oris portion of the perinasal region. The tracker
estimates the best matching block in every next frame
of the thermal clip via spatio-temporal smoothing (Fig.
3). A morphology-based algorithm was applied on the
evolving region of interest to compute the perspiration
signal. Any high-frequency noise in this signal was sup-
pressed by a Fast Fourier Transformation (FFT) filter.
The tracker, which underwent extensive validation [21],
is robust to physiological and position perturbations,
because its statistical methodology adapts to temporal
and spatial changes taking place in the region of inter-
est.

In the current dataset, the tracker weathered signif-
icant thermophysiological changes precipitated from
stressful stimuli. The image sequence for subject SBF

2

depicted in Fig. 3 gives a glimpse of the tracking perfor-
mance. There, not only the perspiration pattern in the
region of interest fluctuates widely, but also the nasal
tip where the tracker anchors, almost disappears due to
drastic changes in the breathing function. Despite this
highly dynamic situation, the tracker (red rectangle)
maintains its grip on the region of interest throughout
the session.

Perinasal Signal Extraction: A key method of this study
was the extraction of the perinasal perspiration signal
from the thermal imagery; this was the sympathetic
indicator used. Figure 3 shows the thermal signature of
perspiration spots on the perinasal area of a subject in
moments of low and high excitation. In facial thermal
imagery, activated perspiration pores appear as small
‘cold’ (dark) spots, amidst substantial background clut-
ter. The latter is the thermo-physiological manifestation
of the metabolic processes in the surrounding tissue. We
quantified this spatial frequency pattern by extracting
an energy signal E(k, j, i), indicative of perspiration
activity in the perinasal area of subject k, for session
j, and phase i. We computed this signal by applying
the clinically validated morphological method reported
by Shastri et al. [12]

2.7 Biofeedback Algorithm.

If the physiological variable is sampled at a rate higher
than 1 measurement per second, then we take the mean
of all measurements each second of the evolving timeline.
This is sufficient temporal resolution for tracking sympa-
thetic arousal via peripheral physiological indicators. In-
deed, these indicators are either adrenergic or cholinergic in
nature, with the latter being the most sensitive. Even cholin-
ergic indicators of arousal, however, have time constants
ranging between 2 to 5 seconds [22]. Hence, a sampling rate
of 1 measurement per second can capture all sympathetic
phenomena manifesting peripherally in a subject. As most
physiological sensors sample at a higher rate, averaging the
measurements at the 1 second level, provides the extra ben-
efit of smoothing out high frequency noise. For cholinergic
signals, such as EDA and perinasal perspiration, which are
characterized by large ranges, a logarithmic transformation
is suggested on the averaging process, to bring the distribu-
tion close to normality:

E(i) = ln

(

x1 + x2 + ...+ xm

m

)

, (1)

where E(i) is the computed value of the sympathetic signal,
on the i-th second during the observational period, and
xi, i = 1, 2, ...,m are the sympathetic measurements within
the i-th second.

The biofeedback algorithm should be capable of detect-
ing drifts from sympathetic conditions obtained near the
beginning of the drive, assuming the subject was not dis-
tracted during that period. We view this as a quality control
problem and we use a method based on the self-starting
cusum [23] to address it. The algorithm’s computational
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TABLE 1. Information about the four main variables of analysis. a, Descriptive statistics and tests regarding the length
of the distracted segment in phase P2 of DC and DM . b, Descriptive statistics and tests regarding the mean perinasal
perspiration, the mean absolute steering, and the maximum departure off the road in DC and DM .

a

Variable Subjects Statistic(d.f.)† p value
Between CL BF

n Mean (SD) n Mean (SD)
Drive DC LP2 22 7.54 (0.79) 18 1.93 (1.20) t(28.39) = 17.07 0.0000
Drive DM LP2 21 7.27 (0.41) 18 2.78 (1.70) t(18.69) = 10.98 0.0000
†Welch two sample t-test not assuming equal variances.

b

Variable Subjects
Within CL BF

Mean (SD) Statistic(d.f.) p value Mean (SD) Statistic(d.f.) p value

D
C

∆ ln(E) 0.12 (0.12) t(18) = 4.23 0.0005 0.06 (0.15) t(17) = 1.57 0.1352

∆ ln(|ST|) 0.21 (0.42) t(18) = 2.11 0.0495 0.09 (0.60) t(17) = 0.64 0.5325
∆XR 0.16 (0.24) t(18) = 2.87 0.0101 -0.02 (0.46) t(17) = −0.19 0.8487

D
M

∆ ln(E) 0.09 (0.08) t(17) = 5.12 0.0000 0.06 (0.11) t(17) = 2.27 0.0365

∆ ln(|ST|) 0.89 (0.39) t(17) = 9.77 0.0000 0.29 (0.45) t(17) = 2.69 0.0155
∆XR -0.27 (0.39) t(17) = −2.90 0.0010 -0.14 (0.41) t(17) = −1.39 0.1828

Fig. 3: Extraction of sympathetic responses. Motion tracking [21] of the perinasal region of interest or ROI (red rectangle)
from where the perspiration signal is extracted during the course of drive DC for subject SBF

2 . The thermal facial
snapshots are accompanied by the zoomed-in perinasal ROIs, where black dots manifest active perspiration pores detected
by the algorithm [12]. This algorithm turns the spatial perspiration pattern into a signal by applying a morphological
filter. Elevations in the signal correspond to densification of active perspiration pores, characterizing overarousal bouts.
The yellow background indicates the period of the cognitive distraction, which led to signal elevation, triggering the
biofeedback indicator (pink background). The driver responded by disengaging from the cognitive stressor, leading
eventually to signal reduction.
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machinery depends on point estimates of the sympathetic
signal’s running mean E(n) and variance σ2

E(n)
, which are

determined iteratively:

E(n) = E(n− 1) +
E(n)−E(n− 1)

n
with (2)

E(0) ≡ E(0)

σ2
E(n)

=
Sn

n− 1
with (3)

S0 ≡ 0 and Sn = Sn−1 +
(n− 1)[E(n)−E(n− 1)]2

n

As new sympathetic measurements are acquired in each
time step, they are standardized in the form of the random
variable Yn (line 7 in Algorithm 1). Then, the cumulative dis-
tribution function (CDF ) probability of Yn is sought using
the t statistic (line 8 in Algorithm 1); the inverse of this CDF

points to the deviation from the mean in a Normal standard
distribution. The latter represents the deviation estimate of
the sympathetic state for the current time step. The k and h

are cusum design parameters aiming to detect a persistent
increase of one standard deviation with the false alarm rate
being approximately 5%. To be on the conservative side, this
estimate is filtered by subtracting k = 0.5 deviations, before
it is added to the running cusum. If at some time step, the
cusum exceeds approximately h = 5 deviations, then the
biofeedback indicator is turned on (Fig. 4), and the cusum
process starts afresh on the negative side, proceeding in an
antisymmetric manner (lines 16-20 in Algorithm 1).

It is suggested to not activate the biofeedback algorithm
exactly at the start of each drive, in order to avoid transient
effects. A buffer window of 20 s appears to work well in this
respect. In case the biofeedback indicator stays on for long
periods of time, suggesting that the subject’s high arousal
levels do not drop, it is recommended that the algorithm
is overruled and the indicator is turned off, as it is likely
becoming annoying and counterproductive. A window of 45
s for continuous activation appears to work well; almost all
SBF subjects in our study managed to control their arousal
effects within this time window.

2.8 Statistical Analysis.

We applied statistics using the freeware program R, ver-
sion 3.4.3 (http://www.r-project.org). We performed the
pre-planned hypothesis tests against a two-tail alternative,
setting levels of significance at α = 0.0125 designated by ⋆,
or α = 0.01 designated by ⋆⋆, or α = 0.001 designated by
⋆ ⋆ ⋆. The α = 0.0125 is Bonferroni-corrected for C = 4
comparisons, referring to the four variables we used to
characterize drivers, that is, distracted segment of P2, mean
perinasal perspiration, mean absolute steering angle, and
maximum lane departure off the road.

3 RESULTS

We performed the analysis on n = 23 controls and n =
24 subjects that received biofeedback treatment. Both the
Control (CL) and Biofeedback (BF ) group were balanced
in terms of sex and age (Table 2a). The experiment included
three drives:

Algorithm 1 Biofeedback Algorithm

1: procedure SWITCH ON AND OFF THE BIOFEEDBACK

INDICATOR

2: n = C+
0 = C−

0 = 0
3: k = 0.5;h+ = 5.07;h− = −5.07
4: loop:
5: n← n+ 1
6: Acquire the next sympathetic measurement and compute:

7: Yn ←
[

E(n)−E(n− 1)
]

/

[

√

σ2
E(n−1)

]

8: CDFn ← Pr
(

t < Yn

√

n−1
n

)

9: Un = Φ−1(CDFn)
10: if the biofeedback indicator is OFF then
11: C+

n = max
[

0, Un − k + C+
n−1

]

12: if C+
n > h+ then

13: n = 0
14: switch biofeedback indicator ON
15: goto loop
16: if the biofeedback indicator is ON then
17: C−

n = min{0, Un + k + C−

n−1}
18: if C−

n < h− then
19: n = 0
20: switch biofeedback indicator OFF
21: goto loop
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Fig. 4: Decision making of the biofeedback method. The
self-starting cusum algorithm at work in drives DC and
DM of subject SBF

2 . The black curve in each panel is the
perinasal perspiration signal, while the red curve depicts the
evolution of the cusum parameter C+

n . Once this parameter
crosses the 5 deviations threshold, the biofeedback indicator
comes on (pink background period), prompting the driver
to disengage from the distraction; evidently, the perspiration
signal starts decreasing as a result.
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TABLE 2. Information about the subject profiles. a, Demographic values along with the associated tests for the CL and
BF groups. b, Descriptive statistics and tests regarding the psychometric measures obtained from the CL and BF groups.

a
Measure Subjects Statistic(d.f.) p value

CL BF

Sex Ratio (Male:Female) 12:11 11:13 χ2(1) = 0.02 0.8864
Age Group Ratio (Young:Old) 11:12 13:11 χ2(1) = 0.02 0.8864

b

Measure Subjects Statistic(d.f.)† p value
CL BF
n Mean (SD) n Mean (SD)

TAI 23 33.57 (10.55) 24 31.21 (10.02) t(44.60) = 0.78 0.4368
Type A/B 23 217.87 (32.32) 24 215.92 (33.71) t(45.00) = 0.20 0.8402
Attn. Control 23 56.78 (12.40) 24 58.17 (8.05) t(37.51) = 0.45 0.6541
†Welch two sample t-test not assuming equal variances.

1) A drive where subjects drove without any distractions
(D∅).

2) A drive with cognitive distractions (DC ), where subjects
performed a mental arithmetic task while driving. Men-
tal arithmetic is a well-known type of cognitive stressor
[24], which acts as proxy for absent-mindedness in this
experiment.

3) A drive with sensorimotor distractions (DM ), where
subjects texted while driving. Texting is the most
widespread form of physical distraction [25], taxing
both the sensory (eyes) and motor (hands) systems of
drivers [10].

All three drives featured identical layout, traffic, and
weather conditions to control confounding factors. Conse-
quently, any significant persistent elevation of a subject’s
sympathetic level within or across drives was attributable
solely to the distractive tasks. The D∅ drive was first, serv-
ing as the driving baseline. The order of the distracted drives
DC and DM was randomized to ameliorate bias. Control
subjects did not get any feedback during distractions.

As this was a behavioral experiment, certain personality
traits could have biased the results. These traits included: (a)
Anxiety disposition, which is known to affect sympathetic
responses, and is measured via the Trait Anxiety Inventory
(TAI) [14]; it takes values in the range [20, 80]. (b) A vs.
B personality, which is known to affect driving style [16],
and is measured via a variant of the Personality Type A/B
[15] questionnaire; it takes values in the range [35, 380].
(c) Attentional control, which is known to bias attention
favoring ‘threatening’ information, such as the notification
issued by the biofeedback system; it is measured via the
Attentional Control [17] questionnaire that takes values in
the range [20, 80]. The key concern was the distributions of
these traits in the two experimental groups. In this respect,
we found no significant differences between the CL and BF

cohorts when we tested for the TAI, the Personality Type
A/B, and the Attentional Control scores (t-test, p > 0.05 for
all cases). The descriptive statistics for all three traits were
also in non-extreme subranges and consistent with normal
personality characteristics (Table 2b).

3.1 Analytic Framework

Each of the D∅, DC , and DM drives consisted of three
phases: P1, P2, and P3, separated by mile markers. In the
D∅ drive no distraction was applied in any of the phases.
In the DC and DM drives cognitive and sensorimotor
distractions, respectively, took place in P2. There was an
important difference, however, between the CL and BF

cohorts. In the CL subjects, the distractions lasted for the
entire phase P2 of the DC and DM drives, with the onset and
offset being triggered by mile markers. In the BF cohort,
when the subjects’ sympathetic arousal levels exhibited a
persistent significant increase, a pink LED in the steering
wheel emblem was illuminated. Upon seen this indicator,
BF subjects disengaged from the secondary activity and
concentrated back on driving, thus cutting short the dura-
tion of distractions during phase P2. Note that the phase P2

was the largest segment of the drives, and was designed to
be the length of the typical U.S. commute (7− 8 km) [13] to
have practical relevance. The phases P1 and P3 were short
initial and finishing segments (∼ 1 − 2 km each) meant to
isolate phase P2 from confounding start-up and finish-up
effects [10].

We focused on phase P2 in all the drives, where we inves-
tigated the effect of cognitive and sensorimotor distractions
on sympathetic arousal and driving behavior. Sympathetic
arousal was tracked via the perinasal perspiration signal E.
Driving behavior was tracked via the steering signal ST

and the maximum lane departure to the right XR, off the
paved road. The former is linked to arousal triggered motor
reactions, while the latter manifests the end effect, that is,
the tendency to veer off the road.

We were interested to confirm if full engagement with
the distracting stressors in control subjects SCL

i had a sig-
nificant adverse effect with respect to arousal levels and
driving behaviors (HYPOTHESIS SET H1) - a result first
reported by Pavlidis et al. [10] In contradistinction, we
were interested to test if timely disengagement from the
distracting stressors in biofeedback subjects SBF

i had a
significant ameliorating effect with respect to arousal levels
and driving behaviors (HYPOTHESIS SET H2). As subjects
are individuals with different sympathetic and behavioral
characteristics, the only meaningful way to test these sets of
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hypotheses was by considering intra-individual paired dif-
ferences, where the drive D∅ served as the driving baseline.

3.2 Experimental Validity.

We opted for a highly automated biofeedback application,
not only because anything else would have been imprac-
tical, but also because it would have introduced non-
systematic biases due to intra- and inter-operator variabil-
ity. Before proceeding with the analysis of the results, we
needed to verify that:

(1) The designed distractions and biofeedback were per-
ceived as effective. To ascertain that the experiment’s
distracted drives were perceived as challenging and
the biofeedback as having an ameliorating effect, we
asked subjects to complete the NASA Task Load In-
dex (TLX) after each drive. The NASA TLX measures
subjective workload assessment on machine opera-
tors. It draws on six sub-scales TLXs: Mental Demand
(TLXMD), Physical Demand (TLXPD), Temporal De-
mand (TLXTD), Performance (TLXP ), Effort (TLXE),
and Frustration (TLXF ).
We ran a mixed effects model to examine the depen-
dence of each sub-scale TLXs on fixed effects, defined
by the experimental condition ( Gj ≡ GCL or GBF ) and
the type of drive (Di ≡ D∅ or DC or DM ); we kept as
references the control group GCL and the drive with no
distractions D∅, respectively:

TLXs ∼ 1 + Gj + Di + 1|Sk, (4)

where Sk stands for subjects, acting as random effects.
The model indicated that the experimental condition
had a significant effect on the Mental Demand and
Effort sub-scales (p < 0.05 for TLXMD , TLXE in GBF

vs. GCL). Specifically, the BF subjects had significantly
lower scores in these two sub-scales with respect to CL

subjects. The model also indicated that the type of drive
had a significant effect, that is, the distracted drives DC

and DM with cognitive and sensorimotor stressors, re-
spectively, had significantly higher scores with respect
to D∅ in all NASA TLX sub-scales (p < 0.001 for all
TLXs in DC vs. D∅ and DM vs. D∅).
These results suggest that subjects perceived drives
with cognitive or sensorimotor distractions as challeng-
ing across the sub-scales of a validated instrument,
[18] thus, confirming the effectiveness of the study’s
design regarding these two stressors. The fact that
BF subjects perceived that they expended significantly
less effort (mental and otherwise) with respect to CL

subjects, gives a first indication of the effectiveness of
the biofeedback intervention.

(2) The biofeedback system was responsive. The biofeed-
back system was conservatively responsive to both
types of driving distractions, activating shortly after
the application of the stressor in n = 18 cases in drive
DC and in n = 18 cases in drive DM . All subsequent
analysis with respect to the BF group is based on these
usable cases. Interestingly, for the 10 cases the biofeed-
back algorithm did not raise a flag (five in DC and five
in DM ), we found that the mean perinasal perspiration
was higher with respect to the D∅ drive, if an extreme

outlier was excluded (p = 0.012, paired t-test). The low
significance, however, of the sympathetic elevation jus-
tifies the non-interventional stance of the biofeedback
algorithm, highlighting its reliability. Interestingly, the
mean absolute steering and maximum departure off the
road for these cases were not significantly different than
the subjects’ performance in D∅ (p > 0.05, paired t-
tests in both cases) - Appendices/Fig. S4. This suggests
that the absence of strong overarousal was accompa-
nied by the absence of behavioral deterioration during
distracted driving.

(3) The biofeedback system’s responsiveness was non-bi-
ased. We wanted to ascertain if the prior driving record
of subjects played any role in the onset and offset of
the biofeedback indicator - an important consideration
for the universal applicability of the method. In this
respect, we identified three covariates of interest that
were relevant and quantifiable: (a) the subjects’ level of
habitual texting while driving; (b) the subjects’ profile
of lawful driving behavior; and, (c) the subjects’ crash
history. We coded habitual texting while driving in
four levels: 1 ≡ no texting; 2 ≡ texting in less than
25% of the drives; 3 ≡ texting 50% - 75% of the
drives; 4 ≡ texting in more than 75% of the drives.
We coded the profile of lawful driving behavior in
two levels: 0 ≡ no tickets; 1 ≡ one or more tickets.
We coded crash history in two levels: 0 ≡ no crashes;
1 ≡ one or more crashes. We found no significant dif-
ferences in the onset and offset times of the biofeedback
indicator in the DC and DM drives with respect to all
three prior driving record covariates (p > 0.05, analysis
of variance for all cases with respect to habitual texting;
t-test for all cases with respect to tickets and crashes).
This indirectly suggests that habitual texting while
driving, tendency for risky driving, and traumatic driv-
ing experiences do not significantly alter biofeedback
responses.

3.3 Analysis of Length of Distractions.

A key question was if biofeedback activation drastically
reduced the planned subject engagement with the distract-
ing stressors. Figure 5a shows the segments of phase P2

during which the subjects were distracted in the CL and
BF groups. There were significant LP2

segment differences
between the two groups in each type of distracted drive
(p < 0.001, t-test in all cases). It took on average 1.93 km
in DC and 2.78 km in DM for the biofeedback system to
flag distractions (Table 1a). Hence, the BF subjects were
distracted on average in just 26.62% and 38.34% of the
originally planned 7.25 km in DC and DM , respectively -
a fairly effective curtailing of distractions in the context of
this typical commuting itinerary.

3.4 Analysis of Control Subjects’ Responses.

The control arm of the experiment was meant to reproduce
the results reported by Pavlidis et al. [10], where cognitive
and sensorimotor distractions during driving led to elevated
sympathetic arousal accompanied by oscillatory handling
of the steering wheel. This subconscious oscillatory han-
dling was apparently controlled by an autonomic conflict
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Fig. 5: Behavioral and sympathetic effects on the two experimental groups. a, Distributions of the length of distractions in
phase P2 of the DC and DM drives. b-d, Distributions of within-subject differences of mean perinasal perspiration ∆ ln(E),
mean absolute steering ∆ ln(|ST|), and maximum departure off the road ∆XR in drives DC and DM with respect to drive
D∅. Results for the CL and BF cohorts are presented in juxtaposition. Stars indicate significance for the corresponding
between-groups t-tests (row a) or within-group paired t-tests (rows b-d).

resolution center in the brain - likely the anterior cingulate
cortex (ACG). In the case of cognitive distractions, the
oscillatory handling had near perfect symmetry, manifesting
optimal containment of ‘fight or flight’ effects by instant
counterbalancing of tremors. In the case of sensorimotor
distractions, this symmetry was marred by momentary fail-
ures, because the eye and hand resources used by ACG
were occasionally diverted to the texting task, rendering
instant counterbalancing impossible. As a result, the cars
were sometimes veering off the lane - an outright dangerous
driving pattern. Such lane departures were not observed
under cognitive distractions, but the drivers’ state remained
potentially dangerous, due to the oscillatory handling of the

steering wheel.

Accordingly, for the control subjects SCL
i in this study,

we computed the distributions of paired differences be-
tween the distracted drive D· (· ∈ {C,M}) and the drive
D∅, regarding the sympathetic and behavioral variables of
interest.

• Mean perinasal perspiration (Eq. 5) - proxy for sympa-
thetic changes, manifesting driver overloading due to
multitasking:

∆ ln(E(SCL
i , ·,P2)) = ln(E(SCL

i ,D·,P2) [
◦

C
2])

− ln(E(SCL
i ,D∅,P2) [

◦

C
2]) (5)
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• Mean absolute steering angle (Eq. 6) - proxy for steering
changes, manifesting oscillatory handling of the steer-
ing wheel due to ‘fight or flight’ musculoskeletal effects:

∆ ln(|ST(SCL
i , ·,P2)|) = ln(|ST(SCL

i ,D·,P2)| [rad])

− ln(|ST(SCL
i ,D∅,P2)| [rad])

(6)

• Maximum lane departures off the road (Eq. 7) - proxy
for driving changes, manifesting instantaneous failure
of the anterior cingulate cortex (ACC) to tightly control
oscillatory steering:

∆XR(S
CL
i , ·,P2) = XR(S

CL
i ,D·,P2) [m]

−XR(S
CL
i ,D∅,P2) [m] (7)

Results from Eqs. (5), (6), and (7) with · ≡ C suggest
that cognitive distractions on CL subjects produced the
following effects with respect to the drive D∅ (Figure 5 and
Table 1b):

• Significant increase in the subjects’ mean sympathetic
arousal (p ≤ 0.001, paired t-test). This result is con-
sistent with prior reports in the literature [10], [11],
indicating that the cognitive distractions used in this
experiment resulted in overarousal, and at least in this
respect were effective.

• No significant increase in mean steering tremors (p >

0.0125, paired t-test). This result differs from what is
reported by Pavlidis et al. [10]. Despite significant sym-
pathetic loading from cognitive distractions, no oscilla-
tory handling of the steering wheel took place in our
sample. The discrepancy between the two experimen-
tal outcomes suggests the existence of an overarousal
threshold for ‘fight or flight’ tremors. We speculate that
the ‘lighter’ cognitive stressor we used in this study did
not spur enough overarousal to exceed this threshold.
Specifically, instead of a series of mental arithmetic and
analytic questions [10], [11], we asked the subjects to
keep subtracting 13, starting from 1022, while driving.
This mode of mental arithmetic was easier to admin-
ister experimentally, but apparently was not strong
enough to produce the full range of anticipated effects.

• Significant reduction with respect to maximum off the
road departures (p ≤ 0.0125, paired t-test). This para-
doxical result is consistent with prior reports in the
literature [10], indicating the tendency of drivers to
follow straighter trajectories under the tight control
exercised by ACG during esoteric distractions, where
the hand-eye coordination is flawless.

Results from Eqs. (5), (6), and (7) with · ≡ M suggest
that sensorimotor distractions on CL subjects produced the
following effects with respect to the drive D∅ (Figure 5 and
Table 1b):

• Significant increase in the subjects’ mean sympathetic
arousal (p ≤ 0.001, paired t-test).

• Significant increase in mean steering tremors (p ≤
0.001, paired t-test).

• Significant increase in maximum off the road depar-
tures (p ≤ 0.01, paired t-test).

These results are consistent with prior reports in the liter-
ature [10], [11], suggesting that sensorimotor distractions

produced overarousal, which was accompanied by intensely
oscillatory handling of the steering wheel, and significant
tendencies to veer off the road.

3.5 Analysis of Biofeedback Subjects’ Responses.

The interventional arm of the experiment meant to test
if heeding to biofeedback alerts significantly ameliorated
sympathetic and behavioral effects in the context of a typical
commute. Accordingly, for the usable SBF

i cases, we com-
puted the distributions of paired differences between the
distracted drive D· (· ∈ {C,M}) and the drive D∅, regard-
ing the sympathetic and behavioral variables of interest.

• Mean perinasal perspiration (Eq. 8) - proxy for sympa-
thetic changes, manifesting the presence or absence of
overloading:

∆ ln(E(SBF
i , ·,P2)) = ln(E(SBF

i ,D·,P2) [
◦

C
2])

− ln(E(SBF
i ,D∅,P2) [

◦

C
2]) (8)

• Mean absolute steering angle (Eq. 9) - proxy for steering
changes, manifesting the presence or absence of oscilla-
tory handling of the steering wheel:

∆ ln(|ST(SBF
i , ·,P2)|) = ln(|ST(SBF

i ,D·,P2)| [rad])

− ln(|ST(SBF
i ,D∅,P2)| [rad])

(9)

• Maximum lane departures off the road (Eq. 10) - proxy
for driving changes, manifesting the presence or ab-
sence of tendencies to veer off the road:

∆XR(S
BF
i , ·,P2) = XR(S

BF
i ,D·,P2) [m]

−XR(S
BF
i ,D∅,P2) [m] (10)

Results from Eqs. (8), (9), and (10) with · ≡ C suggest that
cognitive distractions on BF subjects produced with respect
to drive D∅ (Figure 5 and Table 1b):

• No significant increase in the subjects’ mean sympa-
thetic arousal (p > 0.0125, paired t-test).

• No significant increase in mean steering tremors (p >

0.0125, paired t-test).
• No significant increase in maximum off the road depar-

tures (p > 0.0125, paired t-test).

These results indicate that the biofeedback intervention in
the course of cognitive distractions successfully arrested
sympathetic arousal effects in the typical commute pro-
grammed in the simulator.

Results from Eqs. (8), (9), and (10) with · ≡ M suggest
that sensorimotor distractions on BF subjects produced
with respect to drive D∅ (Figure 5 and Table 1b):

• No significant increase in the subjects’ mean sympa-
thetic arousal (p > 0.0125, paired t-test).

• No significant increase in mean steering tremors (p >

0.0125, paired t-test).
• No significant increase in maximum off the road depar-

tures (p > 0.0125, paired t-test).

These results indicate that the biofeedback intervention in
the course of sensorimotor distractions successfully arrested
both sympathetic arousal and negative behavioral effects in
the typical commute programmed in the simulator.
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3.6 Age and Gender Considerations.

Age and gender are important covariates in driving studies;
thus, the question is if they affected results in the current
study.

Age factor. People drive from their late teens all the way
into their 70s. Hence, the entire span of adult ages is
represented in the driving population. In the present
study, there are four key variables: (a) one variable
of physiological nature (i.e., perinasal perspiration E),
and (b) three variables that track driving behaviors (i.e.,
length of distractions LP2

, steering ST, and maximum
lane departure XR). As aspects of physiology and
driving behaviors tend to change through adulthood,
we thought of concentrating our sample to the two
ends of the adult age spectrum, that is, young adults
(20.92 ± 1.67 years) and older individuals (65.3 ± 5.31
years). If there were no significant differences between
these two extreme age groups, chances are that there
would be no significant differences with respect to in-
termediate ages either. This sampling strategy allowed
us to gather enough subjects within each age group to
perform equality of means tests in all scenarios defined
by the study design.

Figure S5 shows how the experimental results pre-
sented in Fig. 5 look like, when each subject group is
split into two subgroups: Young .Y and Old .O; thus,
CL.Y and CL.O are the young and old subgroups of]
the Control group CL, while BF.Y and BF.O are the
young and old subgroups of the Biofeedback group
BF , respectively. All the mean equality tests between
the .Y and .O age subgroups in the 16 cases shown
in Fig. S5 yield insignificant results (p > 0.0167, t-
test for all cases). Note that even if we do not adopt
the corrected α = 0.0167 that we set as the standard
for this study, and we go with the typical α = 0.05,
only in two cases appears to be marginal significance:
(a) Steering (ST) in drive DM for Biofeedback (BF ),
where p = 0.03 and, (b) length of distractions (LP2

) in
drive DM for Control (CL), where p = 0.02. Hence,
by and large, age did not affect results with respect to
any of the variables of interest, and given that the age
grouping was extreme, it is not expected to affect any
intermediate grouping in future sampling.

Gender factor. Figure S6 shows how the experimental re-
sults presented in Fig. 5 look like, when we account
for gender. Each subject group is split into two sub-
groups: .F (for Female) and .M (for Male); thus, CL.F

and CL.M are the female and male subgroups of the
Control group CL, while BF.F and BF.M are the
female and male subgroups of the Biofeedback group
BF , respectively. All the mean equality tests between
the female and male subgroups in the 16 cases shown
in Fig. S6 yield insignificant results (p > 0.05, t-test for
all cases). Hence, gender did not have any effect on the
physiological or behavioral variables of this study.

4 DISCUSSION

The findings of this study have interventional and method-
ological implications for managing distracted driving - a

ubiquitous negative human behavior. They also stand to
benefit investigations of distractions in the broader context
of human-machine interactions.

The control arm of the study largely reproduced the
results reported by Pavlidis et al. [10] regarding the sym-
pathetic elevation and the ominous or outright dangerous
behavioral modification incurred by cognitive and physical
distractions (HYPOTHESIS SET H1). In a novel contribu-
tion, the interventional arm of the study demonstrated that
heeding overarousal notifications to disengage from ongo-
ing distractions, helps maintaining the drivers’ sympathetic
and performance levels at a safe equilibrium in the context
of typical commuting distances (HYPOTHESIS SET H2).

The present study marks a move towards subject-
centered triggers in managing multitasking behaviors dur-
ing critical human-machine operations. This is a radical
departure from existing device-centered triggers, such as
the auto-locking of smartphones, once their bluetooth con-
nection senses that the vehicle’s engine is on. Drivers can
always override such triggered locks or ignore alerts if they
feel confident to multitask at will. In this respect, device-
centered triggers have an inherent disadvantage, because
they are generic and ‘mechanical’ implementations of the
law. For instance, smartphone locking activates before any
actual driving takes place, reinforcing a low opinion about
its operational significance.

The value of individualized expert advice on effective
prevention, and potentially on rule adherence and behav-
ioral modification is well documented in the literature [26],
[27]. What we propose here is anchored in this framework.
For the purposes of our study, we could have tested the
concept without a biofeedback algorithm, by having an
expert monitoring the driver’s sympathetic signal, and ac-
tivating the overarousal indicator when s/he deemed that
there was a significant and persistent increase. Due to the
highly quantitative nature of the information, however, we
were concerned about intra- and inter-operator consistency,
given also the real-time pressure for expert decisions. For
this reason we opted to employ the self-starting cusum algo-
rithm [23] - a robust statistical filter for detecting significant
persistent shifts.

Although it was not a central consideration in the
present study, the issue of a biofeedback system that could
be used in actual vehicles naturally enters into the dis-
cussion. This was a controlled experiment, where we kept
all possible confounding factors at bay, including traffic
conditions and weather, so that we can easily account for the
true effects of the planted distractions. How then could the
biofeedback method work in the real world, where traffic
and weather, two factors that contribute to sympathetic
arousal, change frequently? Indeed, the method’s algorithm
detects persistent overarousal, which is successfully associ-
ated with distractions only when all environmental factors
are properly controlled. In realistic conditions environmen-
tal factors cannot be controlled, but can be accounted for
in a mixed model that has to be incorporated into the
biofeedback algorithm. This is technically feasible, given the
availability of real-time GPS, weather, and traffic data in the
computers of modern cars, as well as the fact that human
commuting patterns have the characteristics of Lévy flights
[28] (i.e., they are space-limited and recurring), allowing the
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estimation of long term averages.
Outside the specific characteristics of the ultimate app

that will bring the findings of this study into practice, two
key characteristics of the methodological framework we
propose are unobtrusiveness and comprehensive coverage
of distractions. Unobtrusiveness is quintessential, as the
variable upon which the method operates is of sympathetic
nature, and thus likely to be confounded if it is extracted via
obtrusive sensing means. Importantly, the method should be
capable of detecting both physical and esoteric distractions.
Sympathetic methods can accomplish this, because both
types of distractions have sympathetic effects. In contradis-
tinction, observational methods, such as eye-tracking, can
detect physical distractions, but not cognitive distractions,
because the latter lack observational signatures.

One could argue that in the ∼ 2 highway kilometers that
takes the biofeedback method to intervene in the course of a
distraction, bad things could happen. That may be true, but
it should be noted that this was a simulation experiment
with moderate distracting stressors. Stronger stressors (e.g.,
mixed physical and cognitive distractions) in real condi-
tions will likely produce persistent overarousal, prompting
biofeedback intervention, much faster. Irrespectively, the
most important point here is the behavioral implication
of the method as it stands - when the ‘pink’ light turns
on, this indicates with high degree of statistical certainty
that the subject started exceeding his/her physiological and
technical capacity to drive safely. This was sobering to the
SBF subjects in the experiment per the exit interviews, and
we believe it will be sobering to the general population,
should a system adhering to the tested principles is made
robust enough to enter into practice.

Relevant to this discussion is the fact that in the few
cases the biofeedback algorithm did not raise a flag, the
subjects experienced overarousal, but of low significance,
and without manifesting any adverse behavioral effects.
This is an intriguing phenomenon that is under explored
in the present study. It reinforces a radical rethinking of
sanctioning distractions on an individualized basis, where
biofeedback systems would play an indispensable role.
While it is evident that the great majority people who drive
while distracted are a danger to themselves and others,
there may be a minority of individuals who sometimes drive
while distracted without any loss of operational efficiency.
Future studies with larger subject numbers would be able to
answer this and other questions.

Interestingly, we found no significant age or gender
effects. At first glance, the absence of age effects is somewhat
surprising. One should note, however, that these results
apply for the typical driving commute application targeted
in the present study. Different and more exotic applications
(e.g., driving for hours under extreme weather conditions
in difficult terrain) may reveal more substantial differences
between age groups. Such applications, however, were well
outside the scope of this research.
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